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Abstract—In this study, a concentrated force is applied to both adherends bonded by an adhesive
under pin–pin boundary conditions. First a mathematical model is derived with governing equations
and boundary conditions. These complicated, and analytically problematic, coupled equations are
solved numerically using symbolic manipulation and singular value decomposition (SVD). Also
discussed are the effects of major factors, including the relative thickness of adherends, joint length
and the action point of the concentrated force on the peel and shear stresses in the adhesive layer.
This study identifies the conditions under which the upper adherend without breakage can be fully
separated from the lower adherend. Particularly, it is found that the thickness of the lower adherend
should be greater than ten times that of the adhesive layer but less than one-third that of the upper
adherend, the adhesive layer should be relatively thin (ha � 0.01 mm), and the adhesive joint should
be relatively short (thickness to length ratio γ1 � 0.08).

Keywords: Coupled equations; adhesive joint; symbolic manipulation; singular value decomposition;
peel stress; shear stress.

1. INTRODUCTION

Adhesively-bonded joints are widely used as structural elements for aerospace
vehicles and automobiles. However, as the today’s IC chips tend to be much thinner
and smaller than the previous constructions, they often break during the IC chip
pick-up process. In this process, a wafer must be affixed with an adhesive onto
a blue tape before being cut into pieces (so-called IC chips) by a diamond cutter.
Subsequently, a concentrated force is applied to the blue tape from which the IC
chip must be separated. Strictly speaking, there are two adherends — the IC chip
(upper adherend) and the blue tape (lower adherend) bonded by an adhesive in the

∗To whom correspondence should be addressed. Tel.: (886-5) 631-5480; Fax: (886-5) 636-1981;
e-mail: chength@nfu.edu.tw
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1670 T.-H. Cheng et al.

IC chip pick-up process. Therefore, understanding the peel and shear stresses in
the adhesive layer between the IC chip and the blue tape is very important for the
adhesive joint in the IC chip pick-up process.

Adhesively bonded single-lap joints have been widely studied since the 1950s.
One of the most widely quoted papers on stresses in adhesive joints is that of
Goland and Reissner [1]. Other studies [2–9] that have used and extended the
Goland–Reissner theory and compared their own results with Goland–Reissner’s
have treated both the adherend and adhesive materials as anisotropic, orthotropic,
or isotropic using either a finite element analysis or theoretical analysis. In addition,
Luo and Tong [10] applied linear and higher-order displacement theories to stress
analysis of a thick adhesive and validated their results through two-dimensional
finite element analysis.

Some studies have investigated the plastic behavior in adhesive joints using an-
alytical methods; for example, a recent elastoplastic stress analysis of a single-lap
joint subjected to bending moment was carried out using the finite element method
[11]. Early on, Chen and Cheng [12] analyzed an adhesively-bonded single-lap joint
by minimizing the functional of the variational principle of complementary energy.
Subsequently, Alexandrov and Richmond [13] addressed three-dimensional, kine-
matically admissible velocity fields in a flat layer of an ideally rigid plastic material
subjected to tension, while Mortensen and Thomsen [14] applied the multi-segment
method of integration to solve the multiple-point boundary value problem.

Some researchers have investigated thermal stress in an adhesive layer subjected
to temperature variation [15–18], while others have addressed cracks resulting in
failure or the stress singularity in the fillet of an adhesive joint [19–21]. In addition,
single-lap adhesive joints of dissimilar adherends have been subjected to external
bending moments and tensile loads [22, 23], and a single-lap joint subjected to
tension loading and moments induced by geometric eccentricity was studied using
the finite element method [24].

Besides, some other technical studies have shown that a structure is strengthened
by adhesively bonding the steel plates to the tension face of the beam [25, 26].
However, Cornell [27], who claimed that obtaining complete theoretical solutions
to this problem would be very difficult, only considered a cantilever beam consisting
of the same adherends. Only if the characteristic solutions of these equations
have appropriately large values, his method can produce classical solutions for the
differential equations.

Therefore, in this present study both adhesively-bonded adherends are subjected
to a concentrated force and the peel and shear stress distributions in the adhesive
layer joining the two adherends are examined. Such stress distributions are
affected by geometric conditions, including the thicknesses of adherends and the
length and thickness of the adhesive layer, as well as by the action point of the
concentrated force. As obtaining analytical solutions is even more difficult here
than in the work of Cornell [27], the model uses symbolic manipulation to solve
the coupled differential equations in the Mathematica package, thereby enabling
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Stresses in adhesive joints applicable to IC chips 1671

to find complete and complicated solutions that are not limited to finding only the
characteristic solutions having large values (i.e., the characteristic solutions had to
have large values [27]). In this analysis, 31 constraint and boundary conditions
are considered in the analytical solutions. Thus, the numerical solutions can be
found by singular value decomposition (SVD) [29] employed as the basis for
finding the inverse of a matrix in which the magnitude of the matrix elements varies
much. Nevertheless, it is still somewhat difficult to converge and directly solve the
differential equations using the numerical method.

2. MATHEMATICAL MODEL

In this model the two adherends — the upper adherend and lower adherend —
are bonded by an adhesive layer with the center coinciding with the origin of the
coordinate system (see Fig. 1). The thicknesses of the upper adherend, lower
adherend and adhesive layer are denoted by h1, h2 and ha, respectively. Their
lengths are represented, respectively, by 2c, (L1 + L2) and 2c. The lower adherend
is subjected to a concentrated force P under the pin–pin boundary conditions.

The governing equations for this study are based on the following assumptions:

(a) The transverse displacements of both the upper adherend and the lower ad-
herend subjected to the concentrated force P are much smaller than their di-
mensions, and their transverse displacements are presumed to be linear and
small.

(b) Both the upper adherend and the lower adherend deform under a plane-stress
condition; in other words, the plane section remains plane and the deformation
of the cross-sections is correspondingly normal to the neutral surfaces.

(c) The variations in both longitudinal and transverse displacements are linear in
the adhesive layer.

(d) In the adhesive layer, the stress resulting from the longitudinal force is ignored
when compared with stresses in the upper adherend and lower adherend [10].

Figure 1. The sketch showing two adherends bonded by an adhesive layer.
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1672 T.-H. Cheng et al.

Based on the preceding assumptions, the governing equations are derived as
follows. First, the lower adherend is divided into four segments whose ranges are
−L1 � x � −c, −c � x � −d, −d � x � c and c � x � L2, respectively on
the x-axis. Next, the upper adherend is divided into two segments whose ranges are
−c � x � −d and −d � x � c on the x-axis. Finally, the adhesive layer is also
divided into two segments, each of which has the same range as the corresponding
segment in the upper adherend.

2.1. Bending moment, shear force and longitudinal force in the upper and lower
adherend

The free-body diagram for the first segment (−L1 � x � −c) is shown in Fig. 2,
where NL and FL represent the longitudinal force and reaction force, respectively,
of the left-end support, and the bending moment, shear force and longitudinal force
of the first segment’s right-hand section are denoted by M1x , Q1x and N1x , in which
the 1x subscript refers to the first segment of the lower adherend. According to
force and moment equilibria equations, the bending moment M1x , the shear force
Q1x and the longitudinal force N1x can be derived in terms of NL and FL as:

M1x = −FL(L1 + x), (1)

Q1x = FL (2)

and

N1x = NL. (3)

Similarly, in the free-body diagrams for the second, third, and fourth segments
(displayed in Figs 3, 4 and 5, respectively), the bending moment, shear force, and
longitudinal force of the section for the ith (i = 2–4) segment, denoted by Mix , Qix

and Nix , respectively, can be written as shown below.
Specifically, the bending moment, shear force, and longitudinal force of the

second segment’s right-hand section (−c � x � −d) are as follows:

M2x = −FL(L1 + x) +
∫ x

−c

xσa2 dx + h2

2

∫ x

−c

τa2 dx, (4)

Q2x = FL −
∫ x

−c

σa2 dx (5)

and

N2x = NL −
∫ x

−c

τa2 dx, (6)

where σa2 and τa2 are the peel stress and shear stress for the first segment of the
adhesive layer.
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Stresses in adhesive joints applicable to IC chips 1673

Figure 2. Free-body diagram for the first segment, −L1 � x � −c, of lower adherend.

Figure 3. Free body diagram for the second segment, −c � x � −d, of lower adherend.

Figure 4. Free body diagram for the third segment, −d � x � c, of lower adherend.

Figure 5. Free body diagram for the fourth segment, c � x � L2, of lower adherend.
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1674 T.-H. Cheng et al.

Similarly, the bending moment, shear force, and longitudinal force of the third
segment’s right-hand section (−d � x � c) are

M3x = −FL(L1 + x) +
∫ x

−c

xσa3 dx + h2

2

∫ x

−c

τa3 dx + P(d + x), (7)

Q3x = FL −
∫ x

−c

σa3 dx − P (8)

and

N3x = NL −
∫ x

−c

τa3 dx, (9)

where σa3 and τa3 are the peel stress and shear stress for the second segment of the
adhesive layer.

Lastly, the bending moment, shear force, and longitudinal force of the fourth
segment’s left-hand section (c � x � L2) are

M4x = −FR(L2 − x) = (FL − P)(L2 − x), (10)

Q4x = −FR = (FL − P) (11)

and

N4x = NR = NL. (12)

The upper adherend, whose range is −c � x � c on the x-axis, must be divided
into two segments whose ranges are −c � x � −d and −d � x � c, respectively.
Free-body diagrams of these two segments are presented in Figs 6 and 7. The
bending moment, shear force and longitudinal force of the right section of the ith
segment of the upper adherend, denoted as Mi , Qi and Ni , respectively, are as
follows:

Mi =
∫ x

−c

xσai dx + h1

2

∫ x

−c

τai dx, i = 2 or 3, (13)

Qi =
∫ x

−c

σai dx, i = 2 or 3, (14)

Ni =
∫ x

−c

τai dx, i = 2 or 3. (15)

When i = 2, the range of the upper adherend is −c � x � −d (i.e., the first
segment of the upper adherend). However, when i = 3, the range of the upper
adherend is −d � x � c (i.e., the second segment of the upper adherend).

2.2. Relationship between displacement and stress

When the range of the adhesive layer for bonding the upper adherend to the lower
adherend is −c � x � c, the equations adopted from Ref. [4] are simplified by the
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Stresses in adhesive joints applicable to IC chips 1675

Figure 6. Free body diagram for the first segment, −c � x � −d, of upper adherend.

Figure 7. Free body diagram for the second segment, −d � x � c, of upper adherend.

small strain (i.e. the slope of the beam = 0) and are expressed as follows:

σai = Ea
(wi − wix)

ha
, i = 2 or 3, (16)

τai = Ga(ui(ha/2) − uix(−ha/2))

ha
, i = 2 or 3, (17)

where ui and wi represent longitudinal and transverse displacements when i = 2
represents the first segment (−c � x � −d) of the upper adherend and i = 3
represents its second segment (−d � x � c). In equations (16) and (17), when
i = 2, transverse and longitudinal displacements for the second segment of the
lower adherend are denoted by w2x , u2x , and when i = 3, those for the third
segment of the lower adherend are denoted by w3x , u3x . These variables, which
are either functions of both x and z or only a function of x, are expressed as
ui = ui(x, z), uix = uix(x, z), wi = wi(x) and wix = wix(x) (i = 2 or 3).
The longitudinal displacement ui(ha/2) of the upper adherend and the longitudinal
displacement uix(−ha/2) of the lower adherend are then represented as a function of
x and are expressed as either z = ha/2 or z = −ha/2. The symbols Ga, Ea and ha,
respectively, denote the shear modulus, Young’s modulus and the thickness of the
adhesive layer.
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1676 T.-H. Cheng et al.

2.3. Relationships among displacement, longitudinal force and bending moment

Following the beam theory, the transverse displacements wi of the upper adherend
and wix of the lower adherend are written as shown below:

d2wix

dx2
= 12Mix

E∗
2h

3
2

, i = 1 or 4, (18)

d2wi

dx2
= 12Mi

E∗
1h

3
1

, i = 2 or 3, (19)

where E∗
2 = Ē2, E∗

1 = Ē1 represent Young’s modulus of the upper adherend and of
the lower adherend in plane stress.

The longitudinal displacements ui , of the upper adherend, and uix , of the lower
adherend, can then be written as follows:

duix

dx
= 1

E∗
2

(
Nix

h2
+ 12Mixz

′′

h3
2

)
, i = 1 or 4, (20)

dui

dx
= 1

E∗
1

(
Ni

h1
+ 12Miz

′

h3
1

)
, i = 2 or 3, (21)

where z′′ = z + (h2 + ha)/2 and z′ = z − (h1 + ha)/2.
To obtain the longitudinal displacements, transverse displacements, and slopes of

the first and fourth segments in the lower adherend, equations (1)–(3) and (10)–(12)
are substituted into equations (18) and (20) which are integrated over x to produce
the following expressions:

dw1x

dx
= −6FL(2L1x + x2)

E∗
2h

3
2

+ c11, −L1 � x � −c, (22)

w1x = −2FL(3L1x
2 + x3)

E∗
2h

3
2

+ c11x + c12, −L1 � x � −c, (23)

u1x = 1

E∗
2

(
NL

h2
x − 6FL(2L1x + x2)z′′

h3
2

)
+ c13, −L1 � x � −c, (24)

dw4x

dx
= −6(P − FL)(2L2x − x2)

E∗
2h

3
2

+ c41, c � x � L2, (25)

w4x = −2(P − FL)(3L2x
2 − x3)

E∗
2h

3
2

+ c41x + c42, c � x � L2, (26)

u4x = 1

E∗
2

(
NL

h2
x − 6(P − FL)(2L2x − x2)z′′

h3
2

)
+ c43, c � x � L2, (27)

where cik are constants. The subscripts i and k of cik represent the ith segment of
the lower adherend and the index of the constants.

Substituting Mix and Nix from equations (18)–(21) into equations (4), (6),
(7) and (9), where σa2, τa2, σa3 and τa3 are replaced by equations (16) and (17), gives

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

3:
49

 2
6 

A
pr

il 
20

14
 



Stresses in adhesive joints applicable to IC chips 1677

the following equations for the second and third segments of the lower adherend:

d4wix

dx4
= 12

E∗
2h

3
2

{
Ea

ha
(wi − wix)

(28)
+ E∗

2h
2
2

2

(
−z′′ d

4wix

dx4
− d3uix

dx3

)}
, i = 2 or 3,

d2uix

dx2
= 12

E∗
2h2

[
−Ga

ha

(
ui

(
ha

2

)
− uix

(
−ha

2

))]
(29)

− z′′ d
3wix

dx3
, i = 2 or 3.

Using the previous procedure, the formulas for the first and second segments of
the upper adherend can be obtained as follows:

d4wi

dx4
= 12

E∗
1h

3
1

{
Ea

ha
(wi − wix) + E∗

1h
2
1

2

(
z′ d

4wi

dx4
+ d3ui

dx3

)}
, i = 2 or 3, (30)

d2ui

dx2
= 12

E∗
1h1

[
−Ga

ha

(
ui

(
ha

2

)
− uix

(
−ha

2

))]
− z′ d

3wi

dx3
, i = 2 or 3. (31)

2.4. Non-dimensionalization

To regulate the magnitude of some parameters and illustrate clearly the detailed
relationships among them, the parameters are non-dimensionalized and are listed in
Table 1. For the first and fourth segments of the lower adherend, equations (22)–(27)
can be non-dimensionalized and rearranged as follows:

dw1x

dx
= −6F̃L(2L1x + x2)

E2h
3
2

+ c11, −L1 � x � −c, (32)

w1x = −2F̃L(3L1x
2 + x3)

E2h
3
2

+ c11x + c12, −L1 � x � −c, (33)

u1x = 1

E2

(
ÑL

h2
x − 6F̃L(2L1x + x2)z′′

h3
2

)
+ c13, −L1 � x � −c, (34)

dw4x

dx
= −6(P̃ − F̃L)(2L2x − x2)

E2h
3
2

+ c41, c � x � L2, (35)

w4x = −2(P̃ − F̃L)(3L2x
2 − x3)

E2h
3
2

+ c41x + c42, c � x � L2, (36)

u4x = 1

E2

(
ÑL

h2
x − 6(P̃ − F̃L)(2L2x − x2)z′′

h3
2

)
+ c43, c � x � L2, (37)

where

E1 = E∗
1

Ga
, E0 = Ea

Ga
, E2 = E∗

2

Ga
, ÑL = NL

Ga
, F̃L = FL

Ga
and P̃ = P

Ga
.
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1678 T.-H. Cheng et al.

Table 1.
The non-dimensional terms and equations for upper adherend, adhesive layer and lower adherend

Non-dimensional Non-dimensional Non-dimensional
terms for terms for terms for
upper adherend Equation lower adherend Equation adhesive layer Equation

Thickness ratio β1 = h1
ha

Thickness ratio β2 = h2
ha

Peel stress σ ai = 2cσai
P

Thickness Thickness
to length ratio γ1 = h1

2c
to length ratio γ2 = h2

2c
Shear stress τ ai = 2cτai

P

Elastic modulus E1 = E∗
1

Ga
Elastic modulus E2 = E∗

2
Ga

Elastic modulus E0 = Ea
Ga

Shear force Qi = Qi
P

Shear force Qix = Qix
P

x-axis x̄ = x
c

Moment Mi = Mi
2Pc

Moment Mix = Mix
2Pc

Longitudinal force Ni = Ni
P

Longitudinal force Nix = Nix
P

Equations (28)–(31) can then be rewritten in the matrix form as:




D2 − 1
E1β1h2

a

1
E1β1h2

a
− β1ha

2 D3 − 1
E1β1ha

D 0
1

E2β2h2
a

D2 − 1
E2β2h2

a
0 β2ha

2 D3 + 1
E2β2ha

D

6
β1ha

D3 0 −4D4 − 1
had1

1
had1

0 −6
β2ha

D3 1
had2

−4D4 − 1
had2







ũi

ũix

wi

wix




= [AD][u] = 0, (38)

where ũi = ui(ha/2), ũix = uix(−ha/2) and D = d
dx

, i may be either 2 or 3, the
non-dimensional terms are β1 = h1/ha and β2 = h2/ha, and other parameters are

d1 = h3
1E

∗
1

12Ea
, d2 = h3

2E
∗
2

12Ea
.

The characteristic equation, det |AD| = 0, of coupled differential equation (38)
can then be derived as follows:

[
D12 −

(
4

β1E1h2
a

+ 4

β2E2h2
a

)
D10 +

(
1

d1ha

1

d2ha

)
D8

−
(

1

β1d1E1h3
a

+ 4

β1d2E1h3
a

+ 3β2

β2
1d2E1h3

a (39)
+ 3β1

β2
2d1E2h3

a

+ 4

β2d1E2h3
a

+ 1

β2d2E2h3
a

)
D6

]

× {ũi , wi, ũix, wix} = 0, i = 2 or 3.

Assuming that α and ±α11 ± iα12 are the roots of the characteristic equation (39),
the transverse displacements wi of the upper adherend are written in the following
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Stresses in adhesive joints applicable to IC chips 1679

form:

wi = ci0 + ci1x + ci2x
2 + ci3x

3 + ci4x
4 + ci5x

5 + ci6Ch

+ ci7Sh + Ch1(ci8C + ci9S) + Sh1(ci10C + ci11S), i = 2 or 3, (40)

where Ch = cosh(αx), Sh = sinh(αx), Ch1 = cosh(α11x), Sh1 = sinh(α11x),
and the unknown constants are cij , i = 2 or 3, j = 0–11, C = cos(α12x) and
S = sin(α12x).

As the complete solutions of the model are extremely complex, this study
employed Mathematica’s symbolic manipulation to solve ũi , ũix , wix,

dwix

dx
and dwi

dx

in terms of cij , S, C, Ch, Sh, Ch1 and Sh1. To prove whether these analytical
solutions are correct, they are once again substituted into the system differential
equation (39), which shows ci4 and ci5 to be equal to zero.

The analytical solutions ũi , ũix , wi and wix , which are substituted into equations
(16) and (17), and the adhesive layer’s non-dimensional peel and shear stresses
σ ai = 2cσai/P and τ ai = 2cτai/P (listed in Table 1) are then formulated in terms
of cij , S, C, Ch, Sh, Ch1 and Sh1 (i.e., analytical stress solutions, σ ai and τ ai).

The analytical stress solutions, σ ai and τ ai , are substituted into equations (4)–(9),
(13)–(15). The shear force Qi = Qi/P , the bending moment Mi = Mi/(2Pc) and
the longitudinal force Ni = Ni/P for the upper adherend, as well as the shear force
Qix = Qix/P , the bending moment Mix = Mix/(2Pc) and the longitudinal force
Nix = Nix/P for the lower adherend (all listed in Table 1) are also expressed in
terms of cij , S, C, Ch, Sh, Ch1 and Sh1.

For the first and fourth segments, equations (1)–(3), (10)–(12) are rewritten and
non-dimensionalized. The resulting non-dimensional bending moment, shear force
and longitudinal force (M1x , Q1x , N1x , M4x , Q4x and N4x), are formulated as
shown below:

M1x = M1x

2Pc
= − FL

2Pc
(L1 + x) = − F̃L

2P̃ c
(L1 + x), (41)

Q1x = Q1x

P
= FL

P
= F̃L

P̃
, (42)

N1x = N1x

P
= NL

P
= ÑL

P̃
, (43)

M4x = M4x

2Pc
= − FR

2Pc
(L2 − x)

(44)

= (FL − P)

2Pc
(L2 − x) = (F̃L − P̃ )

2P̃ c
(L2 − x),

Q4x = Q4x

P
= −FR

P
= FL − P

P
= F̃L − P̃

P̃
, (45)

N4x = N4x

P
= NR

P
= NL

P
= ÑL

P̃
. (46)

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

3:
49

 2
6 

A
pr

il 
20

14
 



1680 T.-H. Cheng et al.

3. CONSTRAINT AND BOUNDARY CONDITIONS

The constraint and boundary conditions for this study, shown in Fig. 1, can be
identified and described in the following manner.

At the left-end pin support (x = −L1) of the lower adherend, there are two
boundary conditions, i.e., zero transverse displacement and zero longitudinal dis-
placement of the lower adherend. At x = −c, there are eight constraint conditions,
six of which are continuity conditions for the lower adherend. That is, at junction
point (x = −c) between the first and second segments of the lower adherend, both
segments must have the same values of transverse displacement, slope, bending mo-
ment, shear force, longitudinal force and longitudinal displacement. The other two
conditions at x = −c are that both the bending moment and longitudinal force of
the upper adherend must be equal to zero.

At junction point (x = −d) between the second and third segments, there are
11 conditions, 8 of which are continuity conditions. First, in both upper and
lower adherends, both segments must again have the same values of transverse
displacement, slope, bending moment, and longitudinal displacement. Three other
conditions are written as follows: (i) the total shear force in the left neighborhood
of the junction point (x− = −d−) is F̃L/P̃ , (ii) the total shear force in the right
neighborhood of the junction point (x = −d+) is (F̃L − P̃ )/P̃ and (iii) the total
longitudinal force has the same value at junction point (x = −d) for both second
and third segments.

The model also is subjected to eight constraint conditions at x = c. At the junction
point (x = c) between the third and fourth segments of the lower adherend, both
segments must have the same values of transverse displacement, slope, bending
moment, shear force, longitudinal force and longitudinal displacement. In addition,
the bending moment and longitudinal force of the upper adherend must be equal to
zero.

At the right-end pin support (x = L2) of the lower adherend, there are
again two boundary conditions, i.e., the transverse displacement and longitudinal
displacement for the lower adherend must be zero.

Overall, the number of boundary and constraint conditions totals 31, equal to the
number of unknown constants. The unknown constants include cij , cai1, cai2, c1k,
c4k and NL, where subscript i is equal to 2 or 3, k ranges from 1 to 3, and j ranges
from 1 to 12, but ci4 and ci5 (found in the preceding descriptions) equal zero. cai1

and cai2 are the unknown constants of the longitudinal displacements and result from
substituting the analytical solutions ũi , ũix , wi and wix into the integrated equations
(29) and (31).

Imposing 31 constraint and boundary equations on the analytical solutions through
symbolic manipulation produces 31 system equations expressed in the following
matrix form.

[A][C] = [B] (47)
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Stresses in adhesive joints applicable to IC chips 1681

where matrix [A] has 31 rows and 31 columns, denoted by [A]31×31, and matrices
[B] and [C] have 31 rows and 1 column, denoted by [B]31×1 and [C]31×1, respec-
tively. The elements in matrix [C]31×1 consist of 31 unknown constants, cij , cai1,
cai2, c1k, c4k and NL.

The matrix [C]31×1 is solved using Mathematica’s SVD algorithm because
matrix [A] has a greater variation in the magnitude of the matrix elements. If one
eigenvalue in the characteristic equation (39) is large, some elements of matrix
[A] that involve Sh, Ch, Sh1 and Ch1 become much larger. However, the
magnitude of those elements in matrix [A] that do not involve Sh, Ch, Sh1 and
Ch1 is much smaller. Thus, there is a discrepancy in the magnitude of matrix
[A] elements exceeding by exponential order of 10s. In addition, because of
computer truncation errors, the inverse of matrix [A] cannot be obtained by the
adjoint method. Therefore, matrix [C]31×1 is solved by SVD algorithm and the non-
dimensional peel stress and shear stress in the adhesive layer can be obtained by
substituting matrix [C]31×1 into the expressions σ ai and τ ai .

4. RESULTS AND DISCUSSION

Figure 8 shows the analytical solutions of this model employed to solve the problem
proposed by Cornell [27], using the following values: h1 = 0.04 inch (1.016 mm),
h2 = 0.25 inch (6.35 mm) and ha = 0.1 inch (2.54 mm), 0.01 inch (0.254 mm),

(a) (b)

Figure 8. Comparison of the results between Fig. 6 of Ref. [27] (a) and the present study (b).
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1682 T.-H. Cheng et al.

Figure 9. Comparison of the results between Fig. 5 of Ref. [28] and the present study.

and 0.001 inch (0.0254 mm). Because Cornell’s Fig. 6 has used inch (in) as length
units, Fig. 8 here also uses inch as length unit. All figures, except Fig. 8, use mm as
length unit. It should be noted that the symbol ha in this study is synonymous with
Cornell’s hb and the profiles of Fig. 8 are nearly consistent with those of Cornell’s
Fig. 6. The numerical results obtained by employing the analytical solutions to
solve the problem in Zou et al. [28] are shown in Fig. 9. These data are almost
consistent with those of Fig. 5 in Ref. [28], except that for this study, the maximum
shear stress is 4.38, while in Ref. [28] it is 4.30 (MPa).

The values E1 = 6.0, E2 = 6.0, E0 = 2.75, P̃ = 1 and d = 0 are used as follows.
The symbols E1, E2, and E0 (listed in Table 1) represent the ratios of the elastic
modulus of the upper adherend, lower adherend and adhesive layer, respectively, to
the shear modulus of the adhesive layer. The symbol d represents the distance from
the center of the adhesive layer to the action point of the force.

4.1. Case 1: Upper adherend (h1) and lower adherend (h2) with the same thickness

Figure 10 shows distributions of the non-dimensional peel stress and shear stress
in the adhesive layer, whose thickness is ha = 0.01 mm. The thickness ratios
β1 = h1/ha = 10 and β2 = h2/ha = 10 are defined as the thickness of the upper
adherend and lower adherend respectively relative to the adhesive layer’s thickness.
x̄ = x/c is both the normalized axis and the non-dimensional term of the adhesive
layer, where −1 � x̄ � 1. The thickness to length ratio γ = γ1 = γ2 = h/(2c) is
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Stresses in adhesive joints applicable to IC chips 1683

Figure 10. Non-dimensional peel and shear stresses distributions in the adhesive layer (x̄ = x/c) for
the thickness to length ratio γ = γ1 = γ2 with the same thickness of both adherends β1 = β2 = 10
and ha = 0.01 mm.
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1684 T.-H. Cheng et al.

the ratio of the thickness h = h1 = h2 of the upper adherend to the length (2c) of
the adhesive layer: γ = 0.01667 and γ = 0.06667 are used in this case. Moreover,
when γ = 0.01667, the length of the adhesive layer is four times that when
γ = 0.06667. Thus, the non-dimensional peel and shear stress distributions for an
adhesive layer when γ = 0.01667 are different from those when γ = 0.06667.
As the thickness to length ratio decreases, γ = 0.06667 to γ = 0.01667, the
non-dimensional peel and shear stresses in the adhesive layer become slightly less
than 0.1.

Figure 10 also illustrates that the non-dimensional maximum peel and shear
stresses may occur either in the center or at the ends of the adhesive layer. Therefore,
the values and positions of the non-dimensional maximum peel and shear stresses
are the focus of the following paragraphs.

For the adhesive layer, as shown in Fig. 11, the non-dimensional peel stress occurs
either in the center (x̄ = 0) or at the ends (x̄ = ±1), and the non-dimensional shear
stress occurs at the ends versus the thickness to length ratio γ . As γ becomes larger,
i.e., the length (2c) of the adhesive layer becomes smaller in the same thickness
ratios β = β1 = β2, the peel stress in the center (x̄ = 0) is at first positive and
smaller (i.e., tensile stress) but then becomes larger and then negative and even
larger (i.e., compressive stress). As also shown in Fig. 11, the different thickness
ratios β = h/ha produce the same results, β = β1 = β2 = 10, 20, or 30, meaning
that the thickness of the upper adherend, as well as of the lower adherend, can be 10,
20, or 30 times that of the adhesive layer. Thus, if both the upper adherend and lower
adherend become thinner (i.e., β decreases from 30 to 10), the peel stress in the
center becomes even larger as the thickness to length ratio γ increases. Moreover,
since the maximum peel stress is always located either in the center (x̄ = 0) or at
the ends (x̄ = 1), as the thickness to length ratio γ gradually becomes larger, the
location of the maximum peel stresses in the adhesive layer changes from the ends
to the center (see Fig. 11).

4.2. Case 2: Upper adherend (h1) and lower adherend (h2) with different
thicknesses

As Fig. 12a shows, in this case, the thickness of the upper adherend is three times
that of the lower adherend, meaning that the thickness of the upper adherend in
Fig. 12a is three times that in Fig. 10, even though the two figures have the same
conditions otherwise. For γ1 = 0.05 and γ2 = 1

3γ1 = 0.01667 in Fig. 12a, the
non-dimensional peel stress and shear stress distributions are very similar to those
in Fig. 10 (γ = 0.01667). However, for γ1 = 0.2 and γ2 = 0.06667, the non-
dimensional peel stress in Fig. 12a, in total contrast to the larger compressive peel
stress in the center in Fig. 10 (γ = 0.06667), vanishes in the center of the adhesive
layer. In Fig. 12a, the maximum peel stress at the ends is about one-and-a-quarter
times that in Fig. 10, while the maximum shear stress at the ends in Fig. 12a is
about 1.5, which is close to that in Fig. 10.
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Stresses in adhesive joints applicable to IC chips 1685

Figure 11. Non-dimensional peel and shear stresses versus the thickness to length ratio γ = γ1 = γ2
for the same thickness of the adherends as for Case 1 (ha = 0.01 mm).

As Fig. 12b indicates, the thickness of the lower adherend is three times that of
the lower adherend in Fig. 10, even though otherwise the two figures have the same
conditions. However, whether γ1 = 0.06667 or γ1 = 0.01667, the non-dimensional
peel stress vanishes in the center of the adhesive layer. Moreover, the maximum
peel stress at the ends of the adhesive layer in Fig. 12b is about one-seventh of
that in Fig. 12a, while the maximum shear stress at the ends in Fig. 12b is about
one-fifth of that in Fig. 12a.

Figure 13 shows the relationships among non-dimensional peel and shear stresses
(at the ends and in the center), as well as the thickness to length ratio γ1 for the upper
adherend: γ1 is equal to 3γ2 for Fig. 13a and to 1

3γ2 for Fig. 13b. The only different
condition between Fig. 13a and the top diagram of Fig. 11 is that the thickness
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1686 T.-H. Cheng et al.

(a) Thickness ratio β1 = 30, β2 = 10 (γ1 = 3γ2)

(b) Thickness ratio β1 = 10, β2 = 30
(
γ1 = 1

3γ2
)

Figure 12. Non-dimensional peel and shear stress distributions in the adhesive layer (x̄ = x/c) versus
the thickness to length ratio γ1 for various thicknesses of the adherends for Case 2 (ha = 0.01 mm).

of the upper adherend in the former is three times that in the latter. However, in
Fig. 13a, in contrast to Fig. 11, the compressive peel stress in the center does not
occur for γ1. Consequently, in Fig. 13b the peel stress in the center again vanishes
for γ1 and the maximum peel and shear stresses occur only at the ends. Moreover,
whether γ1 = 3γ2 or γ1 = 1

3γ2, the maximum peel and shear stresses for the various
lengths of the adhesive layer always occur at the ends. Nevertheless, the maximum
peel and shear stresses in Fig. 13a are larger than those in Fig. 13b.
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Stresses in adhesive joints applicable to IC chips 1687

(a) β1 = 30, β2 = 10 (γ1 = 3γ2), (c) β1 = 6, β2 = 2 (γ1 = 3γ2),
ha = 0.01 mm ha = 0.05 mm

(b) β1 = 10, β2 = 30
(
γ1 = 1

3γ2
)
, (d) β1 = 2, β2 = 6

(
γ1 = 1

3γ2
)
,

ha = 0.01 mm ha = 0.05 mm

Figure 13. Non-dimensional peel and shear stresses versus the thickness to length ratio of the upper
adherend γ1 for various thicknesses of the adherends for Cases 2 and 3.

4.3. Case 3: Adhesive layer with different thickness (ha)

Comparisons between Fig. 13c and 13d with the ha = 0.05 mm thickness of the
adhesive layer and between Fig. 13a and 13b with ha = 0.01 mm adhesive layer
thickness are made and described as follows. The only difference between the two
sets of figures is the different thickness and the other conditions are the same. Again,
the peel stress almost vanishes in the center for Fig. 13a–d, and whether γ1 = 3γ2 or
γ1 = 1

3γ2, the maximum peel and shear stresses occur at the ends. The thicknesses
ha = 0.05 mm and ha = 0.01 mm of the adhesive layer are compared in Fig.
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1688 T.-H. Cheng et al.

13a and 13b, and 13c and 13d, respectively. The maximum peel and shear stresses
occur at the ends in Fig. 13a–d, but their maximum values in Fig. 13a and 13b
(ha = 0.01 mm) are larger than those in Fig. 13c and 13d (ha = 0.05 mm).
In Fig. 13a–d, γ1 values of 0.08, 0.025, 0.05 and 0.015, respectively, begin to
bring about the maximum peel and shear stresses at the ends. However, when the
adhesive layer is relatively thicker (i.e., ha = 0.05 mm), the thickness to length ratio
(γ1 = 0.05, 0.015) that begins to bring about the maximum peel and shear stresses
at the ends is smaller. That is, the adhesive layer with ha = 0.05 mm thickness may
be longer than that with ha = 0.01 mm thickness, but its maximum peel and shear
stresses may still occur at the ends.

4.4. Case 4: Action point of force P

As Fig. 14 shows, when β = 10, ha = 0.01 mm and γ = γ1 = γ2 = 0.01667,
the distributions of the non-dimensional peel and shear stresses are relative to the
distance d from the center of the adhesive layer to the action point of force P . Most
particularly, the non-dimensional peel and shear stress distributions have a great
effect on the distance d for an adhesive layer with a thickness of 0.01mm. However,
as Fig. 15 illustrates, when β = 10, ha = 0.02 mm and γ = γ1 = γ2 = 0.05,
the non-dimensional peel stress distribution has only little effect on the distance d

for an adhesive layer with a thickness of 0.02 mm. In Fig. 15, not only does the
distribution of the peel stress lead to change in only a small region of the action
point, but also it causes virtually no change at the ends. The non-dimensional shear
stress at the right end does not change because it is located far from the action point
of the force. At the same time, the change in shear stress is due to the action point
of the force near the left end.

When the maximum peel stress occurring in the center of the adhesive layer is
much larger than the peel and shear stresses at the ends, the upper adherend (IC chip)
can easily break. Moreover, according to the preceding results, when both the
upper and lower adherends have the same thickness, the adhesive layer is thinner
(ha = 0.01 mm), the adherends are thicker and the joint is shorter (i.e., thickness to
length ratio γ = γ1 = γ2 is larger), the adhesively-bonded upper adherend (the IC
chip) easily breaks.

Additionally, when the ends and the center of the adhesive layer have small peel
and shear stresses, the lower adherend subjected to the concentrated force will also
be well joined with the upper adherend. Such joint should be possible under the
following conditions: the thickness of the lower adherend is different from that of
the upper adherend, and the adhesive layer is thicker and longer. For example, the
thicker adhesive layer is 0.05 mm and its length is longer, while the upper and lower
adherends are 2- and 6-times thicker than the adhesive layer.

Conversely, the upper adherend (IC chip) without breakage can be completely
separated from the lower adherend subjected to the concentrated force when the
maximum peel and shear stresses in the adhesive layer at the ends are greater than
adhesive criteria stresses. Additionally, when the maximum peel and shear stresses
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Stresses in adhesive joints applicable to IC chips 1689

Figure 14. Non-dimensional peel and shear stress distributions for the distance d from the center of
the adhesive layer to the action point of the force (ha = 0.01 mm, γ = 0.01667).

occurring at the ends of the joint are large and the compressive stress in the center
of the joint is small, the probability of the upper adherend (IC chip) being easily
separated from the lower adherend increases [30]. Thus, the following conditions
can satisfy the IC chip pick-up process. The thickness of the lower adherend should
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1690 T.-H. Cheng et al.

Figure 15. Non-dimensional peel and shear stress distributions for different distances d from the
center of the adhesive layer to the action point of force (ha = 0.02 mm, γ = 0.05).

be greater than ten times that of the adhesive layer but less than one-third that of
the upper adherend; and a thin adhesive layer (ha � 0.01 mm) and a short joint
(γ1 � 0.08) should be used.
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Stresses in adhesive joints applicable to IC chips 1691

5. CONCLUSIONS

For two adhesively-bonded adherends, the peel and shear stresses in the adhesive
layer are affected by the layer’s thickness and length, as well as by the thicknesses
of the adherends and the action point of the concentrated force. The complicated
coupled equations for this problem were numerically solved using symbolic manip-
ulation and SVD. The maximum peel and shear stresses occurring at the ends of
the adhesive layer were analyzed because they dictate whether or not the upper ad-
herend (IC chip) can be separated from the lower adherend. The results indicate that
the upper adherend can be completely and easily, separated from the lower adherend
under the following conditions: (i) the thickness of the lower adherend should be
greater than ten times that of the adhesive layer but less than one-third that of the
upper adherend and (ii) the adhesive layer should be relatively thin (ha � 0.01 mm)
and the adhesive joint relatively short (i.e., γ1 should be greater than 0.08). Thus,
the numerical results of this study outline the characteristics of the adhesive layer
relative to the adherends, which can be used to develop adhesive joints in the IC
chip pick-up process.
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