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A ROLLING-TRAINED FUZZY NEURAL NETWORK APPROACH FOR 
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This paper develops a rolling-trained fuzzy neural network (RTFNN) approach for freeway incident 

detection. The core logic of this approach is to establish a fuzzy neural network and to update the network 
parameters in response to the prevailing traffic conditions through a rolling-trained procedure. The simulation 
results of some thirty-six incident scenarios in a two-lane freeway mainline case study show that the proposed 
RTFNN approach can improve the detection performance over the fuzzy neural network approach, which is 
based on the same network structure but without updating the parameters through a rolling-trained procedure. 
The highest detection rate is found at a rolling horizon of 45 minutes and a training sample size of 90 samples 
in this case study. 

 
KEYWORDS: Freeway incident detection, fuzzy neural network, rolling-trained fuzzy neural network 
 

1. INTRODUCTION 
 
In the past decades, substantial research has been done in developing automatic 

incident detection (AID) algorithms to diagnose roadway traffic incidents (for instance, 
Cook and Cleveland, 1974; Dudek et al., 1974; Levin and Krause, 1978; Payne and 
Tignor, 1978; Willsky et al., 1980; Ahmed and Cook, 1982; Persaud and Hall, 1989; 
Steed and Clowes, 1989; Luk and Sin, 1992; Stephanedes et al., 1992; Ivan et al., 1993; 
Parkany and Bernstein, 1993; Ritchie and Cheu, 1993; Stephanedes and Chassiakos, 
1993; Hsiao et al., 1994; Cheu and Ritchie, 1995; Sethi et al., 1995; Stephanedes and Liu, 
1995; Dia and Rose, 1997; Lee et al., 1998; Lin and Chang, 1998; Sheu and Ritchie, 
1998; Xu et al., 1998; Srinivasan et al., 2000; Lan et al., 2003b; Sheu, 2004). The 
detection performance in terms of detection rate and false alarm could be sensitive to the 
chosen traffic parameters, their designated criteria for judging the incident occurrence, 
and the detection locations. It can also be sensitive to the changes in prevailing traffic 
conditions. In practice, the complexity of traffic dynamics is characterized with 
uncertain and nonlinear nature. Most previous AID algorithms, however, subjectively set 
the parameters and use crisp criteria in distinguishing the abnormal traffic (incident-
occurrence) from the normal one (incident-free), thus they may result in poor detection 
performance as the traffic conditions alter drastically. 

In dealing with the uncertain contexts (unclear input-output relationships or imprecise 
input values), both neural networks (NN) and fuzzy systems (FS) have been proven as 
powerful tools. NN generally represents a complex system with precise inputs and 
outputs used for training the generic model to formulate a good approximation of the 
unclear relationship. FS, in contrast, addresses the imprecision of the input and output 
variables (often defined with fuzzy numbers) but their interrelationships take the form of 
well-defined if-then rules (Tsoukalas and Uhrig, 1997). Each of these two tools has its 
own advantages and disadvantages. For instance, the NN approaches have the 
advantages of learning capability to avoid subjectively setting of the parameters and 

                                                           
1 Institute of Traffic and Transportation, National Chiao Tung University, 4F, 114 Section 1, Chung Hsiao W. 
Rd., Taipei, Taiwan 10012. Corresponding author (E-mail: lawrencelan@mail.nctu.edu.tw). 
2  Institute of Traffic and Transportation, National Chiao Tung University, 4F, 114 Section 1, Chung Hsiao W. 
Rd., Taipei, Taiwan 10012. 
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possessing high fault tolerance due to the distributed memory of parameters separately 
stored on each link of the network. However, NN approaches usually require long 
training time, especially when such network parameters as training rate, momentum and 
initial weights are not appropriately chosen (Wasserman, 1993; Shepherd, 1997). This 
may preclude the online training procedure for some advanced applications where real-
time adjustments are required. The crisp criteria to judge for any event occurrence may 
be too sensitive, leading the NN approaches to misjudge easily. 

Taking traffic incident detection as an example, the distributed memory of parameters 
separately stored on each link of a NN will have the advantage of high fault tolerance. 
Consequently, reducing the number of input nodes or poor quality of few input data will 
not remarkably influence the output results. However, the sensitivity of crisp thresholds 
or criteria used in NN to judge if an incident occurs or not may lead to poor detection 
performance. Incorporating fuzzy inference into the NN (called FNN) may avoid the 
sensitivity problem but still keeps the good features of self-learning capability with high 
fault tolerance. Consequently, FNN approaches have been commonly employed in traffic 
engineering, ranging from pavement diagnosis (Lan and Chiou, 1997), vehicular count 
and classification (Lan and Kuo, 2002; Lan et al., 2003a) to traffic prediction (Abdulhai 
et al., 2002; Yin et al., 2002). More recently, Lan et al. (2004) developed incident 
detection algorithms with various FNN structures based on the averages of traffic 
parameters across all lanes. Off-line tests have validated that their proposed FNN system 
was capable of detecting the freeway incidents with rather high accuracy. Sensitivity 
analysis further showed that alternating the FNN structures by reducing the number of 
detectors or number of input traffic parameters only slightly deteriorated the detection 
performance, implying the high fault tolerance of the FNN incident detection system. 
However, their FNN approach did not adaptively adjust the network parameters in 
response to the prevailing traffic conditions, leaving some room for improvement. 

To capture the change in traffic dynamics through network training, Yin et al. (2002) 
developed a FNN-type model with online rolling-trained procedure to predict the traffic 
flows in an urban street network. Their FNN model consists of two modules: a gate 
network and an expert network. The gate network classifies the inputs into several 
clusters using a fuzzy approach and the expert network specifies the input-output 
relationship as in a conventional NN approach. Both simulation and real observation 
data demonstrated that the prediction power can be enhanced through the online rolling-
trained procedure in response to the prevailing traffic conditions. Jin et al. (2002) 
developed constructive probabilistic neural network (CPNN) model to detect the freeway 
incidents. They found that the CPNN approach has three main advantages over 
conventional basic probabilistic neural network (BPNN) approach: (1) CPNN has 
clustering ability and thus could achieve similarly good incident-detection performance 
with a much smaller network size; (2) each Gaussian component in CPNN has its own 
smoothing parameter that can be obtained by the dynamic decay adjustment algorithm 
with a few epochs of training; and (3) the CPNN adaptation methods have the ability to 
prune obsolete Gaussian components and therefore the size of the network is always 
within control. The logics of dynamic updating and network pruning of CPNN are 
similar to rolling-trained procedure which can capture the change in traffic dynamics 
through network training. 

Inspired by Yin et al. (2002) and Jin et al. (2002) recent works, this study presumes 
that the rolling-trained procedure in FNN might be imperative in augmenting the 
incident detection performance. Thus, the present paper attempts to develop a rolling-
trained fuzzy neural network (RTFNN) approach for freeway incident detection. Its 
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underlying logic is to establish a proper fuzzy neural network and then adaptively adjust 
the network parameters using the most up-to-date traffic data in response to the 
prevailing traffic conditions so as to improve the detection performance over the 
conventional FNN approach. 

Section 2 details the proposed fuzzy neural network structure. Section 3 introduces the 
rolling-trained procedure for the RTFNN approach. Section 4 conducts a case study with 
36 experimental incident scenarios and further undertakes sensitivity analyses by varying 
the rolling horizons, training sample sizes and a combination of both. Section 5 
summarizes the findings and proposes future research directions. 

 
2. THE FUZZY NEURAL NETWORK STRUCTURE 

 
The FNN structure of the proposed RTFNN approach is established with four layers 

(Figure 1). The first layer is the input layer, which processes all of the traffic flow 
information. The second layer is the membership layer, which processes the original 
traffic flow data through the corresponding relationship of membership functions and 
calculates its fuzzy membership. The third layer is the rule layer composed of three 
categories of fuzzy inference rules: time-specific, lane-specific and space-specific. The 
fourth layer is the output layer. The components of each layer and their relationships are 
detailed as follows. 

 
2.1 The first layer 

 
Twenty-four nodes are designed in this layer to input the lane-specific traffic 

parameters at upstream and downstream detectors. These nodes represent the speeds of 
previous time step (Su10

1) and current time step (Su11
1), flows (Fu10

1 and Fu11
1) and 

densities (Du10
1 and Du11

1) of the upstream inner lane, speeds (Su20
1, Su21

1), flows (Fu20
1, 

Fu21
1) and densities (Du20

1, Du21
1) of the upstream outer lane, speeds (Sd10

1, Sd11
1), flows 

(Fd10
1, Fd11

1) and densities (Dd10
1, Dd11

1) of the downstream inner lane, and speeds (Sd20
1, 

Sd21
1), flows (Fd20

1, Fd21
1) and densities (Dd20

1, Dd21
1) of the downstream outer lane. Note 

that the above densities are not directly measured from the detectors, but indirectly 
calculated from the detected flows and speeds. 

The weighted values wi in this layer are set equal to one and there is no need for 
adjustment. The output values oi are expressed as: 
 24~1,)( === iuufo iii , (1) 

 iiiii uxwxo ==⋅= , (2) 
where ui are the input values. 
 
2.2 The second layer 

 
A trapezoid membership function as shown in Figure 2 is used. The nodes in the 

second layer fall into three categories. The time-specific category (12 nodes) compares 
the upstream and downstream lane speeds, flows and densities at present time with those 
at the previous time step (upstream: Su1

2, Fu1
2, Du1

2, Su2
2, Fu2

2, Du2
2; downstream: Sd1

2, 
Fd1

2, Dd1
2, Sd2

2, Fd2
2, Dd2

2). The lane-specific category (6 nodes) calculates the 
membership degrees of the difference of speeds, flows and densities between upstream 
lanes (Su12

2, Fu12
2, Du12

2) and downstream lanes (Sd12
2, Fd12

2, Dd12
2). The space-specific 
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category (6 nodes) compares the flows, speeds and densities between upstream at time t 
and downstream at time τ+t , where τ is the time lag measured by the time for vehicles 
traveling from upstream detecting point to downstream detecting point. These space-
specific nodes calculate the membership degrees of the difference of speeds, flows and 
densities between upstream and downstream (inner lane: Sud1

2, Fud1
2, Dud1

2; outer lane: 
Sud2

2, Fud2
2, Dud2

2). 
 

 
 
 
 
 
 
 
 

FIGURE 2: The membership function 
 
The weighted values in the second layer wij are also set equal to one and there is no 

need for further adjustment. Both aj and bj are parameters of the trapezoid membership 
function, whose output values oj can be written as: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤<
−

−
≤

=µ==

        for                      1

for          

for                    0

)()(

jij

jijj
jj

jij
jij

ijjjjj

bx

bxa
ab
ax

ax

xufo . (3) 

In the time-specific category 1+−= iiij uux , where i=1,3,5 and j=1~3 for upstream 
inner lane, i=7,9,11 and j=7~9 for upstream outer lane, i=13,15,17 and j=16~18 for 
downstream inner lane, and i=19,21,23 and j=22~24 for downstream outer lane. In the 
lane-specific category 6+−= iiij uux , where i=2,4,6 and j=4~6 for upstream, i=14,16,18 

and j=19~21 for downstream. In the space-specific category 13+−= iiij uux , where 
i=1,3,5 and j=10,12,14 for inner lane, i=7,9,11 and j=11,13,15 for outer lane. 
 
2.3 The third layer 

 
The rules in the time-specific category are stated as: IF there is a remarkable difference 

of speeds, flows or densities between the present time step and the previous one, 
upstream or downstream, inner lane or outer lane, THEN an incident occurrence is 
inferred with membership degrees R1

3 (upstream inner lane), R3
3 (upstream outer lane), 

R5
3 (downstream inner lane), and R7

3 (downstream outer lane). The output values ok can 
be expressed as: 
 )(*)(*)()( )2()2()1()1( kjkjkjkjjkjkkk xwxwxwufo ++++ ⋅⋅⋅== ,      (4) 
where j=1 and k=1 for upstream inner lane, j=7 and k=3 for upstream outer lane, j=16 
and k=5 for downstream inner lane, j=22 and k=7 for downstream outer lane. 

The rules in the lane-specific category are stated as: IF there is a remarkable difference 
of speeds, flows or densities between the inner lane and the outer lane, upstream or 

Difference value xij 0 

1 

aj bj 

M
em
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p 

de
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downstream, THEN an incident occurrence is inferred with membership degrees R2
3 

(upstream) and R6
3 (downstream). The output values ok are represented as: 

 )(*)(*)()( )2()2()1()1( kjkjkjkjjkjkkk xwxwxwufo ++++ ⋅⋅⋅==           (5) 
for upstream: j=4 and k=2; downstream: j=19 and k=6. 

The rules in the space-specific category are stated as: IF there is a remarkable 
difference of speeds, flows or densities between the upstream at time t and downstream 
at time τ+t , inner lane or outer lane, THEN an incident occurrence is inferred with 
membership degrees R4

3. The output values ok can be expressed as: 

 
)(*)(*)(*

)(*)(*)()(
)5()5()4()4()3()3(

)2()2()1()1(
kjkjkjkjkjkj

kjkjkjkjjkjkkk
xwxwxw

xwxwxwufo
++++++

++++
⋅⋅⋅

⋅⋅⋅==          (6) 

for j=10 and k=4. 
 
2.4 The fourth layer 

 
The fourth layer is the output layer, which contains one node Y1

4 for this two-lane 
freeway. The center of area method is employed to defuzzify the fuzzy number to a crisp 
binary value (Y1

4=0 indicates incident-free; Y1
4=1 represents incident-occurrence). It is 

essential to set the initial weighted values for this layer wkm and then adjust them through 
the network training. The output values om are: 

 ∑
=

⋅==
7

1
)(

k
kmkmmm xwufo  (7) 

 
3. THE ROLLING-TRAINED PROCEDURE 

 
A backpropagation technique that minimizes the total error function with gradient 

steepest descent method is used for the network training. To capture the fluctuations of 
traffic, we further develop a rolling-trained procedure. The most up-to-date flow 
parameters are used to distinguish the traffic characteristics of one time interval from 
another. The proposed rolling-trained procedure is depicted in Figure 3 and detailed as 
follows. 
Step 1: Gather the initial training data. 
Step 2: Train and update the network parameters by backpropagation algorithm. 
  The backpropagation algorithm (see Appendix 1) may not have appropriate 

initial values, thus its network parameters need to be updated through the initial 
training process. 

Step 3: Collect new training data. 
  Gather input data and conduct incident detection through the FNN algorithm. In 

the meantime, save both input data and output results in the training sample 
dataset for the follow-up training. 

Step 4: Verify the incident by persistence tests. 
  As an incident can last for a while, it is necessary to conduct the persistence 

tests to avoid including the incorrect (misjudged) data in the training dataset. 
The underlying philosophy of a persistence test is that if there are no continuous 
detections of an incident occurrence, then that detected incident should be 
considered as a false alarm. In this case we should discard the training sample 
and go back to Step 3. 
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Step 5: Update the training dataset. 
  Put into the training dataset the data that have passed the persistence tests in 

Step 4. Replace the most distant data with the most updated data so that the 
training dataset can be maintained at a predetermined training sample size. Go 
back to Step 2 every fixed time interval (e.g., every hour; hereafter, rolling 
horizon) to keep renewing the network parameters to the latest traffic conditions. 
The idea of RTFNN is to capture the change in traffic dynamics through 
rolling-trained procedure so as to adaptively adjust the network parameters. 
Therefore, the potential advantage for fixing the training sample size is to avoid 
too many obsolete traffic data which may significantly differ from the 
prevailing traffic conditions. 

 
 Collect input/output data for initial train

Train and update network parameters

FNN Collect current input data Generate output data 

Update the training dataset

Training samples dataset 

Incident Sample Incident-free Sample 

I1 I2 In… F1 F2 F3 … Fn 

Fi 

Discarded 

Discarded 

Ii Ij 

Ii

Fk Fl Im 

YES 

NO 

YES 

NO Incident detected?

Persistence Test

 
FIGURE 3: The rolling-trained procedure 

 
4. CASE STUDY 

 
4.1 Data 

 
It is very difficult to generate sufficient real traffic incidents to validate any AID 

algorithm, thus most previous algorithms adopt off-line validations by simulation or 
incident database. In the present paper, a calibrated Paramics carried out on the Taiwan 
Freeway two-lane mainline is employed to produce enough training samples and off-line 
test samples required by the RTFNN and FNN algorithms. The calibration is briefly 
narrated in Appendix 2. Thirty-second traffic flow data are collected from 6:00 am to 
12:00 pm at the same site where the deliberate incident was experimented. The data 
cover a typical morning peak hours and two off-peak periods before and after that peak. 
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Figure 4 presents the 30-second flow variations for six hours, in which conspicuous 
fluctuations and manifest changes in traffic volume (from low to intermediate to heavy 
volumes and then from heavy to intermediate to low volumes) are found. Such drastic 
variations suggest the necessity of renewing the network parameters in response to the 
most up-to-date traffic conditions through the rolling trained procedure. 

The experimental design of the following simulation places two detection points 
(upstream and downstream), one kilometer apart, in this two-lane freeway mainline. In 
between, various incident scenarios are generated, which include 36 incidents taking 
place in different lanes (inner and outer) at different locations (250, 500 and 750 meters 
from the upstream detectors) under six different traffic conditions (from light to 
intermediate to heavy traffic and then from heavy to intermediate to light traffic). As an 
example, Figure 5 demonstrates the 30-second flow variations of both incident-free and 
incident conditions for one scenario where the incident occurs at 7:30am and lasts for 15 
minutes. In each scenario, Paramics generates 200 sets of simulation data--100 of which 
are used for network training (called training sets) and the rest 100 sets are used for off-
line validation (called evaluation sets). 
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FIGURE 4: Observed 30-second flow rates on the studied freeway (two-lane mainline) 
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FIGURE 5: Flow variation for one incident scenario (incident duration 7:30–7:45 am) 
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4.2 Results 
 
The detection performance is evaluated by three criteria: detection rate (DR), false 

alarm rate (FAR), and time to detection (TTD). DR is defined as a ratio of the number of 
detected incidents to the number of actual incidents for the overall lanes of flow 
direction. FAR is defined as a ratio of the number of detected incidents to the number of 
incident-free for the overall lanes of flow direction. TTD is the difference between the 
time an incident being detected and the time that incident actually taking place. 

As a base for comparison, we set the rolling horizon with 60 minutes and 30-second 
traffic data as one sample, thus the training sample size is 120 samples. Table 1 and 
Figure 6 present the detection performance, based on the 100 evaluation sets, of 36 
incident scenarios by two approaches--with rolling-trained (hereafter referred as RTFNN 
approach) and without rolling-trained (hereafter referred as FNN approach). Note that 
the six data rows in Table 1 and six points in Figure 6 represent six different incident 
locations within the same simulation hours. Initially, both RTFNN and FNN network 
parameters are based on the same trained results using all six-hour 100 training sets of 
simulation data, thus they have exactly the same detection performance in the first hour 
validation. However, after a few hours, RTFNN gradually outperforms over FNN 
because RTFNN updates the trained parameters in every 60 minutes, but FNN keeps 
using the initially trained parameters. From Table 1, we find that the detection 
performance for both approaches consistently depend on the location of the incident. In 
general, if the incident takes place near the detector, either upstream (the 250-meter 
scenarios) or downstream (the 750-meter scenarios), the DR is higher and the TTD is 
shorter than the one occurring farther away from the detector (the 500-meter scenarios). 
Figure 6 also demonstrates that the RTFNN approach has outperformed with higher DR, 
lower FAR and shorter TTD, compared with the FNN approach in various traffic 
conditions. 

Table 2 reports the statistical difference of mean values (t-test) of detection 
performance between these two approaches. It is found that the overall DR for RTFNN 
is 93.95% and for FNN is 91.09%; both are quite high and have statistical difference at 
5% significance level. The overall FAR for RTFNN is 0.0754% and for FNN is 0.0803%; 
both are quite low but have no significant difference. The overall TTD requires only 
about two time steps, 68.39 seconds for RTFNN and 74.19 seconds for FNN; both are 
statistically different. The high detection performance suggests that both FNN and 
RTFNN approaches are all satisfactory in freeway incident detections; but through the 
rolling-trained, the detection performance can be significantly enhanced. Specifically, as 
the traffic conditions changed from low to high and then from high to low, the detection 
performance (DR and TTD) for RTFNN is increased from 90% to about 96%; but the 
detection performance for FNN remains rather stable between 90% and 92%. As for the 
FAR, the overall performance shows that there is no significant difference between these 
two approaches (Table 2). Figure 7 further presents the interaction between DR and FAR 
for both approaches. In sum, the enhancement of DR (and TTD) without significantly 
deteriorating the FAR and the superior performance of RTFNN over FNN should be 
ascribed to the rolling-trained effects of adaptively adjusting the network parameters in 
response to the traffic variations. 
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TABLE 1: Detection performance for 36 incident scenarios (rolling horizon = 60 
minutes, training sample size = 120) 

Incident location  RTFNN approach FNN approach Simulation 
hour 

(time of day) 

Hourly 
volume 
(vph) 

Lane 
position 

Distance 
from 

upstream 
detector 
(meter) 

 DR 
(%) 

FAR 
(%) 

TTD 
(sec) 

DR 
(%) 

FAR 
(%) 

TTD 
(sec) 

Inner 250  92.78 0.08 73 92.78 0.08 73 
 500  89.68 0.05 88 89.68 0.05 88 
 750  91.11 0.09 74 91.11 0.09 74 
         

Outer 250  88.98 0.08 79 88.98 0.08 79 
 500  87.05 0.07 83 87.05 0.07 83 

1 
(6:00-7:00) 

2,403 

 750  90.62 0.08 76 90.62 0.08 76 
           

Inner 250  94.70 0.08 74 91.48 0.08 77 
 500  90.01 0.07 78 89.05 0.06 81 
 750  93.89 0.09 72 92.97 0.08 75 
         

Outer 250  92.56 0.08 71 91.77 0.07 76 
 500  91.17 0.06 80 90.12 0.06 85 

2 
(7:00-8:00) 

2,919 

 750  93.58 0.08 73 91.52 0.07 77 
           

Inner 250  95.66 0.09 66 92.56 0.07 73 
 500  92.71 0.09 72 90.12 0.07 80 
 750  94.76 0.08 61 92.36 0.08 68 
         

Outer 250  94.33 0.08 65 91.91 0.09 71 
 500  91.58 0.07 69 89.94 0.07 79 

3 
(8:00-9:00) 

3,664 

 750  92.98 0.09 66 91.29 0.08 75 
           

Inner 250  95.78 0.06 66 91.35 0.09 73 
 500  92.77 0.07 65 87.32 0.07 72 
 750  95.02 0.07 67 91.58 0.09 75 
         

Outer 250  96.53 0.06 68 92.41 0.08 75 
 500  93.26 0.05 62 87.74 0.08 70 

4 
(9:00-10:00) 

4,514 

 750  94.97 0.08 67 91.23 0.09 74 
           

Inner 250  98.12 0.08 63 91.76 0.09 70 
 500  95.37 0.06 63 89.43 0.08 70 
 750  97.81 0.08 64 91.67 0.09 72 
         

Outer 250  96.59 0.07 66 92.06 0.08 73 
 500  94.83 0.07 61 88.61 0.08 67 

5 
(10:00-11:00) 

3,310 

 750  97.98 0.08 65 93.16 0.09 73 
           

Inner 250  96.89 0.07 62 93.61 0.09 75 
 500  94.31 0.05 62 90.47 0.07 76 
 750  97.00 0.06 64 92.96 0.09 69 
         

Outer 250  96.28 0.08 64 94.21 0.08 75 
 500  93.73 0.06 60 90.36 0.08 73 

6 
(11:00-12:00) 

2,484 

 750  96.69 0.07 59 93.75 0.09 72 
Note: 1. The results for RTFNN and FNN approaches for the first-hour simulation are the same as it is the 

initial condition. 
 2. Distance of incident location is measured from the upstream detecting point. 
 3. Each scenario is simulated for 100 times. The values in this table are the average of 100 simulation 

runs. 
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FIGURE 6: Comparison of detection performance for each simulation hour between 

RTFNN and FNN approaches (rolling horizon = 60 minutes, training sample size = 120) 
 

4.3 Sensitivities of rolling horizon and training sample size 
 
The above-mentioned results conclude that the RTFNN approach, based on the rolling 

horizon of 60 minutes and the training sample size of 120 samples, can improve the 
detection performance over the conventional FNN approach. One might wonder if there 
still exists some room for improvement of detection performance by changing the rolling 
horizons and/or training sample sizes. Thus, the following sensitivity analyses are further 
undertaken: case (I) altering the rolling horizons from 15, 20, 30, 45, 90 to 120 minutes, 
provided that the training sample size is remained as 120; case (II) altering the training 
sample sizes from 30, 40, 50, 60, 180 to 240, provided that the rolling horizon is 
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TABLE 2: Test for the difference of detection performance between RTFNN and FNN 
approaches (rolling horizon = 60 minutes, training sample size = 120) 

 DR FAR TTD Simulation 
hour 

(time of day) 

Hourly  
volume 
(vph) 

Detection 
approaches  Avg. 

(%)1 
Test 

result2 
Avg. 
(%)1 

Test 
result2 

Avg. 
(sec)1 

Test 
result2 

RTFNN  90.04 0.0794 78.83 1 
(6:00-7:00) 

2,403 
FNN  90.04 

Same 
0.0794 

Same 
78.83 

Same 

          
RTFNN  92.65 0.0815 74.67 2 

(7:00-8:00) 
2,919 

FNN  91.15 
NSD 

(0.752) 0.0760 
NSD 

(0.891) 78.50 
SD 

(0.046) 
          

RTFNN  93.67 0.0881 66.50 3 
(8:00-9:00) 

3,664 
FNN  91.36 

SD 
(0.021) 0.0795 

NSD 
(0.701) 74.33 

SD 
(0.009) 

          
RTFNN  94.72 0.0658 65.99 4 

(9:00-10:00) 
4,514 

FNN  90.27 
SD 

(0.003) 0.0801 
SD 

(0.051) 73.36 
SD 

(0.024) 
          

RTFNN  96.78 0.0742 62.62 5 
(10:00-11:00) 

3,310 
FNN  91.19 

SD 
(0.015) 0.0807 

NSD 
(0.053) 71.19 

SD 
(0.037) 

          
RTFNN  95.82 0.0634 61.75 6 

(11:00-12:00) 
2,484 

FNN  92.55 
SD 

(0.011) 0.0862 
SD 

(0.027) 73.27 
SD 

(0.049) 
         

RTFNN  93.95 0.0754 68.39 Overall 
FNN  91.09 

SD 
(0.033) 0.0803 

NSD 
(0.092) 74.19 

SD 
(0.008) 

Note: 1. The results for RTFNN and FNN approaches for the first-hour simulation are the same as it is the 
initial condition. Average represents the mean values of six incident scenarios, each of which 
undertakes 100 simulation runs. 

 2. NSD represents no significant difference and SD represents significant difference with P-value in 
parenthesis (α=0.05). The null hypothesis is that the mean values (DR, FAR, or TTD) between two 
approaches are the same. 
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FIGURE 7: Graph of detection rate vs. false alarm rate for 36 incident scenarios 
 

remained as 60 minutes; case (III) simultaneously altering both rolling horizons and 
training sample sizes. Figures 8, 9 and 10 respectively present the change in detection 
rates for these three cases and Tables 3, 4 and 5 respectively report the details of the 
change. The sensitivity analyses of these three cases consistently show that the highest 
average detection rate is at the 45-minute rolling horizon and 90 training sample sizes in 
this case study. 

It is interesting to note that very short or very long rolling horizons can lower the 
detection rates, compared with the base with rolling horizon of 60 minutes. The main 
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FIGURE 8: Detection rates in each simulation hour for Case (I) (training sample size 

fixed at 120) 
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FIGURE 9: Detection rates in each simulation hour for Case (II) (rolling horizon fixed 

at 60 minutes) 
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FIGURE 10: Average detection rates of 36 incident scenarios for Case (III) (rolling 

horizon and training sample size varied) 
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TABLE 3: Detection rates for Case (I) (training sample size fixed at 120) 
Rolling horizons (minutes) Simulation 

hours 
Hourly flow 

(veh/hr) 15 20 30 45 60 90 120 
1 2,403 91.50 92.13 91.28 90.96 90.04 91.08 91.02 
2 2,919 91.68 92.61 92.47 93.24 92.65 92.21 90.93 
3 3,664 91.87 93.17 95.61 96.22 93.67 92.59 91.54 
4 4,514 92.08 94.37 94.33 97.15 94.72 92.70 90.63 
5 3,310 94.02 94.49 94.02 95.29 96.78 93.79 91.26 
6 2,484 94.74 95.56 96.25 96.81 95.82 92.84 92.15 

Note: shadow indicates the base condition of rolling horizon 
 

TABLE 4: Detection rates for Case (II) (rolling horizon fixed at 60 minutes) 
Training sample sizes Simulation 

hours 
Hourly flow 

(veh/hr) 30 40 50 60 90 120 180 240 
1 2,403 91.03 90.93 91.86 91.02 91.89 90.04 90.12 90.23 
2 2,919 91.95 91.64 92.55 93.11 94.17 92.65 92.97 92.10 
3 3,664 92.09 92.27 93.07 93.95 95.32 93.67 93.85 93.11 
4 4,514 91.81 92.96 93.59 94.48 95.28 94.72 94.07 94.66 
5 3,310 92.17 92.94 93.21 94.15 94.39 96.78 95.48 94.70 
6 2,484 92.06 92.56 92.61 93.74 94.90 95.82 94.78 93.51 

Note: shadow indicates the base condition of training sample size 
 
TABLE 5: Average detection rates for Case (III) (rolling horizon and training sample 

size varied) 
Rolling horizon (minutes) Training sample size 

15 20 30 45 60 90 120 
30 91.51 91.72 91.64 91.92 91.85 91.97 91.55 
40 91.22 91.60 91.26 91.73 92.22 92.03 91.67 
50 93.86 93.49 93.07 92.66 92.82 92.36 92.20 
60 93.48 93.93 94.20 93.35 93.41 93.06 92.46 
90 95.04 94.67 94.70 95.63 94.33 94.15 93.28 
120 92.65 93.72 93.99 94.95 93.95 92.54 91.26 
180 95.02 94.63 94.48 93.87 93.54 94.07 92.47 
240 93.96 93.98 93.32 93.25 93.05 94.87 93.10 

 
reasons are insufficient updated training samples would be collected if the rolling 
horizon is too short and less capable of capturing the flow variations for longer rolling 
horizons. Similarly, small training sample sizes can also lower the detection rates, 
compared with the base with training sample size of 120. The main reason is the 
difficulty in reaching the convergence of total error function, should one select a training 
sample size as small as 30 or 40 samples. The sensitivity analyzes also find that heavier 
traffic conditions tend to have higher detection rates than lighter ones, regardless of the 
changes in rolling horizon and/or training sample size. 

 
5. CONCLUSION 

 
The main advantage of the proposed RTFNN approach is to adaptively adjust the 

network parameters using the most up-to-date traffic data in response to the prevailing 
traffic conditions. The case study has shown that as the traffic volumes vary from low to 
high and then change from high to low, the detection performance for RTFNN is getting 
better (but not for the FNN approach), which can be ascribed to the rolling-trained 
effects of adaptively adjusting the network parameters in response to the traffic 
variations. 
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The findings are limited to some thirty-six incident scenarios in the two-lane freeway 
contexts. One might argue that the lane-specific traffic data used in the input layer of the 
neural network would limit the transferability potential of the proposed algorithm to 
other freeway facilities with three or more lanes. A number of studies in the literature 
(e.g., Ritchie and Cheu, 1993; Lan et al., 2004) have shown that using the station 
averages across all lanes rather than lane-specific traffic data does not substantially 
reduce the accuracy of the incident detection model. Of course, future study can further 
examine the transferability of the proposed RTFNN approach basing on the station 
average data. 

Paramics is employed in the present paper for generating speed, flow and density data 
which are used for training and off-line validations. Future work can attempt other 
different micro traffic simulators. Additionally, the density is difficult to measure in the 
field, a surrogate of it, such as percent occupancy that can be readily provided by the 
field detectors, should be used in the proposed RTFNN approach from practical 
perspectives. 

The robustness of RTFNN approach at different places (e.g., freeway mainline sections 
with three or more lanes) with different scenarios (e.g., incidents at different locations 
and affecting more than one lane) can also be examined.  Development of new methods 
to determine the optimal rolling horizon and/or training sample size deserves further 
exploration. 
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APPENDIX 1. THE BACKPROPAGATION ALGORITHM 
 
Step 1: Initialize the network parameters, including weighted value (wkm), membership 

function parameters (aj, bj), momentum term α, and learning rate η. 
Step 2: Obtain the output value (om

4) with the above-mentioned FNN by inputting a 
training sample using the existing network parameters. 

Step 3: Calculate the error of the fourth layer (δm
4):  

 444
mmm od −=δ , (A1) 

where dm
4 is the observed output value of training sample. 

Step 4: Update the weighted values between the third and fourth layers (wkm): 
 )]1()([)()1( 4 −−⋅α+⋅δ⋅η+=+ twtwxtwtw kmkmkmmkmkm . (A2) 

Step 5: Calculate the errors of the third and second layers (δk
3, δj

2): 
 )1(43 +⋅δ=δ twkmmk , (A3) 

 jkjkkj xw ⋅⋅δ=δ 32 .  (A4) 
Step 6: Adjust the parameters of the membership function in the second layer (aj, bj): 

 )]1()([
)]()([

)(
)()1( 2

2 −−⋅α+
−

−
⋅⋅δ⋅η+=+ tata

tatb

tbx
xtata jj

jj

jj
kjjj , (A5) 
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 )]1()([
)]()([

)(
)()1( 2

2 −−⋅α+
−

−
⋅⋅δ⋅η+=+ tbtb

tatb

xta
xtbtb jj

jj

jj
kjjj . (A6) 

Step 7: Repeat Steps 2 through 6 until all training samples have been inputted. 
Step 8: Calculate the value of total error function of ith epoch (TEi): 

 ∑
=

−=
N

t
mmi totdTE

1

2)]()([
2
1 , (A7) 

where N is the total number of training samples. 
Step 9: Test the stop condition. Training can be terminated when the predetermined 

number of training epochs reaches or the total error function converges; otherwise, go to 
Step 2. In this paper, the later condition is used. Namely, 
 ε≤− −1nn TETE , (A8) 
where ε is an arbitrary small number. We stop the network training as TEi decreases 
smoothly. 

 
APPENDIX 2. CALIBRATION OF PARAMICS WITH A REAL INCIDENT 

 
Under special permission from the Taiwan Freeway Authority, Lan et al. (2004) 

deliberately generated a real traffic incident by placing two cars at 19K+400, northbound 
of Taiwan Freeway No. 1, so as to block the shoulder and outer lane of the two-lane 
freeway mainline section by allowing only one lane (inner) for traffic passing through. 
The geometry of the experimental freeway segment is schemed in Figure A1, in which 
no on-ramp or off-ramp exists between the nearest upstream (21K+300) and downstream 
(18K+400) CCTV cameras in situ. The upstream and downstream traffic image data are 
concurrently recorded by the video cameras, 15 minutes prior to, during, and after this 
experimented incident, respectively. Such recorded traffic images are then analyzed 
frame by frame (per 0.1 second) and converted to 30-second traffic data (speed, flow and 
density) and used for Paramics calibration. The origin-destination pattern, arrival 
distribution, mixed traffic ratio, driver familiarity, and so on are fine-tuned until the 
Paramics simulation results can best fit the observed data for each 15-minute period. As 
indicated in Table A1, the statistical tests conclude that there is no significant difference 
between the observed and simulated data for each 15-minute period, suggesting that the 
Paramics has been calibrated and can be employed for further simulation. 

 
 

Southbound 

Northbound 

18.8 K 19.3 K 20.5 K 

18.4 K 21.3 K 

Incident Location 

 
FIGURE A1: The schematic of Taiwan Freeway No. 1 (shadow indicates the 

experimental section where incident took place at 19.3K and traffic data were observed 
at downstream 18.4K and upstream 21.3K), Source: Lan et al. (2004) 
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TABLE A1: Test for difference between observed and Paramics simulated data 
Time Parameter1 Observed Simulated2 t value P value Test result3 

Speed 80.47 83.70 1.3077 0.1997 No significant difference 
Flow 3,304 3,216 -1.8728 0.0869 No significant difference 

15 mins 
before 

incident Density 20.54 19.36 -1.5811 0.1890 No significant difference 
       

Speed 62.27 64.98 1.6912 0.1039 No significant difference 
Flow 2,656 2,732 -0.2202 0.9609 No significant difference 

15 mins 
during  

incident Density 21.43 21.02 0.1414 0.8884 No significant difference 
       

Speed 68.23 72.16 1.7797 0.0892 No significant difference 
Flow 3,272 3,192 -1.5624 0.1091 No significant difference 

15 mins 
after 

incident Density 23.95 22.12 -1.0389 0.1563 No significant difference 
       

Speed 70.30 73.61 1.6867 0.1080 No significant difference 
Flow 3,078 2,964 -0.0822 0.9354 No significant difference 

Total 
experiment 

45 mins Density 21.97 20.11 -1.4554 0.1619 No significant difference 
Note: (1) The data represent average values of downstream traffic flow parameters. Unit of speed: 

kilometer/hour, flow: vehicle/hour and density: vehicle/kilometer. 
 (2) Paramics simulated data is the average of 10 simulation runs. 
 (3) Null hypothesis H0: µobserved=µsimulated and significance level α=0.05. 
Source: Lan et al. (2004) 

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
40

 3
0 

A
pr

il 
20

14
 




