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Transform Domain Approach for Sequence Design
and Its Applications

Lung-Sheng Tsai, Student Member, IEEE, and Yu T. Su, Member, IEEE

Abstract—Many communication and radar systems necessi-
tate the use of sequences with desired autocorrelation (AC) and
cross-correlation (CC) properties. This paper presents a system-
atic method based on the transform domain characterization of
the AC and CC constraints to generate new families of sequences
that meet the requirements. We demonstrate that some existing
families can easily be generated by our approach. Our approach,
however, renders new families of sequences with less constraints.
The proposed approach is elementary and can easily be extended
to synthesize two-dimensional arrays or even higher dimensional
waveforms that possess the desired multidimensional correlation
properties. A preamble structure based on our new sequence
family is suggested and performance of frequency offset and
channel estimation algorithms for a multiantenna orthogonal
frequency-division multiplexing (OFDM) system that uses such a
preamble is given.

Index Terms—Autocorrelation (AC), cross-correlation (CC), or-
thogonal waveform design, polyphase sequence.

I. INTRODUCTION

SETS OF periodic sequences with good correlation proper-
ties are desired in many communication and radar applica-

tions. In a communication system, such sequences are used ei-
ther in the preamble such that a receiver can easily perform pilot-
assisted synchronization and/or channel estimation or as the sig-
nature codes for a spread spectrum multiple access network.

Oftentimes, we hope to have a family of sequences whose au-
tocorrelation (AC) function has a single peak at the zero delay
and whose cross-correlation (CC) values are identically zero at
all delays. Such sequences can be used to avoid or minimize:
1) the interference from other users or other antennas if multiple
transmit antennas were in place and 2) self-interference [e.g., in-
tersymbol interference (ISI)] due to multiple propagation paths.
Practical considerations also require that the sequence length be
arbitrary and the family size be as large as possible, while main-
taining the desired AC and CC properties.

Unfortunately, such an optimal family of sequences does exist
for one cannot have both the ideal AC and CC. In fact, the
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bounds on CC and AC of sequences discussed in [1] indicate
that there is a tradeoff between AC and CC when designing se-
quences. An alternate design approach is to either give up one
of the desired correlation properties which has less impact on
the system performance or to loosen the requirements and grant
certain degree of nonzero correlations. For example, since the
AC at time-lags (delays) larger than the transmission channel’s
maximum multipath delay do not contribute to self-interference,
we might just require zero AC values at those nonzero lags less
than the maximum delay, allowing arbitrary AC values outside
the range of concern. The families of PS sequences [2] do have
similar suboptimal correlation properties but its length is lim-
ited to squares of integers.

Recently, Park et al. [3] proposed a sequence generation
method based on perfect reconstruction quadrature mirror filter
banks. The sequences produced by this method have zero AC and
CC at some delays; the remaining nonzero correlation values are
in general lower than those of the well-known Gold sequences.
However, their AC and CC are defined as the real parts of the
conventional complex AC and CC functions and the length of
the sequences must be of the form .
Tropp et al. [4] formulated the sequence design problem as an
inverse singular value problem. But they considered symbol-syn-
chronous code-division multiple-access (CDMA) systems, thus,
require zero CC at periodic delays only.

In this paper, we present a transform domain approach for
generating families of sequences whose periodic AC functions
have nonzero values only at some subperiodic delays and whose
periodic CC functions are identically zero. Although the PS
sequences have similar correlation properties, our approach for
constructing the desired sequences is elementary and simpler. It
transforms the correlation requirements into transform domain
identities, imposes almost no constraint on the sequence duration
and, moreover, can be used to generate a large number of
families. Our approach also has the benefit of interpreting
the so-called modulatable orthogonal sequences [5] from the
frequency (transform) domain’s viewpoint.

The rest of this paper is organized as follows. In Section II, we
derive the basic transform domain requirements on AC and CC.
Section III presents the main theorem and a systematic trans-
form domain process for constructing families of sequences
with the desired correlation properties. Section IV provides a
transform domain derivation of the class of modulatable orthog-
onal sequences. We then proceed to show that the class of PS
sequences can be easily generated by our method (Section V). A
transform domain approach for constructing multidimensional
arrays with desired AC and CC is presented in Section VI. A
preamble structure for multiple-input–multiple-output (MIMO)
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orthogonal frequency-division multiplexing (OFDM) wideband
local area network (WLAN) systems is suggested in Section VII
in which related frequency and channel estimator performance
is also provided. Finally, we give some concluding remarks in
Section VIII.

II. DEFINITIONS AND FUNDAMENTAL PROPERTIES

Let denote a set of complex-valued sequences of period
, i.e., for every sequence , , for

all , being the set of integers.
Definition 1: The periodic CC function of two period- se-

quences , is defined by

(1)

The periodic AC function for the sequence is just
. We assume that for all , then

it is obvious that and for all ,
.

To facilitate the subsequent discourse, we need some more
definitions; some of them are adopted from [2] for convenience
of reference.

Definition 2: The discrete Fourier transform (DFT)
matrix with index is given by

(2)

where is a natural number, , ,
and .

Definition 3: The diagonalized matrix associated
with the sequence is defined as

(3)

Definition 4: A period- sequence is called an or-
thogonal sequence if its AC satisfies

(4)

where is the Kronecker delta function and
.

It is periodic orthogonal with period if

(5)

where divides .
Definition 5: A family of period- sequences is

called near-optimal if all its member sequences are periodic or-
thogonal and each pair has zero CC, i.e., for

(6)

where .

Definition 6: Asetof -dimensionalvectors is said tobe
an orthogonal tone set if , , where is the
support of the vector . The set is complete if , i.e.,
if isapartitionof theset . If thesethasonly
twovectors ,wesay theyareanorthogonal tonepair.

Definition 7: Let be the delay operator that cyclicly
shifts the components of a vector to the right by one place and

-
denote the operator that shifts

the components of a vector to the right cyclicly by places.
Definition 8: The -fold expander converts a length-

sequence into a length- sequence by

if
otherwise

(7)

is referred to as the expanding rate, while is a rate-ex-
panding mapping [6].

For convenience of reference we list the following well
known property concerning the last definition.

Property 1: is an -period exten-
sion of , i.e., , , and

is an -period extension of , where

modulo .
We shall refer to an -dimensional vector and its periodic

extension interchangeably, making no distinction be-
tween an -dimensional vector and its periodic extension when
there is no danger of confusing. The -point DFT of , (or

), is called its spectral vector (representation).
We also need the following fundamental lemma and its corol-

laries in our subsequent discourse.
Lemma 1: The DFT of the periodic CC function

of two period- sequences, and , is equal to
, where and are the DFTs of

and , respectively.
This lemma is well known and has appeared in the literature

in various forms; e.g., see [10] and [11]. It follows immediately
that.

Corollary 1: The AC function is equivalent to
and .

Hence, a sequence is orthogonal, i.e., ,
iff is a constant for all .

Corollary 2: The periodic CC of the two sequences
, is identically zero iff their DFT’s satisfy

, .
Corollary 3: Members of the set of sequences ,

, have zero CC if their spectral representa-
tions form a set of orthogonal tones. Moreover, the
“combined” sequence has impulse-like AC (i.e.,
orthogonal) if is a complete set of orthogonal tones
and is a constant for all .

III. FREQUENCY-DOMAIN SYNTHESIS

A. Main Theorem

Based on the transform domain characterization of the AC
and CC correlation functions, we now present a theorem that
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suggests a frequency-domain approach for generating near-op-
timal families of sequences.

Lemma 2: Let be a set of pe-
riod- sequences, where and denote the -point
DFT of by , then is a near-optimal
family if

(8)

where is the DFT of a length- perfect AC sequence.
Proof: Let be the -point DFT of the AC func-

tion of . Then

(9)

The establishment of the perfect CC property is straightforward
since the spectral vectors form a complete
set of orthogonal tones.

Substituting (8) into (9), we obtain

(10)

If is a period- sequence with per-
fect AC function, then

(11)

Therefore, for

otherwise
(12)

and according to Property 1, the AC function of is the -pe-
riod extension of that of , i.e.,

(13)

The other ’s for are simply frequency-
shifted versions of , i.e.,

(14)

The frequency-shifting operation induces a phase rotation in the
time-domain

(15)

i.e., the AC function has a nonzero value only when .
is referred to as the generating

sequence of since its spectrum determines those of all
members of .

In proving the above lemma, we make use of the facts that
has constant modulus and the spectral vectors form

a complete set of orthogonal tones to derive the near-optimal AC
and CC properties. It can easily be generalized to the following.

Theorem 1: Let , be -dimensional
vectors, not necessarily distinct and define the -dimen-
sional vectors, . Then, the sequences,

, , have zero CC and
the corresponding AC functions in one period are -period
extensions of those of . Furthermore, if

are constant modulus vectors, then the family
is near-optimal.

B. Synthesis Process

The construction procedure suggested by Lemma 2 requires
that a sequence with constant modulus spectrum (or perfect AC)
be found to begin with. There are many such sequences for use
as the generating sequence. In fact, Corollary 1 tells us that
a perfect AC sequence can be generated by specifying a con-
stant modulus spectral sequence and there are practically infinite
many such sequences. Practical consideration, however, prefers
to use a sequence whose components are drawn from a finite
constellation such as phase-shift keying (PSK) or quadrature
amplitude modulation (QAM). One known candidate sequence
is the Frank–Zadoff–Chu (FZC) sequences [7], [8]—a class of
unity-modulus polyphase sequences with impulse-like periodic
AC functions.

Theorem 1 also suggests that if we let ,
be the spectral vectors of -sequences (not necessarily

distinct) of period , then we can generate a family
with zero CC and AC function the same as a periodic extension
of that of . We summarize the synthesis procedure and the
major attributes of the resulting sequences as follows.

(S.1) Given an orthogonal sequence of period
and let be the corresponding spectral sequence of
constant modulus. Rate-expanding by -fold
and taking -point inverse discrete Fourier trans-
form (IDFT) on the cyclic-shifted versions

, , we obtain a near-
optimal family of length- sequences.

(S.2) The generating sequence determines the AC
function in one period, and the CC properties between
sequences are determined by their DFTs.

(S.3) A member sequence will consists of complex numbers
with unity magnitude if is an FZC sequence
(see Example 1 below) or a polyphase sequence gener-
ated by the method suggested in Lemma 3. We can also
achieve the same result by selecting an -sequence as
the generating sequence. However, in most cases an fast
Fourier transform (FFT)-like transform for a sequence
with period is not as fast as the conventional FFT
on sequences with a period of powers of 2 [11].

Example 1: To generate two near-optimal sequences
of length 12, one has to choose a perfect AC sequence
first. Let an FZC sequence of length 6 be chosen and pick

which is relative prime to . According
to the generating method in [8], the elements of the FZC
sequence would be , where .
Following the above synthesizing procedure, we obtain

two orthogonal polyphase sequences ,
, 1, where

and . It can
easily be proved that the AC functions of them are

for ,
and the CC function is identically zero for all .

IV. CLASS OF ORTHOGONAL SEQUENCES

Although a sequence with perfect AC can be immediately
obtained by taking IDFT on a vector of constant modulus, it



78 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 1, JANUARY 2006

is always preferred that the components of the sequence be-
long to a small set of special symbols. A method to construct
a class of polyphase sequences that have perfect AC was pro-
posed in [5]. This section provides a transform domain approach
and interpretation for generating the same sequences and their
generalizations.

For a set of basic symbols located on the circle of radius
in the complex plane and , we

define the basic orthogonal sequence matrix of size
as

(16)

Note that for the case , ,
. As the factor does not af-

fect the AC property, it will be omitted in the remaining
discussion. Consider the sequence

(17)

where denotes the (column vectors) stacking operator.
Without loss of generality, we take the case ,
as an example and let , then

(18)

where , , and .
The th column vector of the matrix is equal to the -point
IDFT of . Since there is only one nonzero component in and
all the components in have unit magnitude, the components
of must have identical magnitude.

Employing a procedure similar to (8), we first expand the
time-domain vectors by threefold, and then cyclic-shift the
rate-expanded vectors to obtain the set of orthog-
onal tones

(19)

The -point DFT of is the -period extension of ,
while that of is a linearly phase-shifted -period extension
of . Define the new vector

(20)

The -point DFT of is a constant modulus vector (see
Fig. 1) and, according to Corollary 1, has the perfect
AC property, irrespective of the linear phase rotation induced
by the time-shifting operation. The reason why we obtain a
constant modulus spectrum is obviously due to the fact that

is a set of orthogonal tones which resulted from
the tone-orthogonality of the set . Generalizing the above
argument, we can easily verify.

Lemma 3: Let , where is an
matrix whose column vectors

Fig. 1. Generating a sequence with perfect periodic AC property. All time and
spectral components are of the same magnitude.

have constant modulus components, i.e., , and ,
and form a complete set of orthogonal tones. Then

is an orthogonal sequence of period . Moreover, if each
has only one nonzero unit-modulus component, then
is a polyphase sequence.

Note that considering of (20) not as components of
but as individual transform domain vectors, Corollary

3 then implies that the sequences do form a
near-optimal family.

Extending to the cases now, we first note that
, where ,

which is the case that . Taking -point IDFT

on , we obtain the vector

. In general, the th column of , can be
written as

(21)

where

(22)

is a phase-rotated version of , for
. Hence, we have

(23)

The above relation implies that the parameter determines the
order of the frequency-domain index cyclic-shifting. As long
as form a complete set of orthogonal tones, the sequence

will preserve the perfect periodic AC property.
On the other hand, if such that the sequence
has perfect AC, then we can find a column-permuted matrix
of the diagonal matrix such that

. We, thus, claim the following
generalization of the results reported in [5].
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Theorem 2: Let , where is an ma-
trix whose column vectors form a complete set of orthog-
onal tones. Then, is an orthogonal sequence of period

iff .
Proof: We shall start with the special case ,

then proceed to prove the general case using (23) directly.

1) , , where

is the support of the th column vector of the matrix
.
For if , then

(24)

The assumption then implies that
divides and so . Therefore, we must have

.
2) .

Let and , then .
It can easily be established that

,
, . But

implies that and .
Hence, . The equivalence class

under mod addition has ele-
ments and there are different equivalence classes.

For the general case that the matrix
is composed of column vectors that

form a complete set of orthogonal tones, we can treat
each column vector as the sum of vectors having
only one nonzero component so that ,

where is the support of the vector . Obviously,
we have . Following a similar argument in
proving for the special case , we conclude
that is an orthogonal sequence of period iff

.
The following example checks a special case of this theorem;

other examples can be found in [9].
Example 2: Consider the case, , ,

, and . In this case, we have
. The basic orthogonal sequence matrix

is . Taking DFT on column vectors of
and using the resulting frequency-domain vectors as the column
vectors of , we then obtain

(25)

It can be proved that the AC function of the sequence
is .

As ’s are selected from the unit circle, the generated se-
quence will be composed of complex numbers with the same
magnitude. Fig. 1 plots an example in which the entries of the se-
quence have the same magnitude in both time and frequency do-
mains. As mentioned before, a sequence has perfect AC function
if all of its frequency components have the same magnitude. The

time-frequency duality property of Fourier transform pairs then
implies that if one exchanges the roles of the “time-domain”
sequence and the “frequency-domain” sequence, the AC prop-
erty can still be maintained. This property is shared by the se-
quence generated here and the FZC sequences, therefore, (8)
can be modified as

otherwise
(26)

This sequence generation procedure is a much simpler than but
equivalent to that of the PS sequences.

V. GENERATION OF THE PS SEQUENCES

The so-called PS sequences [2] is also a near-optimal family
that consists of polyphase sequences of period , where

. The value determines the period of the AC
function of the member PS sequences. We now provide a trans-
form domain derivation of the PS sequences and their AC and
CC properties. The derivation is much simpler and more instruc-
tive than that given in [2].

Let the basic orthogonal sequence of length [5]
be generated by (16) with and , i.e.,

(27)

Again, following a process similar to (8), we first rate-ex-
pand the basic orthogonal sequence with a rate of ,
and then use the cyclic-shifted versions ,

of the rate-expanded vector as column
vectors of the matrix

(28)

Since is a complete set of orthogonal tones, their time-
domain representations must have zero CC. The
column vectors of the
matrix

(29)

form a near-optimal family whose member sequences are called
PS sequences. As is a -fold-expanded version of a constant
modulus vector, the AC function of a PS sequence is

(30)

A careful examination of the above construction procedure re-
veals that it is the same as that suggested by Lemma 2 except
for: 1) the choice of the generating sequence and its period and
2) instead of using the Fourier transform of a perfect AC
sequence , a perfect AC sequence is used for rate-ex-
panding and cyclic-shifting. Despite 2), we obtain a near-op-
timal family since happens to be a constant modulus se-
quence. Replacing by any other perfect AC -phase se-
quence of the same period, we obtain another set of PS-like
sequences. Note, however, that our proposed construction im-
poses no constraint on the period of the sequences except that
it cannot be a prime. For example, one cannot generate PS se-
quences having AC function of period 38; since , for
any natural numbers and .
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VI. MULTIDIMENSIONAL ARRAYS

Like the one-dimensional (1-D) case, two-dimensional
(2-D) arrays that possess some desired AC or CC properties
are useful in sonar/radar and communication applications.
Similarly, higher dimensional array signals are needed in some
multidimensional search and detection applications. In this
section, we extend the method we developed for 1-D sequences
to two or higher dimensions arrays.

A. Preliminary

For convenience of reference, we follow the notations and
definitions used by [10].

Definition 9: Let an array sequence be denoted
by

(31)

The 2-D periodic AC function between two array sequences
and having the same dimensions is defined as

(32)

Definition 10: An array is called a perfect array if its periodic
AC function satisfies

(33)

where .
There are many published works on the syntheses of perfect

arrays; one of them is based on [10]
Theorem 3: (Folding method.) Let be an orthogonal se-

quence of length . Then, the array defined by

(34)

is perfect if .

B. Generation of New 2-D Arrays

Our approach for generating a family of 2-D arrays consists
of three steps.

Step 1) Applying the folding method to the FZC sequence
or any other orthogonal sequence of length ,
where , we obtain an
perfect array . Denote the 2-D DFT of
this perfect array by , i.e.,

(35)

Step 2) Using the as the basic building spectral
array, we construct 2-D spectral arrays ,

, , and ,
according to

otherwise
(36)

This assignment rule is illustrated in Fig. 2.

Fig. 2. (a) Constructing F (U; V ) from the 2-D DFT of the basis array.
(b) Composite spectral representations of F (U; V ); different symbols are
used to represent the nonzero positions of different spectral arrays (K = 2,
K = 2, N = 4, and N = 5).

Step 3) Taking the 2-D IDFT on , we obtain
an array sequence of dimension

, where the 2-D IDFT is defined by

(37)

The elements of the array are in the form of , where

if is even

if is odd
(38)

and ’s are integers. The new array sequences possess some
desired properties similar to those in the 1-D case. It can be
easily proved that

(39)

The AC function is periodic in both argu-
ments—the period in is , while the period in is .
Moreover, the periodic CC function between any two arrays
of ’s is zero and the number of the member arrays in the
family is .

Example 3: Suppose we have a perfect array of dimension
already and want to generate near-optimal ar-

rays of dimension with , ,
and . Applying the folding method to the FZC
sequence of length 20, we immediately have a 4 5 perfect
array. By following steps 2–3, we obtain near-op-
timal arrays. The magnitude of the AC function for these arrays,

, , is periodic in both and and is
plotted in Fig. 3, where the period along is 4, while the period
along is 5.

C. Extension to Multidimensional Arrays

It is straightforward to extend the above concept to higher di-
mensional arrays. One of the key steps in generalizing the tech-
nique presented in the previous subsection for synthesizing 2-D
arrays is to find a 2-D perfect array. Similarly, to construct a
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Fig. 3. Magnitude jR j of the 2-D periodic AC function associated with
the proposed array. (K = 2,K = 2,N = 4, and N = 5).

family of multidimensional arrays with the near-optimal prop-
erty, one has to have a perfect multidimensional array (i.e., one
whose multidimensional AC function is nonzero only at the
origin) to begin with. This task is made easier by noting that
Corollary 1 can be extended to higher dimensional domains.
Define the -dimensional DFT of an array
of dimension by

(40)

Then, we have as follows.
Corollary 4: An array is perfect if is a constant for

all .
In Theorem 3, we mention a method to construct a perfect

2-D array from an orthogonal sequence. It can be shown that
this method does satisfy the above corollary for .

Given an perfect array of dimension
, we generate a family of multidimensional arrays by

a three-step procedure similar to that of Section VI-B.

(C.1) Taking -dimensional DFT on this basis (perfect)
array.

(C.2) Let be arrays to
be generated and denote the corresponding -dimen-

sional DFT’s by ,
i.e.,

(41)

where . Then,
is constructed according to the assignment rule

otherwise
(42)

where defines the support (nonzero posi-
tions) in transform domain for the th newly-generated
array. The distribution of is a multidimensional
generalization of that of Fig. 2(b); for a given , they
are equally spaced along all axes.

(C.3) Taking -dimensional IDFT on

(43)

We then obtain an array sequence of dimension
. It can be proved that

the CC function between any two array sequences so
generated is identically zero.

VII. PREAMBLE DESIGN FOR MULTIANTENNA

OFDM SYSTEMS

Applications of the near-optimal family of sequences to
CDMA or similar systems are well known [2]. This section
provides another application example of such sequences in
designing preambles for multiantenna OFDM systems. Note
that, as mentioned in (S.3), we can generate finite-constellation
polyphase sequences in both domains, hence, at least in the
preamble part, the peak-to-average power ratio is not a concern.

We assume that the OFDM guard interval is of length and
is larger than the maximum delay spread of the channel of con-
cern. For such a bounded maximum delay spread scenario, we
use the proposed near-optimal polyphase family, choosing a se-
quence length such that the unwanted AC peak values occurs at
delays larger than . Using members of a near-optimal family
with period as preamble sequences, where
is the number of transmit antennas, we then have all the self in-
terference due to multipath propagation eliminated. For applica-
tions to IEEE 802.11a-compatible multiantenna OFDM systems
with transmit antennas, we can use a family of near-optimal
sequences with period 64 or 32 to replace the two long training
symbols of the 802.11a standard.

In our simulation, we use an exponentially decayed Rayleigh-
fading channel with the impulse response given by

. and are independent zero-mean complex Gaussian
random variables with the same variance ,
where , is the sampling period, and
is the maximum delay spread. Table I summarizes system and
sequence parameters used in our simulation. We also assume
that channels between different transmit and receive antennas
are independent.

A. Frequency Synchronization

Moose [12] proposed a correlation-based technique that
uses two consecutive identical pilot symbols to estimate CFO.
Schmidl and Cox (SC) [13] suggested a differentially encoded
preamble and applied the correlation metric to obtain both
integer and fractional parts of CFO. Subsequent techniques use
multiple identical or differentially encoded pilots with a smaller
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TABLE I
SOME SYSTEM AND SEQUENCE PARAMETERS USED IN SIMULATION

Fig. 4. Effect of the channel delay spread on the CFO estimator’s MSEE
performance; 2Txs and 1 Rx with frequency offset = 0:3 subcarrier spacings.

Fig. 5. Effect of the transmit antenna numbers on the MSEE performance
of the SC frequency estimator; CFO = 0:3 subcarrier spacings and r.m.s.
channel delay spread = 50 ns.

symbol period to increase the estimation range of CFO (see [14]
and the references therein). For the multiple antenna systems
with two identical pilots, the correlation metric of [12] is still
applicable. A proper weighted version would give the optimal
estimate, however. In Figs. 4 and 5, we respectively examine
the influences of the channel’s delay spread and the number
of transmit antennas on the mean-squared estimation error
(MSEE) performance of the SC estimate. We notice that the
estimator is insensitive to the r.m.s. delay spread of the channel
except for low average SNRs, where a larger delay spread helps
reducing MSEE, if the maximum channel delay spread does not
exceed the length of the guard interval. In Fig. 5, for fairness of
comparison, we assume that the total transmit power is fixed.

These performance curves indicate that there is a threshold
(around 11.5 dB) beyond which the noncoherent combining
loss associated with the SC frequency estimate outweighs the
corresponding diversity combining gain.

B. Channel Estimation

With the use of members of a near-optimal family as pilot
sequences, the receiving end of a MIMO system can separate
the signals originated from different transmit antennas. Hence,
one can easily modify any pilot-assisted, correlation-based
channel estimator designed for conventional single antenna
systems to serve as a MIMO channel estimator. The structure
of the proposed pilot sequences, however, allows a very simple
least-squares (LS) channel estimator to achieve the optimal
performance. We give a sketch of the proof for a 2 1 system
in the following paragraph. Extension to the general MIMO
systems is straightforward [15].

Let be the received data
vector and denote the transmit pilot vector from the th antenna
by . Assuming perfect frame
timing and frequency offset compensation, we have, for a 2
1 system

(44)

where is the channel impulse response vector associated with
the th transmit antenna and

...
...

...
(45)

Notice that for since cyclic prefix
is added. It can be shown that if is a zero-mean complex white
Gaussian vector, the corresponding MSEE of the LS channel
estimator is lower-bounded by

(46)
where is the energy of the polyphase pilot vector.
The lower bound is achieved by a pilot vector that satisfies

and the minimum MSEE is independent of the
channel response. It is clear that our pilot sequences satisfy this
criterion with and the LS estimator can be further
simplified to , which means it is to be derived
from a simple matched filtering.

As the two long training symbols associated with each an-
tenna contain two periods of the corresponding pilot sequence,
an improved channel estimator can be obtained by

(47)

The minimum MSEE is guaranteed so long as the channel
memory is less the guard interval, irrespective of the true
channel response. When the channel memory is longer than
the guard interval, the performance deteriorates accordingly.
Nevertheless, it is highly likely that the strengths for those paths
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Fig. 6. MS channel estimation error performance for channels with different
memory lengths; guard interval width = 16 samples.

whose relative delays are larger than the guard interval are very
small. Fig. 6 compares the per-channel MSEE performance for
both cases.

VIII. CONCLUSION

We have presented systematic methods for generating 1-D se-
quences and multidimensional arrays with near-optimal AC and
CC properties. The well-known fact that the AC and CC func-
tions are closely related to the DFTs of the desired sequences en-
able our approach to render a natural interpretation, a much sim-
pler derivation and a generalization of the orthogonal sequences
proposed in [5]. We also show that the class of PS sequences [2]
is a special family within the sequence families generated by our
new synthesis method. Our approach is elementary and it is be-
lieved that our approach can provide an avenue for discovering
new sequences with other desired properties.

These families of sequences or arrays have many interesting
applications. We present application examples for frequency
synchronization and channel estimation in MIMO-OFDM sys-
tems. Numerical simulation indicates that, as the preamble se-
quences used possess the desired properties, both estimators
yield excellent performance.
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