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Abstract

A consistent co-rotational total Lagrangian finite element formulation for the geometric nonlinear buckling and
postbuckling analysis of thin-walled beams with generic open section is presented. The element developed here has
two nodes with seven degrees of freedom per node. The element nodes are chosen to be located at the shear centers
of the end cross-sections of the beam element and the shear center axis is chosen to be the reference axis. The defor-
mations of the beam element are described in the current element coordinate system constructed at the current con-
figuration of the beam element. The element nodal forces are derived using the virtual work principle. The virtual
rigid body motion corresponding to the virtual nodal displacements is excluded in the derivation of the element nodal
forces. A procedure is proposed to determine the virtual rigid body motion. The way used to determine the element
coordinate system and element nodal deformations corresponding to the virtual nodal displacements and that corre-
sponding to the incremental nodal displacement are consistent. In element nodal forces, all coupling among bending,
twisting, and stretching deformations of the beam element is considered by consistent second-order linearization of
the fully geometrically nonlinear beam theory. In the derivation of the element tangent stiffness matrix, the change of
element nodal forces induced by the element rigid body rotations should be considered for the present method. Thus,
a stability matrix is included in the element tangent stiffness matrix. An incremental-iterative method based on the
Newton–Raphson method combined with constant arc length of incremental displacement vector is employed for
the solution of nonlinear equilibrium equations. The zero value of the tangent stiffness matrix determinant of the
structure is used as the criterion of the buckling state. Numerical examples are presented to investigate the accuracy
and efficiency of the proposed method. The effect of the terms in the element nodal force and tangent stiffness matrix,
which will converge to zero with the decrease of element size, on the convergence rate of solution and accuracy for
the buckling load and nonlinear behavior of three dimensional beam structures are also investigated through numer-
ical examples.
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1. Introduction

Due to reduction of weight, material and cost, thin-walled beams with open section are extensively
used in aerospace and aircraft structures, and are often designed to work under postbuckling conditions.
Such flexible structures can undergo large displacements and rotations without exceeding their elastic lim-
its. To understand the behaviors of such flexible structures and to evaluate their elastic limits many dif-
ferent formulations and numerical procedures for the buckling and postbuckling analysis of thin-walled
beams have been proposed [1–42]. The buckling of the beam structures is caused by the coupling among
bending, twisting, and stretching deformations of the beam members. Thus the buckling analysis is a sub-
topic of nonlinear rather than linear mechanics [8]. Currently, the most popular approach for the analysis
of three-dimensional beam is to develop finite element models. The formulations, which have been used
in the literature, might be divided into three categories [43]: total Lagrangian (TL) formulation, updated
Lagrangian (UL) formulation, and co-rotational (CR) formulation. In order to capture correctly all cou-
pling among bending, twisting, and stretching deformations of the beam elements, the formulation of
beam elements might be derived by the fully geometrically nonlinear beam theory [44]. The exact expres-
sions for the element nodal forces, which are required in a TL formulation for large displacement/small
strain problems, are highly nonlinear functions of element nodal parameters. However, the dominant fac-
tors in the geometrical nonlinearities of beam structures are attributable to finite rotations, the strains
remaining small. For a beam structure discretized by finite elements, this implies that the motion of
the individual elements to a large extent will consist of rigid body motion. If the rigid body motion part
is eliminated from the total displacements and the element size is properly chosen, the deformational part
of the motion is always small relative to the local element axes. Thus in conjunction with the CR formu-
lation, the higher order terms of nodal parameters in the element nodal forces may be neglected by
consistent second order linearization [24,44]. In [38], Hsiao and Lin presented a co-rotational total
Lagrangian formulation of beam element for the nonlinear analysis of monosymmetric thin-walled
open-section beams with large rotations but small strains. In [38], the bimoment [45,46] was considered
to be a generalized nodal force and the twist rate to be the associated generalized nodal displacement.
The beam element had 2 nodes with seven degrees of freedom per node. Element deformations and ele-
ment equations were defined in terms of element coordinates, which were constructed at the current con-
figuration of the beam element. The element deformations were determined by the rotation of element
cross-section coordinates, which were rigidly tied to element cross-section, relative to the element coor-
dinate system [24]. The formulation of element nodal forces was derived by consistent second-order lin-
earization of the fully geometrically nonlinear beam theory. However, the third order term of the twist
rate is retained in the element nodal forces as suggested by [36,37]. This element was proven to be very
effective for geometric nonlinear analysis of three dimensional beams by numerical examples studied in
[38]. However, the beam element cannot be used for the analysis of thin-walled beams with asymmetric
open section. To the authors� knowledge, the application of co-rotational formulation in the geometric
nonlinear buckling and postbuckling analysis for thin-walled beams with generic open section is rather
rare in the literature. In [39], based on semitangential concept, an updated Lagrangian co-rotational for-
mulation was developed for geometrically nonlinear analysis of asymmetric thin-walled frames. In the
iterative evaluation, total element forces are accumulated from incremental element forces. In [40], a
formulation of 3D co-rotational beam elements for the nonlinear and stability analysis of frame struc-
tures was proposed. It seems that the formulation proposed in [40] can be applied to the asymmetric
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thin-walled frames. However, no numerical example of thin-walled frames with asymmetric cross-section
was studied in [40]. The object of this paper is to present a consistent co-rotational total Lagrangian finite
element formulation for the geometric nonlinear buckling and postbuckling analysis of thin-walled beams
with generic open section.

Here, the kinematic assumptions made in [38] are used. Following [38], the shear center axis is chosen
to be the reference axis and the element nodes are chosen to be located at the shear centers of the end
cross-sections of the beam element. In [24], a procedure was proposed is to determine the current ele-
ment coordinates and current element nodal rotation parameters corresponding to a given incremental
nodal displacements and rotations. The deformations, internal nodal forces and stiffness matrix of the
elements are defined in terms of these coordinates. This method was employed in [34,36–38,41]. In
[24], the element virtual rigid body motions are not excluded from the corresponding virtual element
nodal displacements and rotations. Thus, the method proposed in [24] may be regarded as generalized
co-rotational formulation. In this paper, a consistent co-rotation formulation will be used. A procedure
will be proposed to remove the element virtual rigid body motions and determine the element virtual
nodal deformation. The new configuration corresponding to the virtual element nodal displacements
and rotations is referred to as the virtual displaced configuration here. The element coordinates and no-
dal rotation parameters corresponding to the virtual displaced configuration are determined by the
method described in [24] and the consistent first order linearization. The difference between the nodal
rotation parameters and the difference between the chord length of the beam element corresponding
to the virtual displaced configuration and the current configuration is used as the element virtual nodal
deformation displacements. The rigid body motion corresponding to the virtual nodal displacements is
excluded in the derivation of the element nodal forces. However, in the derivation of the element tan-
gent stiffness matrix, the change of element nodal forces induced by the element rigid body rotation
should be considered for the present method. Thus, a stability matrix is included in the element tangent
stiffness matrix.

From the numerical examples studied in [36,41], it is found that the convergence rate of solution is slow
for some examples with large ratio of the flexural stiffness between the major axis and the minor axis of the
cross-section. The present beam element and those beam elements used in [24,36–38,41] are equivalent for
rectangular beam with large aspect ratio, because the warping rigidity is negligible. Thus the present beam
element and those beam elements used in [24,36–38,41] may have similar convergence rate of solution.
Inspection of the element nodal forces and the element stiffness matrices of the present beam element
and the beam elements in [24,36–38,41] reveals that the terms relevant to the twist angle, slopes and the
length of the beam element will converge to zero and those relevant to the twist rate, curvatures and unit
extension will converge to constants. The contribution of the terms relevant to the twist angle, slopes and
the length of the beam element may be negligible with the decrease of element size for numerical study.
However, their convergence rates may be slower than those relevant to the twist rate, curvatures and unit
extension with the decrease of element size. Thus, if the terms relevant to the twist angle, slopes and the
length of the beam element are removed from the element nodal forces and the element matrices, the con-
vergence rate of the solution may be increased for numerical studies. This belief will be examined through
numerical examples in the paper.

An incremental-iterative method based on the Newton–Raphson method combined with constant arc
length of incremental displacement vector is employed for the solution of nonlinear equilibrium equations.
The zero value of the tangent stiffness matrix determinant of the structure is used as the criterion of the
buckling state, and the corresponding load is the so-called buckling load. Numerical examples are presented
to investigate the accuracy and efficiency of the proposed method. The effect of the terms in the element
nodal force and tangent stiffness matrix, which will converge to zero with the decrease of element size,
on the convergence rate of solution and accuracy for the buckling load and nonlinear behavior of three
dimensional beam structures are also investigated through numerical examples.
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2. Finite element formulation

2.1. Basic assumptions

The following assumptions are made in the derivation of behavior of the thin-walled beam element with
generic open section.

(1) The beam is straight, prismatic and slender, and the Euler–Bernoulli hypothesis is valid.
(2) When the longitudinal normal strain relevant to the twist about the shear center axis is excluded, the

unit extension of the centroid axis of the beam element is uniform.
(3) The cross-section of the beam element does not deform in its own plane and strains within this cross-

section can be neglected.
(4) The out-of-plane warping of the cross-section is the product of the twist rate of the beam element and

the Saint Venant warping function for a prismatic thin walled beam of the same cross-section.
(5) The deformation displacements of the beam element are small.
(6) The material is homogeneous, isotropic and linear elastic.

In this study, Prandtl�s membrane analogy and the Saint Venant torsion theory [35,38,45] are used to
obtain an approximate Saint Venant warping function for a prismatic thin walled beam.

2.2. Coordinate systems

In this paper, a co-rotational total Lagrangian formulation is adopted. In order to describe the system,
we define four sets of right handed rectangular Cartesian coordinate systems:
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Fig. 1. Coordinate systems.
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(1) A fixed global set of coordinates, XG
i (i = 1,2,3) (see Fig. 1); the nodal coordinates, nodal displace-

ments and rotations, and the stiffness matrix of the system are defined in this coordinates.
(2) Element cross-section coordinates, xSi (i = 1,2,3) (see Fig. 1); a set of element cross-section coordi-

nates is associated with each cross-section of the beam element. The origin of this coordinate system
is rigidly tied to the centroid of the cross section. The xS1 axis is chosen to coincide with the normal of
the unwarped cross-section and the xS2 and xS3 axes are chosen to be the principal centroid axes of the
cross-section.

(3) Element coordinates, xi (i = 1,2,3) (see Fig. 1), a set of element coordinates is associated with each
element, which is constructed at the current configuration of the beam element. The origin of this
coordinate system is located at node 1, and the x1 axis is chosen to pass through two end nodes (shear
centers of end sections) of the element; the directions of the x2 and x3 axes are chosen to coincide with
the direction of the principal centroidal axes of the cross-section in the undeformed state. The method
described in [24] is employed to determine the directions of x2 and x3 axes in deformed state. The
deformations, internal nodal forces and stiffness matrix of the elements are defined in terms of these
coordinates. In this paper, the element deformations are determined by the rotation of element cross
section coordinate systems relative to this coordinate system.

(4) Load base coordinates, XP
i (i = 1,2,3); a set of load base coordinates is associated with each config-

uration dependent moment. The origin of this coordinate system is chosen to be the node where the
configuration dependent moment is applied. The mechanism for generating configuration dependent
moment is described in this coordinates, and the corresponding external load and load stiffness matrix
are defined in terms of this coordinates.

2.3. Rotation vector

For convenience of the later discussion, the term �rotation vector� is used to represent a finite rotation.
Let b be a vector, which as a result of the application of a rotation vector /a is transported to the new posi-
tion �b. The relation between �b and b may be expressed as [47]
�b ¼ cos/bþ ð1� cos/Þða � bÞaþ sin/ða� bÞ; ð1Þ

where / is the angle of rotation about the axis of rotation, and a is the unit vector along the axis of rotation.

2.4. Kinematics of beam element

The deformations of the beam element are described in the current element coordinate system. Here, the
shear center axis is chosen to be the reference axis and the element nodes are chosen to be located at the
shear centers of the end cross-sections of the beam element. Let Q (Fig. 1) be an arbitrary point in the beam
element, and P be the point on the shear center axis. The position vector of point Q in the undeformed and
deformed configurations may be expressed as
r0 ¼ xe1 þ ðy � ypÞe2 þ ðz� zpÞe3 ð2Þ
and
r ¼ xpðxÞe1 þ vðxÞe2 þ wðxÞe3 þ h1;xxe
S
1 þ ðy � ypÞeS2 þ ðz� zpÞeS3; xpðxÞ ¼ xþ uðxÞ; ð3Þ
where yp and zp, and y and z are the xS2 and xS3 coordinates of point P and Q referred to the element cross-
section coordinates, respectively, u(x), v(x), and w(x) are the xi (i = 1,2,3) components of displacement of
point P referred to the current element coordinates, respectively, in the deformed configuration,
x = x(y,z) is the Saint Venant warping function for a prismatic beam of the same cross-section, and ei
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and eSi (i = 1,2,3) denote the unit vectors associated with the xi and xSi axes, respectively. Note that the direc-
tions of ei and eSi are the same in the undeformed state. Here, the orientations of triad eSi in the deformed state
is assumed to be determined by the successive application of the following two rotation vectors to the triad ei
hn ¼ hnn; ht ¼ h1t; ð4; 5Þ

n ¼ f0; h2=ðh22 þ h23Þ
1=2

; h3=ðh22 þ h23Þ
1=2g; ð6Þ

t ¼ fcos hn; h3;�h2g; ð7Þ

cos hn ¼ ð1� h22 � h23Þ
1=2

; ð8Þ

h2 ¼ � dwðxÞ
ds

¼ � dwðxÞ
dx

dx
ds

¼ � w0

1þ e0
; h3 ¼

dvðxÞ
ds

¼ dvðxÞ
dx

dx
ds

¼ v0

1þ e0
; ð9Þ

e0 ¼
os
ox

� 1 ¼ ½ð1þ u;xÞ2 þ v2;x þ w2
;x�

1=2 � 1; ð10Þ
where n is the unit vector perpendicular to the vectors e1 and eS1, and t is the tangent unit vector of the de-
formed shear center axis of the beam element. Note that the orientation of eS1 coincides with that of t. h1 is
the rotation about vector t. hn is the angle measured from x1 axis to vector t, e0 is the unit extension of the
shear center axis and s is the arc length of the deformed shear center axis measured from node 1 to point P.
In this paper, hi are called rotation parameters, h = {h1,h2,h3} is the column matrix of rotation parameters,
and the symbol ( ) 0 denotes ( ),x = o( )/ox.

From Eqs. (3) and (10), the relationship among xp(x), v(x), w(x) in Eq. (3) may be given as
xpðxÞ ¼ u1 þ
Z x

0

½ð1þ e0Þ2 � v2;x � w2
;x�

1=2 dx; ð11Þ
where u1 is the displacement of node 1 in the x1 direction. Note that due to the definition of the element
coordinate system, the value of u1 is equal to zero. Making use of Eq. (11), one obtains
‘ ¼ Lþ u2 � u1 ¼ xpðLÞ � xpð0Þ ¼
Z L

0

½ð1þ e0Þ2 � v2;x � w2
;x�

1=2 dx; ð12Þ
in which ‘ is the current chord length of the shear center axis of the beam element, and L is the length of the
undeformed beam axis, and u2 is the displacement of node 2 in the x1 direction.

Here, the lateral deflections of the shear center axis, v(x) and w(x), and the rotation about the shear cen-
ter axis, h1(x), are assumed to be the Hermitian polynomials of x. v(x), w(x) and h1(x) may be expressed by
vðxÞ ¼ Nt
bub; wðxÞ ¼ Nt

cuc; h1ðxÞ ¼ Nt
dud ; ð13Þ

ub ¼ fv1; v01; v2; v02g; uc ¼ fw1;�w0
1;w2;�w0

2g; ud ¼ fh11;b1; h12; b2g; ð14Þ
where vj and wj (j = 1,2) are nodal values of v and w at nodes j, respectively, v0j and w0
j (j = 1,2) are nodal val-

ues of v,x and w,x at nodes j, respectively, and h1j and bj (j = 1,2) are nodal values of h1, h1,x at nodes j, respec-
tively. Note that, due to the definition of the element coordinates, the values of vj and wj (j = 1,2) are zero.

The axial displacements of the shear center axis, u(x) may be determined from the lateral deflections and
the unit extension of the shear center axis using Eqs. (3) and (11).

If x, y and z in Eq. (2) are regarded as the Lagrangian coordinates, the Green strain e11, e12 and e13 are
given by [48]
e11 ¼ 1
2
ðrt;xr;x � 1Þ; e12 ¼ 1

2
rt;xr;y ; e13 ¼ 1

2
rt;xr;z. ð15a–cÞ
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Substituting Eqs. (3) and (11) into Eq. (15a), retaining all terms up to the second order, and excluding
the terms relevant to the twist about the shear center axis, ec, the corresponding unit extension at the cen-
troid axis of the beam element, may be expressed as [38]
ec ¼ e0 þ yph3;x � zph2;x. ð16Þ
Substituting Eq. (16) into Eq. (12) and making use of assumption (2), one may obtain ec as
ec ¼
‘� L
L

þ
yp
L
ðh32 � h31Þ �

zp
L
ðh22 � h21Þ þ

1

2L

Z L

0

ðv2;x þ w2
;xÞdx. ð17Þ
Substituting Eqs. (3)–(10) and (16) into Eqs. 15(a)–(c) and retaining all terms up to the second order yields
e11 ¼ e111 þ e211; ð18aÞ
e111 ¼ ec � yv;xx � zw;xx þ xh1;xx; ð18bÞ

e211 ¼ 1
2
e2c þ e0;xðyv;x þ zw;xÞ þ xech1;xx þ 1

2
½ðy � ypÞ

2 þ ðz� zpÞ2�h21;x
þ 1

2
y2 � ypy

� �
v2;xx þ 1

2
z2 � zpz

� �
w2

;xx þ 1
2
x2h21;xx � ðy � ypÞh1w;xx

þ ðz� zpÞh1v;xx þ ðyz� ypz� zpyÞv;xxw;xx � yxv;xxh1;xx � zxw;xxh1;xx; ð18cÞ

e12 ¼ e112 þ e212; ð19aÞ
e112 ¼ 1

2
½x;y � ðz� zpÞ�h1;x; ð19bÞ

e212 ¼ 1
2
½x;yech1;x þ ðx� yx;yÞh1;xv;xx � zx;yh1;xw;xx þ xx;yh1;xh1;xx�
þ 1

4
ðz� zpÞðv;xw;xx � w;xv;xxÞ; ð19cÞ

e13 ¼ e113 þ e213; ð20aÞ
e113 ¼ 1

2
½x;z þ ðy � ypÞ�h1;x; ð20bÞ

e213 ¼ 1
2
½x;zech1;x þ ðx� zx;zÞh1;xw;xx � yx;zh1;xv;xx þ xx;zh1;xh1;xx�
þ 1

4
ðy � ypÞðw;xv;xx � v;xw;xxÞ; ð20cÞ
where ek1j (j = 1,2,3; k = 1,2) represent the kth order terms of e1j.
2.5. Nodal parameters and forces

The element proposed here has two nodes with seven degrees of freedom per node. Two sets of element
nodal parameters termed �explicit nodal parameters� and �implicit nodal parameters� are employed. The ex-
plicit nodal parameters of the element are used for the assembly of the system equations from the element
equations. They are chosen to be uij (u1j = uj, u2j = vj, u3j = wj), the xi (i = 1,2,3) components of the trans-
lation vectors uj at node j (j = 1,2), /ij, the xi (i = 1,2,3) components of the rotation vectors /j at node j
(j = 1,2), and bj, the twist rate of the shear center axis at node j. Here, the values of /j are reset to zero
at current configuration. Thus, d/ij, the variation of /ij, represents infinitesimal rotations about the xi axes
[36], and the generalized nodal forces corresponding to d/ij are mij, the conventional moments about the xi
axes. The generalized nodal forces corresponding to duij, the variations of uij, are fij, the forces in the xi
directions. The generalized nodal forces corresponding to dbj, the variations of bj, are bimoment Bj.

Let duj = {duj,dvj,dwj}, d/j = {d/1j,d/2j,d/3j}, dbj (j = 1,2) denote the virtual displacement vectors,
virtual rotation vectors, and virtual twist rates (referred to as the virtual explicit nodal parameters here)
applied at the element nodes j referred to a fixed local element coordinates which are coincident with the
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current element coordinates. As a result of the application of the virtual explicit nodal parameters to
the current configuration of the beam element, the beam element is displaced to a new configuration.
The new configuration is referred to as the virtual displaced configuration in the study. The element
coordinates �xi (i = 1,2,3) and nodal rotation parameters �hij (i = 1,2,3, j =1,2) corresponding to the virtual
displaced configuration may be determined by the method described in [24] and the consistent first order
linearization. In this paper, a bar over a quantity denotes it is defined in the element coordinates �xi
(i = 1,2,3) corresponding to the virtual displaced configuration.

The relationship between the element coordinates corresponding to the current configuration and the
virtual displaced configuration may be expressed by
x ¼
x1
x2
x3

8<
:

9=
; ¼

1
�Dv
‘

�Dw
‘

Dv
‘

1� A1 �ðD/R þ A2Þ
Dw
‘

D/R þ A2 1� A1

2
666664

3
777775 ¼

�x1
�x2
�x3

8<
:

9=
; ¼ Ax�x�x; ð21Þ
where Dv = dv2 � dv1, Dw = dw2 � dw1, D/R ¼ 1
2
ðd/12 þ d/11Þ, A1 ¼ 1

2
ðh11d/11 þ h12d/12Þ, A2 ¼ 1

4
ðh31/d

21 þ
h32/

d
22 � h21/

d
31 � h22/

d
32Þ, /

d
2j ¼ d/2j þ Dw=‘, /d

3j ¼ d/3j � Dv=‘. ‘ and hij (i = 1,2,3, j = 1,2) are the chord
length and nodal rotation parameters of the beam element at the current configuration, respectively.

If the terms up to the first order of virtual displacements are retained, �‘ and �hij (i = 1,2,3, j = 1,2), the
chord length and nodal rotation parameters of the beam element at the virtual displaced configuration, may
be expressed by
�‘ ¼ ‘þ Du;
Du ¼ du2 � du1;

ð22Þ

�h12 ¼ ��h11 ¼ � h11
2

þ h12
2

� d/11

2
þ d/12

2
� Dvðh21 � h22Þ

4‘
� Dwðh31 � h32Þ

4‘
� h31d/21

4

þ h32d/22

4
þ h21d/31

4
� h22d/32

4
; ð23Þ

�h2j ¼ h2j þ
Dw
‘

þ d/2j �
Dvðh11 þ h12Þ

2‘
þ 1

2
h3jd/11 þ

1

2
h3jd/12 � h3jd/1j þ

d/3jðh11 þ h12Þ
2

;

�h3j ¼ h3j �
Dv
‘
þ d/3j �

Dwðh11 þ h12Þ
2‘

� 1

2
h2jd/11 �

1

2
h2jd/12 þ h2jd/1j �

d/2jðh11 þ h12Þ
2

.

Due to the definition of h1j (j = 1,2), h11 + h12 = 0. However, the variation of dh11 + dh12 5 0, which
should be used in the derivation of the element stiffness matrix and thus retained. The virtual nodal rotation
parameters corresponding to the virtual explicit nodal parameters may be given by
d�hij ¼ �hij � hij. ð24Þ

The implicit nodal parameters of the element are used to determine the deformation of the beam element.

They are chosen to be uij, the xi (i = 1,2,3) components of the translation vectors uj at node j (j = 1,2), h1j, bj,
v0j ¼ ð1þ e0jÞh3j, and w0

j ¼ �ð1þ e0jÞh3j (j = 1,2) defined in Eqs. (9) and (14). Let h�1j; h�2j and h3j (j = 1,2)
denote h1j, �w0

j and v0j, respectively. Due to the definition of the element coordinates, the virtual implicit
nodal displacements corresponding to the virtual explicit nodal parameters may be given by
d�u1 ¼ d�v1 ¼ d�v2 ¼ d�w1 ¼ d�w2 ¼ 0; ð25Þ
d�u2 ¼ d�‘ ¼ �‘� ‘ ¼ Du; ð26Þ
where Du is defined in Eq. (22).
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From Eq. (9), the relation between the virtual implicit nodal parameters d�h
�
ij (i = 2,3, j = 1,2) and the

virtual nodal rotation parameters d�hij may be given by
d�h
�
2j ¼ �d�w0

j ¼ ð1þ e0jÞd�h2j þ h2jde0j; ð27Þ
d�h

�
3j ¼ d�v0j ¼ ð1þ e0jÞd�h3j þ h3jde0j. ð28Þ
From Eqs. (22)–(28), the relations between the variation of the implicit and explicit nodal parameters
may be expressed as
d�qh ¼ Th/dq; ð29Þ
d�qh ¼ fd�u1; d�h

�
1; d�u2; d�h

�
2; dbg; dq ¼ fdu1; d/1; du2; d/2; dbg; ð30Þ
where d�uj ¼ fd�uj; d�vj; d�wjg, d�h
�
j ¼ fd�h1j;�d �w0

j; d�v0jg, (j = 1,2) and db = {db1,db2}. The explicit form of the
matrix Th/ is given in Appendix A.

The generalized nodal forces corresponding to d�uij; d�h
�
ij and dbj are f h

ij ; mh
ij and Bj, the generalized

forces, the generalized moments, and bimoments, respectively. Note that mh
ij and f h

ij are not conventional
moments and forces, because d�h

�
ij are not infinitesimal rotations about the �xi axes and d�uij and d�h

�
ij are cou-

pled in deformed state.
The global nodal parameters for the structural system corresponding to the element local nodes j

(j = 1,2) should be consistent with the element explicit nodal parameters. Thus, they are chosen to be
Uij, the Xi (i = 1,2,3) components of the translation vectors Uj at node j (j = 1,2), Uij, the Xi (i = 1,2,3)
components of the rotation vectors Uj at nodes j (j = 1,2), and bj, the twist rate of the shear center axis
at node j. Here, the values of Uj are reset to zero at current configuration. Thus, dUij, the variations of
Uij, represent infinitesimal rotations about the Xi axes [36], and the generalized nodal forces corresponding
to dUij are the conventional moments about the Xi axes. The generalized nodal forces corresponding to dUij,
the variation of Uij, are the forces in the Xi directions. The generalized nodal forces corresponding to dbj,
the variation of bj, are Bj.

2.6. Element nodal force vector

Let f = {f1,m1, f2,m2,B} and fh ¼ ffh1;mh
1; f

h
2;m

h
2;Bg denote the internal nodal force vectors corresponding

to the variation of the explicit and implicit nodal parameters, dq and d�qh, respectively, where fj = {f1j, f2j,
f3j}, mj = {m1j,m2j,m3j}, f

h
j ¼ ff h

1j; f
h
2j; f

h
3jg;mh

j ¼ fmh
1j;m

h
2j;m

h
3jg (j = 1,2), and B = {B1,B2}.

The element nodal force vector is obtained from the virtual work principle in a fixed local element coor-
dinates which are coincident with the current element coordinates. The virtual work principle requires that
dW ext ¼ dqtf ¼ dW int ¼
Z
V
ðr11d�e11 þ 2r12d�e12 þ 2r13d�e13ÞdV ¼ d�qthfh; ð31Þ
where V is the volume of the undeformed beam element, d�e1j (j = 1,2,3) are the variation of e1j in Eqs. (18)–
(20) corresponding to d�qh. r1j (j = 1,2,3) are the second Piola–Kirchhoff stress. For linear elastic material,
r11 = Ee11, r12 = 2Ge12 and r13 = 2Ge13, where E is Young�s modulus and G is the shear modulus. Note
that because d�e1j are function of d�qh; dW int may be expressed by d�qthfh. Due to the definition of the element
coordinates, the virtual implicit nodal displacements d�u1 ¼ d�v1 ¼ d�v2 ¼ d�w1 ¼ d�w2 ¼ 0 as mentioned in Eq.
(25). The virtual work done by f h

11; f
h
21; f

h
22; f

h
31, and f h

32 are equal to zero. Thus, f h
11; f

h
21; f

h
22; f

h
31, and f h

32 have
no contribution to explicit nodal force vector f. However, for convenience, they are retained in the deriva-
tion of the element internal nodal force.

For convenience, the implicit virtual nodal parameters are divided into four vectors d�ui (i = a,b,c,d),
where d�ua are the variation of �ua given by
�ua ¼ f�u1; �u2g ð32Þ

and d�ui (i = b,c,d) are the variation of �ui defined in Eq. (14).
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The generalized force vectors corresponding to d�ui (i = a,b,c,d), are
fha ¼ ff h
11; f

h
12g; fhb ¼ ff h

21;m
h
31; f

h
21;m

h
32g; ð33Þ

fhc ¼ ff h
31;m

h
21; f

h
32;m

h
22g; fhd ¼ fmh

11;B1;mh
12;B2g.
If the element size is chosen to be sufficiently small, the values of the rotation parameters of the deformed
element defined in the current element coordinate system may always be much smaller than unity. Thus the
higher-order terms of rotation parameters in the element internal nodal forces may be neglected. However,
in order to include the nonlinear coupling among the bending, twisting, and stretching deformations, the
terms up to the second order of rotation parameters and their spatial derivatives are retained in element
internal nodal forces by consistent second-order linearization of Eq. (31). In [37], through numerical study,
it was reported that the third order term of the twist rate h1,x is the dominant third order term of element
nodal forces and should be retained for the geometric nonlinear analysis of doubly symmetric beams with
thin-walled open cross-section. It is believed that the behavior of the thin-walled beams with doubly sym-
metric open cross-section and those with generic open cross-section should be similar. Thus, for simplicity,
the third order term of the twist rate h1,x is retained in the element nodal forces in this study.

From Eqs. (18)–(20), (31)–(33) and using
R
y dA ¼

R
zdA ¼

R
yzdA ¼

R
xdA ¼

R
yxdA ¼

R
zxdA ¼ 0,

we may obtain
fha ¼ ½A1 � AEecðypBtub þ zpC
tucÞ�Ga; ð34Þ

fhb ¼ EIzð1þ ecÞ
Z

N00
bv;xx dxþ

yp
L
A1Bþ ypEIy

Z
N000

b w;xw;xx dxþ ypEIz

Z
N000

b v;xv;xx dx

þ f h
12LGb � EIz

Z
e0;xðN0

bv;xx þN00
bv;xÞdx� AEzpec

Z
N00

bh1 dx

þ EðI z � IyÞ
Z

N00
bh1w;xx dxþ GJz �

E
2
ðaz þ ayz � 2ypIzÞ

� � Z
N00

bh
2
1;x dx

� E
3

2
az � 3ypIz

� �Z
N00

bv
2
;xx dx� E

3

2
ayz � ypIy

� �Z
N00

bw
2
;xx dx

� 3

2
Eaxz

Z
N00

bh
2
1;xx dxþ 3Eazx

Z
N00

bh1;xxv;xx dxþ 3Eaxyz

Z
N00

bh1;xxw;xx dx

� Eð3azy � 2zpIzÞ
Z

N00
bv;xxw;xx dxþ

1

2
GJ

Z
ðN00

bh1;xw;x �N0
bh1;xw;xxÞdx; ð35Þ

fhc ¼ EIyð1þ ecÞ
Z

N00
cw;xx dxþ

zp
L
A1Cþ zpEIy

Z
N000

c w;xw;xx dxþ zpEIz

Z
N000

c v;xv;xx dx

þ f h
12LGc � EIy

Z
e0;xðN0

cw;xx þN00
cw;xÞdxþ AEypec

Z
N00

ch1 dx

þ EðI z � IyÞ
Z

N00
ch1v;xx dx� GJy þ

E
2
ðay þ azy � 2zpIyÞ

� � Z
N00

ch
2
1;x dx

� E
3

2
azy � zpIz

� �Z
N00

c v
2
;xx dx� E

3

2
ay � 3zpIy

� �Z
N00

cw
2
;xx dx

� 3

2
Eaxy

Z
N00

ch
2
1;xx dxþ 3Eaxyz

Z
N00

ch1;xxv;xx dxþ 3Eayx

Z
N00

ch1;xxw;xx dx

� Eð3ayz � 2ypIyÞ
Z

N00
c v;xxw;xx dxþ

1

2
GJ

Z
ðN0

ch1;xv;xx �N00
ch1;xv;xÞdx; ð36Þ
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fhd ¼ fGJ þ ½EIp þ AEðy2p þ z2pÞ�ecg
Z

N0
dh1;x dxþ EIxð1þ 3ecÞ

Z
N00

dh1;xx dx

þ AEypec

Z
Ndw;xx dx� AEzpec

Z
Ndv;xx dxþ GJx þ E

2
ðayx þ azxÞ

� � Z
N00

dh
2
1;x dx

þ 3

2
Eayx

Z
N00

dw
2
;xx dxþ

3

2
Eazx

Z
N00

dv
2
;xx dxþ

3

2
Eax

Z
N00

dh
2
1;xx dx

� 3Eaxy

Z
N00

dh1;xxw;xx dx� 3Eaxz

Z
N00

dh1;xxv;xx dxþ 3Eaxyz

Z
N00

dv;xxw;xx dx

þ EðIz � IyÞ
Z

Ndv;xxw;xx dxþ
1

2
GJ

Z
N0

dðw;xv;xx � v;xw;xxÞdx

� ½2GJy þ Eðay þ azy � 2zpIyÞ�
Z

N0
dh1;xw;xx dx

þ ½2GJz � Eðaz þ ayz � 2ypIzÞ�
Z

N0
dh1;xv;xx dx

þ ½2GJx þ Eðayx þ azxÞ�
Z

N0
dh1;xh1;xx dxþ

1

2
EKI

Z
Ndh

3
1;x dx; ð37Þ

A1 ¼ AELec þ
3

2
AELe2c þ

1

2
½EIp þ AEðy2p þ z2pÞ�

Z
h21;x dxþ

3

2
EIx

Z
h21;xx dxþ

1

2
EIy

Z
w2

;xx dx

þ 1

2
EIz

Z
v2;xx dxþ AEyp

Z
h1w;xx dx� AEzp

Z
h1v;xx dx; ð38Þ

B ¼ f0;�1; 0; 1g; C ¼ f0; 1; 0;�1g; Ga ¼
1

L
f�1; 1g; ð39Þ

Gb ¼
1

L

Z
N0

bv;x dx�
yp
L
ecBþ

y2p
L2

Q1ub þ
ypzp
L2

Q2uc;

Gc ¼
1

L

Z
N0

cw;x dx�
zp
L
ecCþ

ypzp
L2

Q3ub þ
z2p
L2

Q4uc;

Q1 ¼ LðN0
b2N

00t
b2 �N0

b1N
00t
b1 þN00

b2N
0t
b2 �N00

b1N
0t
b1Þ � BBt;

Q2 ¼ Qt
3 ¼ LðN0

b2N
00t
c2 �N0

b1N
00t
c1 þN00

b2N
0t
c2 �N00

b1N
0t
c1Þ � BCt;

Q4 ¼ LðN0
c2N

00t
c2 �N0

c1N
00t
c1 þN00

c2N
0t
c2 �N00

c1N
0t
c1Þ � CCt;

Iy ¼
Z

z2 dA; Iz ¼
Z

y2 dA; KI ¼
Z

½ðy � ypÞ
2 þ ðz� zpÞ2�2 dA;

ay ¼
Z

z3 dA; az ¼
Z

y3 dA; ayz ¼
Z

z2y dA; azy ¼
Z

y2zdA;

Ix ¼
Z

x2 dA; ax ¼
Z

x3 dA; ayx ¼
Z

z2xdA; azx ¼
Z

y2xdA;

axy ¼
Z

x2zdA; axz ¼
Z

x2y dA; axyz ¼
Z

xyzdA; Ip ¼ Iy þ Iz. ð40Þ
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J ¼
Z

f½�ðz� zpÞ þ x;y �2 þ ½ðy � ypÞ þ x;z�2gdA;

Jy ¼
Z

½ðy � ypÞðzx;z � xÞ � zðz� zpÞx;y þ zðx2
;y þ x2

;zÞ � xx;z�dA;

J z ¼
Z

½ðz� zpÞðyx;y � xÞ � yðy � ypÞx;z � yðx2
;y þ x2

;zÞ þ xx;y �dA;

Jx ¼
Z

½xðx2
;y þ x2

;zÞ þ ðy � ypÞxx;z � ðz� zpÞxx;y �dA.
in which the range of integration for the integral
R
ð Þdx in Eqs. (34)–(39) is from 0 to L, A is the cross-sec-

tion area, Nk (k = b,c,d) are given in Eq. (13), and Nkj are nodal values of Nk at nodes j (j = 1,2). f h
12 in Eqs.

(35) and (36) is defined in Eqs. (33) and (34). Eqs. (34)–(39) are calculated using six points Gaussian quad-
rature and Eq. (40) is calculated analytically in this study.

Note that in Eqs. (34)–(40) the values of L, h1, v,x and w,x will converge to zero, and the values of ec, h1,x,
v,xx and w,xx will converge to constants with the decrease of the element size. In Eqs. (34)–(39), the under-
lined terms will converge to zero, and their contribution may be negligible with the decrease of element size
for numerical study. However, the convergence rates of L, h1, v,x and w,x may be slower than those of ec,
h1,x, v,xx and w,xx with the decrease of element size. Thus, if the underlined terms in Eqs. (34)–(39) are re-
moved, the convergence rate of the solution may be increased for numerical studies. This belief will be
examined through numerical examples.

From Eqs. (29) and (31), the relation between f and fh, may be given by
f ¼ Tt
h/fh; ð41Þ
where Th/ is defined in Eq. (29). Note that only the terms up to the second order of nodal parameters, the
third order term of h1,x, and the third order terms relevant to f h

12GiL (i = b,c) are retained in Eq. (41). The
explicit form of the relation between f and fh is given in Appendix B. In view of Eqs. (B.1), (B.2), (B.6)–(B.9),
(35) and (36), one may find that if the terms f h

12GiL (i = b,c) in Eqs. (35) and (36) are replaced by f12GiL,
respectively, the terms f h/

12 GijL in Eqs. (B.6)–(B.9) can be eliminated and Eq. (41) can be rewritten by
f ¼ ðT0t
h/ þ T1t

h/Þf
þ
h ; ð42Þ
where Tit
h/ (i = 0,1) is the ith order terms of Th/; fþh is fh with the terms f h

12GiL (i = b,c) in Eqs. (35) and (36)
replaced by f12GiL, respectively. f12 is defined in Eq. (B.1).

2.7. Element tangent stiffness matrices

The element tangent stiffness matrix corresponding to the explicit nodal parameters (referred to as ex-
plicit tangent stiffness matrix) k may be defined by
df ¼ kdq; ð43Þ

where dq is a perturbation of the explicit nodal parameter vector and df is the corresponding change of the
explicit nodal force vector f. As a result of the application of dq to the current configuration of the beam
element, the beam element moves to an infinitesimal displaced configuration. Note that dq is an actual
infinitesimal displacement not a virtual displacement. However, if the quantities d( ) in Eqs. (21)–(24) are
replaced by d( ), Eq. (21) can be used to express the relationship between the current element coordinates
and the infinitesimal displaced element coordinates corresponding to the infinitesimal displaced configura-
tion, and Eqs. (22) and (23) can be used to express the chord length and nodal rotation parameters of the
beam element at the infinitesimal displaced configuration. If no confusion may arise, no distinction between
d( ) and d( ) will be made in this study.
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Because dq is an actual displacement, the explicit nodal force vector f translates and rotates with the ele-
ment from the current element coordinates to the infinitesimal displaced element coordinates. Thus, the
change in f induced by rigid body rotation should be considered.

From Eqs. (21), (29) and (43), df may be expressed by
df ¼ dfR þ dfd ; ð44Þ
dfR ¼ ðTR � I14Þf ¼ HRdq; ð45Þ

dfd ¼
of

oq
dq ¼ of

o�qh

o�qh
oq

� �
dq ¼ T0t

h/kh þ T1t
h/k

0
h þHh

� �
Th/

h i
dq; ð46Þ

TR ¼

Ax�x 0 0 0 03�2

0 Ax�x 0 0 03�2

0 0 Ax�x 0 03�2

0 0 0 Ax�x 03�2

02�3 02�3 02�3 02�3 I2

2
6666664

3
7777775
; ð47Þ
where dfR and dfd are the change in f induced by rigid body rotation and d�qh corresponding to dq, respec-
tively. Ax�x is the transformation matrix between the current element coordinates to the infinitesimal dis-
placed element coordinates, I2 is the identity matrices of order 2 · 2, 0, 02·3 and 03·2 are zero matrices
of order 3 · 3, 2 · 3 and 3 · 2, respectively. HR is a unsymmetrical matrix, which may be called the stability
matrix [34]. The explicit form of HR is given in Appendix C. kh ¼ ofþh =o�qh is the tangent stiffness matrix
corresponding to implicit nodal parameters (referred to as implicit tangent stiffness matrix), k0

h is the zeroth
order terms of nodal parameters of kh, and Hh ¼ ðoT1t

h/=o�qhÞf
1
h is an unsymmetrical matrix. The explicit

form of the matrix Hh is given in Appendix D.
From Eqs. (43)–(47), the explicit tangent stiffness matrix k may be expressed by
k ¼ T0t
h/kh þ T1t

h/k
0
h þHh

h i
Th/ þHR. ð48Þ
Using the direct stiffness method, the implicit tangent stiffness matrix kh may be assembled by the
submatrices
kh
ij ¼

ofhþi
o�uj

; ð49Þ
where fhþi (i = a,b,c,d) are fhi defined in Eqs. (34)–(37) with the terms f h
12GiL (i = b,c) in Eqs. (35) and (36)

replaced by f12GiL, respectively. �uj (j = a,b,c,d) are defined in Eqs. (13) and (32). Note that kh
ij are symmet-

ric matrices. The explicit form of kh
ij may be expressed as
kh
aa ¼ AEL 1þ 3ec � 2

yp
L
Btub � 2

zp
L
Ctuc

� �
GaG

t
a; ð50Þ

kh
ab ¼ Ga AELGt

b þ AEyp 1þ 2ec �
yp
L
Btub �

zp
L
Ctuc

� �
Bt � AEzp

Z
N00t

b h1 dxþ EIz

Z
N00t

b v;xx dx

" #
;

kh
ac ¼ Ga AELGt

c þ AEzp 1þ 2ec �
yp
L
Btub �

zp
L
Ctuc

� �
Ct þ AEyp

Z
N00t

c h1 dxþ EIy

Z
N00t

c w;xx dx

" #
;

kh
ad ¼ Ga ½EIp þ AEðy2p þ z2pÞ�

Z
N0t

dh1;x dxþ AEyp

Z
Nt

dw;xx dx
	

�AEzp

Z
Nt

dv;xx dxþ 3EIx

Z
N00t

d h1;xx dx


;



H.H. Chen et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2334–2370 2347
kh
bb ¼ EIzð1þ ecÞ

Z
N00

bN
00t
b dxþ

AEy2p
L

½ð1þ 2ecÞBBt þ ecQ1�

þ AEypðGbB
t þ BGt

bÞ �
AEypzp

L

Z
ðN00

bB
t þ BN00t

b Þh1 dx

� EIze0;x

Z
ðN0

bN
00t
b þN00

bN
0t
bÞdxþ f12

Z
N0

bN
0t
b dxþ 3Eazx

Z
N00

bN
00t
b h1;xx dx

� 3Eðaz � 2ypIzÞ
Z

N00
bN

00t
b v;xx dx� Eð3azy � 2zpIzÞ

Z
N00

bN
00t
b w;xx dx

þ ypEIz

Z
N000

b N
0t
b þN0

bN
000t
b þ 1

L
N00

bB
t þ 1

L
BN00t

b

� �
v;xx þ ðN000

b N
00t
b þN00

bN
000t
b Þv;x

� �
dx;

kh
bc ¼ AEypBG

t
c þ AEzpGbC

t þ
AEy2p
L

Z
BN00t

c h1 dx�
AEz2p
L

Z
N00

bC
th1 dx

þ
AEypzp

L
½ð1þ 2ecÞBCt þ ecQ2� þ EðIz � IyÞ

Z
N00

bN
00t
c h1 dx

þ ypEIy

Z
N000

b N
0t
c þ

1

L
BN00t

c

� �
w;xx þN000

b N
00t
c w;x

� �
dx

þ zpEIz

Z
N0

bN
000t
c þ 1

L
N00

bC
t

� �
v;xx þN00

bN
000t
c v;x

� �
dx

þ 3Eaxyz

Z
N00

bN
00t
c h1;xx dx� Eð3azy � 2zpIzÞ

Z
N00

bN
00t
c v;xx dx

� Eð3ayz � 2ypIyÞ
Z

N00
bN

00t
c w;xx dxþ

1

2
GJ

Z
ðN00

bN
0t
c �N0

bN
00t
c Þh1;x dx;

kh
bd ¼

yp
L
½EIp þ AEðy2p þ z2pÞ�

Z
BN0t

dh1;x dx� AEzpec

Z
N00

bN
t
d dx

þ
3ypEIx

L

Z
BN00t

d h1;xx dxþ
AEy2p
L

Z
BNt

dw;xx dx�
AEypzp

L

Z
BNt

dv;xx dx

� 3Eaxz

Z
N00

bN
00t
d h1;xx dxþ 3Eazx

Z
N00

bN
00t
d v;xx dxþ 3Eaxyz

Z
N00

bN
00t
d w;xx dx

þ EðI z � IyÞ
Z

N00
bN

t
dw;xx dxþ

1

2
GJ

Z
ðN00

bN
0t
dw;x �N0

bN
0t
dw;xxÞdx

þ ½2GJz � Eðaz þ ayz � 2ypIzÞ�
Z

N00
bN

0t
dh1;x dx;

kh
cc ¼ EIyð1þ ecÞ

Z
N00

cN
00t
c dxþ

AEz2p
L

½ð1þ 2ecÞCCt þ ecQ4�

þ AEzpðGcC
t þ CGt

cÞ þ
AEypzp

L

Z
ðN00

cC
t þ CN00t

c Þh1 dx

� EIye0;x

Z
ðN0

cN
00t
c þN00

cN
0t
c Þdxþ f12

Z
N0

cN
0t
c dxþ 3Eayx

Z
N00

cN
00t
c h1;xx dx

� Eð3ayz � 2ypIyÞ
Z

N00
cN

00t
c v;xx dx� 3Eðay � 2zpIyÞ

Z
N00

cN
00t
c w;xx dx

þ zpEIy

Z
N000

c N
0t
c þN0

cN
000t
c þ 1

L
N00

cC
t þ 1

L
CN00t

c

� �
w;xx þ ðN000

c N
00t
c þN00

cN
000t
c Þw;x

� �
dx;
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kh
cd ¼

zp
L
½EIp þ AEðy2p þ z2pÞ�

Z
CN0t

dh1;x dxþ AEypec

Z
N00

cN
t
d dx

þ 3zpEIx
L

Z
CN00t

d h1;xx dx�
AEz2p
L

Z
CNt
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where the underlined terms will converge to zero with the decrease of element size and may be removed for
numerical study based on the same reason mentioned in last section for element nodal forces.

The element tangent stiffness matrix referred to the global coordinate system is obtained by using the
standard coordinate transformation.

2.8. Load stiffness matrix

Different ways for generating configuration dependent moment were proposed in the literature [9,11,33].
Here, only the conservative moments generated by conservative force or forces (with fixed directions) are
considered, and the ways for generating conservative moment proposed in [33] are employed here. In this
study, a set of load base coordinates XP

i (i = 1,2,3) associated with each configuration dependent moment
are constructed at the current configuration. The mechanism for generating configuration dependent mo-
ment is described in this coordinates, and the corresponding external load and load stiffness matrix [49] are
defined in terms of this coordinates. However, the description of the ways for generating conservative mo-
ment and the corresponding load stiffness matrices are not repeated here.

2.9. Equilibrium equations

The nonlinear equilibrium equations may be expressed by
W ¼ F� kP ¼ 0; ð51Þ

whereW is the unbalanced force between the internal nodal force F and the external nodal force kP, where k
is the loading parameter, and P is a reference loading. Note that P may require to be updated at each iter-



H.H. Chen et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2334–2370 2349
ation, if the applied load is configuration dependent. F is assembled from the element nodal force vectors,
which are calculated using Eqs. (34)–(37) and (42) first in a fixed local element coordinates which are coin-
cident with the current element coordinates and then transformed from the local element coordinate system
to global coordinate system before assemblage using standard procedure. Note that the element global
translation vectors Uj at node j (j = 1,2) are only used to determine the current element nodal coordinates
in this study and the rigid body motions of the beam element are removed using the method proposed in
[24]. Thus, the projector matrix [50,51], which relates the variations of the local displacements to the vari-
ations of the global ones, may not be required here.

In this paper, an weighted Euclidean norm of the unbalanced force is employed as the error measure for
the equilibrium iterations, and is given by
Wk k
kj j

ffiffiffiffi
N

p 6 etol; ð52Þ
where N is the number of equilibrium equations; etol is a prescribed value of error tolerance. Unless other-
wise stated, the error tolerance etol is set to 10�6 in this study.

2.10. Criterion of the buckling state

Let KT(k) denote the tangent stiffness matrix of the structure corresponding to the loading parameter k.
The criterion of the buckling state used here may be expressed as
DðkÞ ¼ det KT ðkÞj j ¼ 0. ð53Þ

Here, the buckling loading parameter kNB denotes the minimum loading parameter satisfying Eq. (52).
3. Numerical algorithm

An incremental-iterative method based on the Newton–Raphson method combined with constant arc
length of incremental displacement vector [52] is employed for the solution of nonlinear equilibrium
equations. The Euler predictor is used for the initial displacement increment. For a given displacement
increment or corrector, the method described in [24,53] is employed to determine the current element
cross-section coordinates, element coordinates and element deformation nodal parameters for each
element. The parabolic interpolation method of the arc length proposed in [37] is employed here to find
the buckling load. In order to initiate the secondary path, at the bifurcation point a perturbation
displacement proportional to the corresponding buckling mode is added [54].
4. Numerical studies

In order to investigate the effect of the underlined terms in Eqs. (34)–(39), (50), (A.3) and (B.5)–(B.9) on
the convergence rate of solution and accuracy for the buckling load and nonlinear behavior of three dimen-
sional beam structures, the following cases are considered:

1. EA—All terms in Eqs. (34)–(39), (50), (A.3) and (B.5)–(B.9) are considered.
2. EB—All underlined terms in Eqs. (34)–(39), (50), (A.3) and (B.5)–(B.9) are dropped.

For convenience, the elements used for cases EA and EB are called EA element and EB element, respec-
tively. Let a denote the ratio of the flexural stiffness between the major axis and the minor axis of the cross-
section of the beam.
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Example 1 (Buckling of a cantilever beam subjected to end torque). The example considered here is a
cantilever beam of rectangular section subjected to end torque T as shown in Fig. 2. This example was first
studied by Hsiao and Lin [36]. However, the warping rigidity is not considered in [36]. The ends of the beam
are warping free. The geometry and material properties are given in Fig. 2. The configuration dependent
torque is generated by the strings wound around a great circle of a sphere rigidly connected with at node A
and acted upon by forces [33] as shown in Fig. 2. The magnitude of the end torque T = 2PR, where R is the
radius of great circle of the sphere. The present buckling moments TNB and their relative error with respect
to the buckling moment obtained using 160 EB elements are shown in Table 1. It can be seen that the
buckling moments may converge to the same value for cases EA and EB. However, convergence rate for
case EB is much faster than that for case EA. In [36], the buckling moment TNB (103 kNcm) obtained using
200 elements are 3.532, 1.497, and 3.177 for QT1, QT2, and ST moments, respectively. The agreement
between the present buckling moments and those given in [36] is very good. Because the EA element and the
element used in [36] are equivalent for this example, the convergence rate of buckling moment given in [36]
is similar to that for EA element. Note that for this example, the only nonzero displacements are the
translation along and rotation about the beam axis. Consequently, EðIz � IyÞ

R
N00

bN
00t
c h1 dx in khbc(in Eq.

(50)) is the only nontrivial underlined term in Eqs. (34)–(39), (50), (A.3) and (B.5)–(B.9). If Iy = Iz(a = 1),
the EA and EB elements are identical. However, for this example, the value of a is 400. Thus, the slow
convergence rate for the EA element may be attributed to the large ratio of the flexural stiffness between the
major axis and the minor axis of the cross-section. The element used in [36] with the term
EðIz � IyÞ

R
N00

bN
00t
c h1 dx dropped is also tested. As expected, the convergence rate of buckling moment is

similar to that for EB element.
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Fig. 2. Cantilever beam of rectangular section subjected to end torque (Example 1).



Table 1
Buckling load for Example 1

Moment type Element no. Buckling moment TNB (103 kNcm)

EA Error (%) EB Error (%)

QT1 2 0.45883 �87.0363 3.90562 10.3471
4 0.91974 �74.0141 3.62605 2.44822
10 2.53611 �28.3462 3.55301 0.38480
20 3.14053 �11.2693 3.54275 0.09487
40 3.42616 �3.19922 3.54019 0.02260
60 3.48759 �1.46355 3.53972 0.00922
80 3.50993 �0.83248 3.53956 0.00454
160 3.53191 �0.21140 3.53939 0.00000

QT2 2 0.43083 �71.2570 1.56021 4.08984
4 0.75576 �49.5795 1.51359 0.97963
10 1.21125 �19.1914 1.50123 0.15441
20 1.40261 �6.42479 1.49948 0.03805
40 1.47231 �1.77475 1.49905 0.00902
60 1.48684 �0.80535 1.49897 0.00365
80 1.49207 �0.45661 1.49894 0.00177
160 1.49718 �0.11537 1.49891 0.00000

ST 2 0.44970 �85.9076 3.96922 24.3853
4 0.86563 �72.8735 3.34234 4.74058
10 1.78568 �44.0414 3.21387 0.71440
20 2.51751 �21.1075 3.19666 0.17512
40 2.95902 �7.27186 3.19240 0.04160
60 3.07919 �3.50585 3.19161 0.01693
80 3.12612 �2.03528 3.19133 0.00830
160 3.17425 �0.52710 3.19107 0.00000

H.H. Chen et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2334–2370 2351
Example 2 (Deployable ring subjected to a fixed axis moment). The example considered is ring subjected to
a fixed axis moment M at point A as shown in Fig. 3. The ring is clamped at point O. Point A is
restricted to translate along and rotate about the XG

1 axis only. The geometry and material properties
are given in Fig. 3. This example was introduced by Goto et al. [55] and studied by Battini and Pacoste
[40] also.

The error tolerance etol = 10�7 is used for this example. The load–deflection curves of the present
study together with the results given in [40] are shown in Fig. 4. It can be seen that the agreement
between the present results obtained using 60 EB elements and the results obtained using 128 t3dl
elements [40] is very good. The results of 60 EB elements are obtained by using 67 increments. The
average number of iterations per increment is about 16. The results of 60 EB elements are nearly identical
to the results of 120 EB elements (not shown here). The results of 180 EA elements are also shown in
Fig. 4. It can be seen that the convergence rate of the EB element is about three times as fast as that of
the EA element. For this example, the value of a is 100. Thus, the slow convergence rate for the EA
element may be attributed to the large ratio of the flexural stiffness between the major axis and the minor
axis of the cross-section as Example 1.

Example 3 (Simply supported right-angle frame subjected to uniform moment). The example considered is a
simply supported angle frame subjected to uniform moment as shown in Fig. 5. The ends of the beam are
free to warp and free to rotate about XG

3 axis, but restrained from rotation about XG
1 and XG

2 axes. The
translation is restrained at end point A, and is free only in the direction of XG

1 axis at points B. Due to



Fig. 3. Deployable ring subjected to a fixed axis moment (Example 2).
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symmetry, only half of the frame is analyzed. The nontrivial cross-section constants are: Iy = 0.54 mm4,
Iz = 1350 mm4, J = 2.133 mm4, Ix = 40.43 mm6, KI = 1.823 · 105 mm6, axyz = 40.462 mm6. The theoreti-
cal linear buckling moment is Mcr ¼ ðp=LÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EIyGJ

p
¼ 618.31 N mm [4]. The present buckling moment

obtained using 10, 20 EB and 40 EA elements are MNB = 620.78, 620.77, and 620.77 N mm�1, respectively.
The results of 10 EB elements and 20 EB elements are obtained by using 68 and 56 increments,

respectively. The average numbers of iterations per increment are about 14 and 13, respectively. The load–
deflection curves of the present study are shown in Fig. 6. The results of [40] obtained using 10 t3d and tw3d
elements are also shown in Fig. 6. It can be seen that the agreement between the results of 10 EB elements
and the results of [40] is very good. It is reported that a stable bifurcation point is reached at a slightly
higher value of the buckling moment in [40]. A stable bifurcation point is observed at about M =
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628 N mm�1 for the results of 10 EB elements. This result is consistent with that reported in [40]. However,
the bifurcation point is reached at the value of buckling moment for the rest results of the present study
shown in Fig. 6. Similar to the results of [36,40], a limit point is reached at the moment of about 1.2MNB for
the secondary path. The discrepancy among the results of 40 EA, 80 EA and 10 EB elements is remarked
when the displacements are large. The agreement among the results of 160 EA elements, 10 EB elements
and 20 EB elements is very good. The value of a is 2500 for this example. This may explain why the
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convergence rate of the EB element is much faster than that of the EA element for this example. The curves
of load verse components of the internal moment at node C are shown in Fig. 7. In Fig. 7, MG

i (i = 1,2,3)
denote the XG

i components of the internal moment referred to the global coordinates, and Mi (i = 1,2,3)
denote the xi components of the internal moment referred to the current element coordinates. As expected,
the magnitude of MG

3 is equal to that of the applied moment and MG
1 is equal zero.

Example 4 (Simply supported beam of angle section subjected to a mid-span torque and constant end

moments). The example considered is a simply supported beam of monosymmetric angle cross-section sub-
jected to a mid-span torque T and equal constant end moments M applied about its symmetric axis as
shown in Fig. 8. This example was experimentally and theoretically studied by Engel and Goodier [1].
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Fig. 8. Simply supported beam of angle section subjected to a mid-span torque and constant end moments (Example 4).
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The ends of the beam are free to warp and free to rotate about XG
2 and XG

3 axes, but restrained from rota-
tion about XG

1 axis. The translation is restrained at left end point, and is free only in the direction of XG
1 axis

at right end point. The geometry and material (61 S-T aluminum) properties are shown in Fig. 8. The self-
weight of the beam is 1.00258 N. For investigating the influence of the bending moments on the torsional
rigidity, seven different values of M are considered: M (N m) = 0, 2.44, 4.89, 7.34, 8.56, 9.78, and 11.0
(transcribed by the authors).

The present results are obtained using 10 EB elements and 10 EA elements. The load–deflection curves of
the present study together with the experimental results given in [1] are shown in Fig. 9, where the initial
deflections caused by the self-weight are excluded. It can be seen that the agreement between these two
results is very good. Note that the value of a is about 4 for this example. This may explain why the
difference between the convergence rate of the EA and EB element is insignificant for this example.

Example 5 (Torsional buckling for beam of cruciform cross-section subjected to an axial force). This exam-
ple considered is the beam of cruciform cross-section subjected to an axial force P as shown in Fig. 10. This
example was introduced by Battini and Pacoste [40]. Except the translation is free in the direction of XG

1 axis
at the right end, the translations, rotations and warping are restrained at both ends of the beam. Note that
for this example, the only nonzero displacements are the translation along and rotation about the beam
axis, and Iy = Iz. Thus, the EA and EB elements are identical for this example. In [40], the term 1

2
u21;1 in

e11 is neglected. In order to compare results with those given in [40], the EB element with the terms
3
2
AELe2c in A1 (Eq. (38)) and 3EIxec

R
N00

dN
00t
d dx in kh

dd (Eq. (50)) neglected, referred to as EC element, are also
considered for this example.

The present buckling loads obtained using 10 elements together with those given in [18,40] are shown in
Table 2. It can be seen that the agreement among these results is very good. The results obtained using EB
and EC elements are a little bit different, which shows that the term 1

2 u
2
1;1 in e11 has some minor effect on the

buckling load for this example. The load–deflection curves of the present study for postbuckling analysis
together with the results of [40] are shown in Fig. 11. It can be seen that the discrepancy between the
deflection curves obtained using 10 and 20 EB elements is increased with the increase of the twist angle. The
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Fig. 9. Load–twist angle curves for Example 4.
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Table 2
Torsional buckling load for Example 5

Mode no. Buckling load, PNB

Theory [18] 10 bw3d [40] 10 EB 10 EC

1 272.57 272.57 272.11 272.57
2 287.35 287.38 286.83 287.38
3 314.99 315.17 314.42 315.17
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Fig. 11. Load–twist angle (middle point) curves for Example 5.
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results obtained using 20 EB and EC elements are in excellent agreement with those obtained using 20 bw3d
elements [40].
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Example 6 (Simply supported beam of Z-section subjected to an eccentric axial force). This example consid-
ered is a simply supported beam of Z-section subjected to an eccentric axial force P as shown in Fig. 12.
This example was analyzed by Attard [14]. The ends of the beam are free to warp and free to rotate about
XG

2 and XG
3 axes, but restrained from rotation about XG

1 axis. The translation is restrained at end point A,
and is free only in the direction of XG

1 axis at point B.
The present results are obtained using 40, 80 EA and 20, 40 EB elements. The linear buckling load and

the nonlinear buckling load given in [14] are 88.55 kN and 119.01 kN, respectively. The present nonlinear
buckling load obtained using 80 EA elements is 86.75 kN. However, no buckling load is detected for the
case using EB elements. For this example, the transverse deflection and twist are initiated, regardless of the
magnitude of the loading. Thus, the bifurcation buckling may be impossible. It seems that the existence of
limit point on the loading–deflection curves may also be impossible for a simply supported elastic beam
subjected to end axial forces. Because the higher order terms of the tangent stiffness matrix are dropped in
this study, the tangent stiffness matrix used here is an approximate tangent stiffness matrix. Thus, the
buckling point detected for this example may be just an artificial critical point. The load–deflection curves
of the present study together with the results of [14] are shown in Figs. 13–15. The results of 20 EB elements
are obtained by using 80 increments. The average number of iterations per increment is about 6. The results
of 40 EB elements (not shown here) are nearly identical with those of 20 EB elements. It can be seen that the
agreement is very good between the present results of 20 EB and 80 EA elements. For this example, the
value of a is about 10. The discrepancy between the deflection curves of the present study and [14] is
remarked when the deflections are not small. The discrepancy may be attributed at least in part to that a
total Lagrangian formulation combined with the assumption of small to moderate axial displacement due
to flexural deformations is used and only the terms up to the second order are retained in the derivation of
the beam element in [14].
X

X

X

X ,W

X ,V

X ,U

B

A G
1

G
2

G
3

PP C

End cross  section 

Loading point

L/2 L/2

t

tw

xS
2

Sx3
0

b

h

btf

f

ϕ,

G = 77230 MPa

= 12.7 mm

E = 2   10  MPa

b = 85.73 mm
θ
L = 6096 mm

= 0.4919 rad 

h = 142.88 mm
5

wt ft=

Fig. 12. Simply supported beam of Z-section subjected to an eccentric axial force (Example 6).



0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

40

80

120

P 
(k

N
)

ϕ C (rad)

 40EA
 80EA
 20EB
 [14]

–

Fig. 13. Load–twist angle curves for Example 6.

0 1000 2000 3000
0

40

80

120 –UB

VC

P 
(k

N
)

Displacements (mm)

 40EA
 80EA
 20EB
 [14]

Fig. 14. Load–displacement (UB, VC) curves for Example 6.

-40 0 40 80 120 160
0

40

80

120

P 
(k

N
)

WC (mm)

 40EA
 80EA
 20EB
 [14]

Fig. 15. Load–displacement (WC) curves for Example 6.

2358 H.H. Chen et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2334–2370



H.H. Chen et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2334–2370 2359
Example 7 (Cantilever beam of asymmetric angle section subjected to an eccentric axial force). The example
considered is a cantilever beam of asymmetric angle cross section subjected to an eccentric axial force P as
shown in Fig. 16. This example was analyzed by Chan and Kitipornchai [17]. The clamped end of the beam
is fully restrained against warping.

The value of a is about 6 for this example. The present results obtained using 10 EA, 10 EB and 20 EB
elements are nearly identical. The load–deflection curves of the present study together with the results of
[17] (transcribed by the authors) are shown in Fig. 17. The results of 10 EB elements are obtained by using
40 increments. The average number of iterations per increment is about 7. The discrepancy between the
0 200 400 600 800 1000
0

5

10

15

20

25

30

35

V

–U–W

P 
(k

N
)

Disp. of the loading point (mm)

 10EB
 [17]

Fig. 17. Load–displacement curves for Example 7.
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deflection curves of the present study and [17] is remarked when the deflections are not small. The
discrepancy may be attributed at least in part to that the displacement field of elementary beam theory is
used in the derivation of the beam element in [17].

Example 8 (Cantilever beam of asymmetric channel section subjected to an axial force). The example con-
sidered here is a cantilever beam of asymmetric channel cross-section subjected to an axial force P applied
at the centroid or shear center of the end cross-section as shown in Fig. 18. The clamped end of the beam is
fully restraint against warping. The directions of the XG

2 and XG
3 axes are chosen to be those of the principal

centroid axes of the cross-section at the undeformed state.
The present results are obtained using 20 EB elements. The present nonlinear buckling load

corresponding centroid load and the linear buckling load given in [31] are 13.991 N and 13.902 N,
respectively. The load–deflection curves of the present study together with the results of [39] using 20 beam
elements are shown in Fig. 19. Note that in order to compare results with those given in [39], a lateral load
of 0.001P is applied at the centroid of the end cross-section in the direction of the XG

2 axis for the results
shown in Fig. 19. It can be seen that the present results are in excellent agreement with those given in [39].

Example 9 (Cantilever beam of asymmetric channel section subjected to an end lateral force). The example
considered here is a cantilever beam of asymmetric channel cross-section subjected to an end vertical force
P as shown in Fig. 20. The clamped end of the beam is fully restraint against warping. The geometry and
material properties are identical with those of Example 8. Six cases are considered. For cases (a), (b) and (c),
the vertical upward load P(+) is applied at the top of the web, the centroid, and the bottom of the web,
respectively, and for cases (d), (e) and (f), the vertical downward load P(�) is applied at the top of the
web, the centroid, and the bottom of the web. The error tolerance etol = 10�7 is used for this example.
The present results are obtained using 40 EB elements. The load–deflection curves of the present study
are shown in Figs. 21 and 22 for cases (a)–(f), respectively. It can be seen that the load–deflections of dif-
ferent loading points are similar for vertical upward load and vertical downward load, respectively.
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Example 10 (Cantilever beam of Z-section subjected to an axial force at the end centroid). The example con-
sidered here is a cantilever beam of Z-section subjected to an axial force P applied at the centroid of the end
cross-section as shown in Fig. 23. The directions of the XG

2 and XG
3 axes are chosen to be those of the prin-

cipal centroid axes of the cross-section at the undeformed state.
Note that because the value of warping function at the centroid of the cross-section is not zero for Z-

section, a bimoment �85.714PðeG1 � eS1Þ is induced by the axial load at the end node, where 85.714 is the
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value of warping function at the centroid of the cross-section, eG1 and eS1 are the unit vectors associated the
XG

1 axis and current xS1 axis of the end cross section. For this example, the value of a is about 9. This
example is analyzed using 40, 80 EA and 20 EB elements. The results of 20 EB and 80 EA elements are
nearly identical. Thus only the results of 20 EB elements are shown here. The load–deflection curves of the
20 EB elements are shown in Figs. 24–26. In Fig. 24 uB is the prebuckling twisting angle at node B induced
by the bimoment. The present buckling load is 906.610 kN, which is in close agreement with the Euler
buckling load 906.286 kN. The small discrepancy between the present buckling load and the Euler buckling
load may be induced by the prebuckling twist of the cross-section. The postbuckling displacementsWB may
also be attributed to the prebuckling twist of the cross-section. It can be seen from Figs. 25 and 26 that the
increase of the postbuckling displacements UB, VB and WB is remarked with slight increase of the applied
load as expected. However, the postbuckling displacements WB are decreased with further increase of the
applied load.
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5. Conclusions

A consistent co-rotational total Lagrangian finite element formulation for the geometric nonlinear buck-
ling and postbuckling analysis of thin-walled beams with generic open section is proposed. The kinematics
of beam element used in [38] for monosymmetric thin-walled open-section beams is extended here. The ele-
ment nodal forces are derived using the virtual work principle. The rigid body motion corresponding to the
virtual nodal displacements is excluded in the derivation of the element nodal forces. A procedure based on
the method described in [24] and the first order consistent linearization is proposed to determine the element
coordinate system and element nodal deformations for the virtual displaced configuration corresponding to
the virtual element nodal displacements. The difference between the nodal rotation parameters and the dif-
ference between the chord length of the beam element corresponding to the virtual displaced configura-
tion and the current configuration are used as the element virtual nodal deformation displacements. All
coupling among bending, twisting, and stretching deformations for beam element is considered by
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consistent second-order linearization of the fully geometrically nonlinear beam theory. However, the third
order term of the twist rate of the beam axis is retained in the element nodal forces. Since the rigid body
motion of the element is eliminated in the consistent co-rotational formulation, there are only eight inde-
pendent implicit and explicit element nodal forces. The lateral nodal force fij (i = 2,3, j = 1,2) may be
regarded as reactions to the corresponding bending moments.

It was explained that the change of element nodal forces induced by the element rigid body rotation
should also be considered in the derivation of the element tangent stiffness matrix for the consistent co-rota-
tional formulation. Thus, a stability matrix should be included in the element tangent stiffness matrix. It
was demonstrated through numerical examples that the derived element tangent stiffness matrix can be used
to detect different buckling loads of beam structures. Because the higher order terms of the tangent stiffness
matrix are dropped, the tangent stiffness matrix used in this study is an approximate tangent stiffness ma-
trix. Thus, the buckling points detected for Example 6, in which bifurcation buckling or snap buckling may
be impossible, may be just an artificial critical point, not a bifurcation point or limit point. In order to verify
the existence of bifurcation point, at the buckling point a perturbation displacement proportional to the
corresponding buckling mode should be added to detect the existence of the secondary path.
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In the element nodal forces and the element stiffness matrices of the present beam element and those used
in [24,36–38,41], the terms relevant to the twist angle, slopes, length of the beam element will converge to
zero and those relevant only to the unit extension, twist rate and curvatures of the beam element will con-
verge to constants. The contribution of the terms relevant to the twist angle and slopes length of the beam
element may be negligible with the decrease of element size. However, their convergence rates may be
slower than those relevant to the unit extension, twist rate and curvatures with the decrease of element size.
Thus, if the terms relevant to the twist angle, slopes, and length of the beam element are removed from the
element nodal forces and the element matrices, the convergence rate of the solution may be increased. This
belief was confirmed through numerical examples studied in this paper. Note that the increase of the con-
vergent rate of solution is remarked when the ratio of the flexural stiffness between the major axis and the
minor axis of the cross-section of the beam is large. Thus, it is suggested that all the underlined terms in
Eqs. (34)–(39), (50), (A.3) and (B.5)–(B.9) should be removed to simplify the expression and to increase
the convergence rate of solution for the present beam element. It seems that this belief can be applied to
the beam elements used in [24,36–38,41] to increase the convergence rate of solution.
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Appendix A. Transformation matrix Th/

The explicit form of the transformation matrix between the variation of the implicit and explicit nodal
parameters may be expressed as
Th/ ¼ T0
h/ þ T1

h/ þ T2
h/; ðA:1Þ

T0
h/ þ T1

h/ ¼

03 03 03 03 03�2

Ta1 Tc1 �Ta1 Te 03�2

Tb 03 �Tb 03 03�2

Ta2 Td �Ta2 Tc2 03�2

02�3 02�3 02�3 02�3 I2

2
66666664

3
77777775
; ðA:2Þ

Taj ¼

0 0 0

�h2j
L

h11 þ h12
2‘

�ð1þ e0jÞ
‘

�h3j
L

1þ e0j
‘

h11 þ h12
2‘

2
66664

3
77775þ ð�1Þj

0
h21 � h22

4‘

h31 � h32
4‘

0 �
6yp
L‘

h2j � 6zp
L‘

h2j

0 �
6yp
L‘

h3j � 6zp
L‘

h3j

2
66666664

3
77777775
; ðA:3Þ

Tb ¼

�1 0 0

0 0 0

0 0 0

2
664

3
775;
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Tcj ¼

1

2

h3j
4

� h2j
4

� h3j
2

1þ e0j
h11 þ h12

2

h2j
2

�ðh11 þ h12Þ
2

1þ e0j

2
66666664

3
77777775
þ ð�1Þj

0 0 0

0
3zp
L

h2j �
3yp
L

h2j

0
3zp
L

h3j �
3yp
L

h3j

2
66664

3
77775;

Td ¼

� 1

2
� h31

4

h21
4

h32
2

3zp
L

h22 �
3yp
L

h22

�h22
2

3zp
L

h32 �
3yp
L

h32

2
66666664

3
77777775
; Te ¼

� 1

2
� h32

4

h22
4

h31
2

� 3zp
L

h21
3yp
L

h21

� h21
2

� 3zp
L

h31
3yp
L

h31

2
66666664

3
77777775
;

T2
h/ ¼

03 03 03 03 03�2

TA1 TB1 �TA1 TC1 03�2

03 03 03 03 03�2

TA2 TB2 �TA2 TC2 03�2

02�3 02�3 02�3 02�3 02�2

2
666664

3
777775; ðA:4Þ

TAj ¼

0 0 0

0 ðGb2 þ Gb4Þ
h2j
‘

�ðGc2 þ Gc4Þ
h2j
‘

0 ðGb2 þ Gb4Þ
h3j
‘

�ðGc2 þ Gc4Þ
h3j
‘

2
66664

3
77775; ðA:5Þ

TBj ¼
0 0 0

0 Gc2h2j Gb2h2j
0 Gc2h3j Gb2h3j

2
64

3
75; TCj ¼

0 0 0

0 Gc4h2j Gb4h2j
0 Gc4h3j Gb4h3j

2
64

3
75;
whereTi
h/ (i = 0,1,2) are the ith order terms ofTh/, I2 is the identitymatrices of order 2 · 2, 02, 03, 02·3 and 03·2

are zeromatrices of order 2 · 2, 3 · 3, 3 · 2 and 2 · 3, respectively, e0j (j = 1,2) are the nodal value of e0 at node
j, and Gbi and Gci (i = 2,4) are the ith element of column matrices Gb and Gc given in Eq. (39), respectively.
Appendix B. Relations between the explicit and implicit element nodal forces

h h/
f12 ¼ �f11 ¼ f12 þ f12 ; ðB:1Þ

f h/
12 ¼ h21

L
mh

21 þ
h22
L

mh
22 þ

h31
L

mh
31 þ

h32
L

mh
32; ðB:2Þ

f21 ¼ �f22 ¼
1

‘
ðm31 þ m32Þ; ðB:3Þ

f31 ¼ �f32 ¼ � 1

‘
ðm21 þ m22Þ; ðB:4Þ

m11 ¼ �m12 ¼
1

2
ðmh

11 � mh
12Þ þ

1

2
h32mh

22 �
1

2
h31mh

21 �
1

2
h22mh

32 þ
1

2
h21mh

31; ðB:5Þ
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m21 ¼ ð1þ e0jÞmh
21 þ

h31
4

ðmh
11 � mh

12Þ �
ðh11 þ h12Þ

2
mh

31 �
3zp
L

ðmh
21h21 � mh

22h22Þ

� 3zp
L

ðmh
31h31 � mh

32h32Þ þ f h/
12 Gc2L; ðB:6Þ

m31 ¼ ð1þ e0jÞmh
31 �

h21
4

ðmh
11 � mh

12Þ þ
ðh11 þ h12Þ

2
mh

21 þ
3yp
L

ðmh
21h21 � mh

22h22Þ

þ
3yp
L

ðmh
31h31 � mh

32h32Þ þ f h/
12 Gb2L; ðB:7Þ

m22 ¼ ð1þ e0jÞmh
22 �

h32
4

ðmh
11 � mh

12Þ �
ðh11 þ h12Þ

2
mh

32 �
3zp
L

ðmh
21h21 � mh

22h22Þ

� 3zp
L

ðmh
31h31 � mh

32h32Þ þ f h/
12 Gc4L; ðB:8Þ

m32 ¼ ð1þ e0jÞmh
32 þ

h22
4

ðmh
11 � mh

12Þ þ
ðh11 þ h12Þ

2
mh

22 þ
3yp
L

ðmh
21h21 � mh

22h22Þ

þ
3yp
L

ðmh
31h31 � mh

32h32Þ þ f h/
12 Gb4L. ðB:9Þ
Note that the above underlined terms will converge to zero with the decrease of the element size and the
value of h11 + h12 in Eqs. (B.6)–(B.9) is equal to zero. Bimoment Bj (j = 1,2) are identical for the explicit
and implicit element nodal forces. As expected, there are only eight independent explicit element nodal
forces. The final forms of fij (i = 2,3, j = 1,2) in Eqs. (B.3) and (B.4) may be regarded as reactions to the
corresponding bending moments.
Appendix C. The matrix HR

a c a c2 3
HR ¼

hR1 hR1 �hR1 hR1 03�2

hbR1 hdR1 �hbR1 hdR1 03�2

haR2 hcR2 �haR2 hcR2 03�2

hbR2 hdR2 �hbR2 hdR2 03�2

02�3 02�3 02�3 02�3 02

6666664
7777775
;

haRj ¼

0
f2j
‘

f3j
‘

0 � f1j
‘

0

0 0 � f1j
‘

2
6666664

3
7777775
; hbRj ¼

0
m2j

‘

m3j

‘

0 �m1j

‘
0

0 0 �m1j

‘

2
666664

3
777775;

hcRj ¼

0 0 0

� f3j
2

0 0

f2j
2

0 0

2
66664

3
77775; hdRj ¼

0 0 0

�m3j

2
0 0

m2j

2
0 0

2
6664

3
7775;
in which j = 1,2, 02, 02·3 and 03·2 are zero matrices of order 2 · 2, 3 · 2 and 2 · 3, respectively.
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Appendix D. The matrix Hh

2 3
Hh ¼

03 ha1 03 ha2 03�2

htb1 hd1 �htb1 he 03�2

03 �ha1 03 �ha2 03�2

htb2 hte �htb2 hd2 03�2

02�3 02�3 02�3 02�3 02

6666664
7777775
;

haj ¼

0 0 0

mh1
21 þ mh1

22

2‘
0 0

mh1
31 þ mh2

32

2‘
0 0

2
66664

3
77775þ ð�1Þj

0 0 0

0
mh1

11 � mh1
12

4‘
0

0 0
mh1

11 � mh1
12

4‘

2
66664

3
77775

þ 0 �
mh1

2j

L
�
mh1

3j

L
0 0 0

0 0 0

2
666664

3
777775þ ð�1Þj

0 0 0

0 �
6yp
L‘

mh1
2j �

6yp
L‘

mh1
3j

0 � 6zp
L‘

mh1
2j � 6zp

L‘
mh1

3j

2
66664

3
77775;
hbj ¼
0 �

mh1
2j

L
�
mh1

3j

L
0 0 0

0 0 0

2
6664

3
7775þ ð�1Þj

0 0 0

0 �
6yp
L2

mh1
2j �

6yp
L2

mh1
3j

0 � 6zp
L2

mh1
2j � 6zp

L2
mh1

3j

2
66664

3
77775;
hdj ¼

0
mh1

3j

2
�
mh1

2j

2

�
mh1

3j

2
0 0

mh1
2j

2
0 0

2
66666664

3
77777775
þ ð�1Þj

0 0 0

0 0
mh1

12 � mh1
11

4

0
mh1

11 � mh1
12

4
0

2
66664

3
77775

þ ð�1Þj

0 0 0

0
6zp
L

mh1
2j

3zp
L

mh1
3j �

3yp
L

mh1
2j

0
3zp
L

mh1
3j �

3yp
L

mh1
2j �

6yp
L

mh1
3j

2
66664

3
77775;

he ¼

0 �mh1
32

2

mh1
22

2

�mh1
31

2
0 0

mh1
21

2
0 0

2
6666664

3
7777775
þ

0 0 0

0
3zp
L

ðmh1
22 � mh1

21Þ
3yp
L

mh1
21 þ

3zp
L

mh1
32

0 �
3yp
L

mh1
22 �

3zp
L

mh1
31

3yp
L

ðmh1
31 � mh1

32Þ

2
66664

3
77775;
where mh1
ij (i = 1,2,3, j = 1,2) are the first order terms of mh

ij, 02, 03, 02·3 and 03·2 are zero matrices of order
2 · 2, 3 · 3, 3 · 2 and 2 · 3, respectively.
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