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This article considers power and sample size calculations for the Wilcoxon–Mann–Whitney test. An
exact variance large-sample method is introduced and explicit formulas are derived for the uniform,
normal, double exponential and exponential shift models.A Monte Carlo simulation study is conducted
to evaluate the exact variance procedure and compare its performance with some other large sample
methods. The results show the remarkable accuracy of the suggested formula and the fundamental
limitations of the other approximations. Practical considerations in determination of sample size for
the two-sample location problem are also discussed.

Keywords: Large-sample approximation; Nonparametric method; Two-sample location problem

1. Introduction

In the two-sample location problem, the Wilcoxon–Mann–Whitney test is a strong competitor
to the two-sample t-test because it has good Pitman efficiencies and makes minimal assump-
tions about the underlying populations. For example, the Wilcoxon–Mann–Whitney test has a
null distribution that does not depend on the common distribution of the error terms, the only
requirement being that the distribution is continuous. See ref. [1, section 2.4] for a general
comparison of the Wilcoxon–Mann–Whitney test with the classical two-sample t-test.

To evaluate the power of the Wilcoxon–Mann–Whitney test, it is necessary to specify the
alternatives to the null hypothesis and to derive the corresponding exact distribution of the
possible rankings. This tends to be difficult and only a few such computations have been per-
formed. For example, Milton [2], Haynam and Govindarajulu [3], and Ramsey [4] obtained
the power of the Wilcoxon–Mann–Whitney test with normal, uniform, exponential and double
exponential shift alternatives for rather limited selections of sample size. In view of the diffi-
culty of computing the probabilities of different rankings for most alternatives of interest, one
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34 G. Shieh et al.

may wish to use good, simple approximations. It appears that useful results can be obtained
from asymptotic normal approximations to the exact distribution of the Wilcoxon–Mann–
Whitney statistic. Lehmann [1, section 2.3] and Noether [5] proposed some simplifications to
the large sample distribution to avoid the calculations of certain quantities in the asymptotic
power function. It is important to note that these two simplifications are only justified when
the location shift is small. However, there is no simple guideline that indicates when the loca-
tion shift is sufficiently small, so that the results are valid. Specifically, Lehmann’s [1] power
approximation was studied only for normal shift alternatives with one selected set of sample
sizes. Essentially, little is known about the performance of the approximation of Lehmann
[1] for different sample size settings and non-normal distributions. On the other hand, the
accuracy of the modified normal approximation by Noether [5] was studied by Vollandt and
Horn [6]. However, their evaluation was made by comparing Noether’s approximation with
an alternative procedure based on the upper bound for the variance of the Wilcoxon–Mann–
Whitney statistic. They concluded that Noether’s method is sufficiently reliable with small,
medium and large deviations from the null hypothesis. These conclusions may be question-
able because Noether’s method is only justified for sufficiently small location shift alternatives
and may become quite unreliable as the location shift increases. Consequently, comparative
analysis of Noether’s method and an exact variance large-sample approach can reveal unique
types of information impossible to obtain from comparing Noether’s procedure with other
approximations. More importantly, no research to date has compared the two approximations
of Lehmann [1] and Noether [5] together with an exact variance large-sample method on
common ground. For a more complete comparison, it is of interest to consider two alternative
approaches based on the general lower and upper bounds for the variance of the Wilcoxon–
Mann–Whitney statistic given by Birnbaum and Klose [7]. It turns out that these formulas
yield markedly different results.

The objectives of this article are to provide a clear understanding and demonstration of
various competing approaches to power and sample size determinations for the Wilcoxon–
Mann–Whitney test and to offer useful and well-supported recommendations on the most
reliable approach for use by researchers. In the process, we also hope to account for some incon-
sistent findings in the literature.We investigate the exact variance formula for power and sample
size calculations based on the asymptotic normal distribution of the Wilcoxon–Mann–Whitney
statistic. Accordingly, closed form expressions are provided for the prominent cases studied in
the literature: uniform, normal, double exponential and exponential distributions. Numerical
analysis is performed to assess the accuracy of the exact variance large-sample method and to
explore the impact of various modifications of the suggested asymptotic formula for several
location shifts and sample allocation schemes under the four prescribed distributions.

The rest of this paper is organized as follows. Section 2 describes the important
details of power and sample size considerations for the Wilcoxon–Mann–Whitney test. In
section 3, the estimated sample sizes are provided and a Monte Carlo simulation study is
reported that compares the finite-sample performance of both exact variance and approxi-
mate methods. Finally, the important implications of the results are summarized in the last
section.

2. Power and sample size determinations

Let X1, . . . , Xm and Y1, . . . , Yn be two independent samples from continuous cumulative
distribution functions F and G, respectively. We restrict our attention to the simple but
important location shift situation where F and G are of the same shape and G(x) = F(x − θ)
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Power and sample size determinations for the Wilcoxon–Mann–Whitney test 35

for all x and θ ≥ 0. We wish to test the hypothesis that the two samples have come from the
same population against the alternative that G is stochastically larger than F . That is, we wish to
test H0: θ = 0 versus H1: θ > 0. The Mann–Whitney form of the Wilcoxon–Mann–Whitney
statistic is defined as follows.

W =
m∑

i=1

n∑
j=1

ϕ(Yj − Xi),

where ϕ(Yj − Xi) = 1 if Yj − Xi > 0 and 0 otherwise. Obviously, the formulation requires
the computation of mn differences. Although the exact null distribution of W is available,
the asymptotic null distribution is commonly used to provide critical values. Assume m/N

approaches c as the sample sizes m and n tend to infinity, where N = m + n and 0 < c < 1.
It follows that (W − µ0)/σ0 has a limiting standard normal distribution under H0: θ = 0 where

µ0 = mn

2
and σ 2

0 = mn(N + 1)

12
. (1)

See ref. [8, Theorem 3.2.4] for a detailed proof. Suppose that the sample sizes are large
enough so that the critical value can be determined from the standard normal approximation
rather than the exact null distribution. Then, the test is carried out by rejecting H0: θ = 0 if
the standardized value (W − µ0)/σ0 is greater than zα , where α is the specified significance
level and zα is the 100(1 − α)th percentile of the standard normal distribution.

For the purpose of power calculation, it is crucial to derive the distribution of the ranks when
F is continuous and θ > 0. This is considerably more complicated than the exact distribution
of W for the case of θ = 0 (i.e. F = G). However, useful results can be obtained from the
normal approximation to the power. The approximation corresponds to the fact that the dis-
tribution of (W − µ)/σ tends to the standard normal distribution as m and n tend to infinity
[1, section 2.3] where

µ = mnp1, σ 2 = mnp1(1 − p1) + mn(n − 1)(p2 − p2
1) + mn(m − 1)(p3 − p2

1), (2)

p1 = P(X1 < Y1) = ∫
F dG, p2 = P(X1 < Y1 ∩ X1 < Y2) = ∫

(1 − G)2 dF and p3 =
P(X1 < Y1 ∩ X2 < Y1) = ∫

F 2 dG. When the distributions are symmetric, it can be shown
that p2 = p3. Hence, if the hypothesis H0 : θ = 0 is rejected with specified significance level
α, then the power of the test against any fixed alternative θ > 0 is approximated by the
probability

P {W > µ0 + zασ0} .= �

(
µ − µ0 − zασ0

σ

)
, (3)

where �(·) is the cumulative distribution function of the standard normal distribution.
Application of formula 3 involves the values of p1, p2 and p3. In principle, the approxi-
mate power can be computed for any alternative. However, there are some important cases
typically of great interest. For illustrative purposes, explicit analytical forms are presented for
G(x) = F(x − θ) where F(x) has the following continuous distributions.

(i) Uniform (−1/2, 1/2):

p1 = 1

2
+ θ

(
1 − θ

2

)
and p2 = p3 = 1

3
+ θ − θ3

3
for θ ≤ 1.

(ii) Standard normal N(0, 1):

p1 = �

(
θ√
2

)
and p2 = p3 = E[{�(Z + θ)}2], where Z ∼ N(0, 1).
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36 G. Shieh et al.

(iii) Double exponential (0, 1):

p1 = 1 − 1

2

(
1 + θ

2

)
e−θ and p2 = p3 = 1 −

(
7

12
+ θ

2

)
e−θ − 1

12
e−2θ .

(iv) Exponential (1):

p1 = 1 − 1

2
e−θ , p2 = 1 − 2

3
e−θ and p3 = 1 − e−θ + 1

3
e−2θ .

These expressions are employed to examine the accuracy of the exact variance method in the
subsequent section.

Note that the computations of p2 and p3 are typically more involved than that of p1. These
can be avoided by the following two alternative approximations by Lehmann [1] and Noether
[5]. They are motivated by the fact that when θ is sufficiently close to zero, the asymptotic
variance σ 2 of W can be approximated well by the null variance σ 2

0 . Consequently, application
of the two methods is confined to the models with small location shifts. The modification of
the power function by Lehmann [1, equation 2.29] is

P {W > µ0 + zασ0} .= �

{√
12mn

N + 1
θf ∗(0) − zα

}
, (4)

where f ∗(0) is the density of F ∗ evaluated at zero and F ∗ denotes the distribution of the
difference of two independent variables, each with distribution F . It can be shown that
f ∗(0) = E[f (X1)]. Specifically, f ∗(0) = 1, 1/(2

√
π), 1/4 and 1/2 for uniform (−1/2, 1/2),

standard normal, double exponential (0, 1) and exponential (1) distributions, respectively.
Noether [5] considered an alternative approximation:

P {W > µ0 + zασ0} .= �

{√
12mn

N

(
p1 − 1

2

)
− zα

}
. (5)

Along the same line of providing simplified power approximation, the lower and upper
bounds for the variance of the Wilcoxon–Mann–Whitney statistic furnish the basis for two
other potential approaches. It was shown in Birnbaum and Klose [7] that σ 2

L ≤ σ 2 ≤ σ 2
U, where

σ 2
L = mn

{
[N + 1 + 2

√
(m − 1)(m − n)(2p1 − 1)3]

3
− [mp2

1 + n(1 − p1)
2 + p1(1 − p1)]

}

if
n − 1

m − 1
≤ 2(1 − p1),

= mn

{[
4(1 − p1)

3

]√
2(m − 1)(n − 1)(1 − p1)−(m + n − 2)(1 − p1)

2 + p1(1 − p1)

}

if 2(1 − p1) <
n − 1

m − 1
≤ 1

2(1 − p1)
,

= mn

{
[N + 1 + 2

√
(n − 1)(n − m)(2p1 − 1)3]

3
− [m(1 − p1)

2 + np2
1 + p1(1 − p1)]

}

if
1

2(1 − p1)
<

n − 1

m − 1
,
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Power and sample size determinations for the Wilcoxon–Mann–Whitney test 37

and

σ 2
U = mn

{
v

[
k

3
− (1 − p1)

2

]
+ u

[−2k

3
+ 1 − p2

1

]
+ k

3
− p1(1 − p1)

}
,

with u = min(m, n), v = max(m, n) and k = 1 − (2p1 − 1)3/2. Therefore, the corresponding
power approximations based on the general lower and upper bounds are

P {W > µ0 + zασ0} .= �

(
µ − µ0 − zασ0

σL

)
(6)

and

P {W > µ0 + zασ0} .= �

(
µ − µ0 − zασ0

σU

)
(7)

respectively. It is easily seen that the application of formulas (4)–(7) circumvent the evaluation
of p2 and p3 and only necessitate specifying the quantity f ∗(0) and/or the probability p1. The
impact of these simplifications and the accuracy of the exact variance large-sample method
(3) are investigated in the subsequent numerical examinations.

There are also many situations when it is desirable to determine the sample size needed
to adequately achieve a given power. All the aforementioned power formulas (3)–(7) can be
modified to derive sample size estimates required for testing a specified alternative hypothesis
with significance level α and power 1 − β. To be specific, the sample size estimate based on the
exact variance method (3) is the minimum N which satisfies (µ − µ0) ≥ (zασ0 + zβσ ) and
m/N

.= c. Similarly, one can perform the sample size calculations for the other four formulas
(4)–(7).

3. Numerical study

To illustrate the application of various competing approaches to sample size and power determi-
nations presented in the preceding section, we begin by considering sample size requirements
to detect a specified location shift for a given power at the significance level α = 0.05. Then
we examine their accuracy for power computations through a Monte Carlo simulation study.

Table 1. Sample sizes required to attain power levels 0.90 and 0.95 for uniform
shift alternatives.

0.90 0.95

Power � = θ/σ 0.3 0.5 1.0 1.5 0.3 0.5 1.0 1.5

Equal group sizes (m = n)
Exact variance 410 154 42 20 516 192 52 24
Lehmann 382 140 36 18 482 176 46 22
Noether 416 160 48 26 526 202 60 32
Lower bound 410 154 42 20 516 192 52 24
Upper bound 428 166 48 24 542 210 60 28
Average bound 418 160 44 22 530 202 56 26

Unequal group sizes (m = n/3 and m = 3n)
Exact variance 548 204 56 28 688 256 68 32
Lehmann 512 184 48 24 644 232 60 28
Noether 556 216 64 36 704 272 80 44
Lower bound 496 180 52 24 612 224 60 28
Upper bound 640 256 76 36 820 328 96 48
Average bound 568 220 64 32 720 280 80 40
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38 G. Shieh et al.

Table 2. Sample sizes required to attain power levels 0.90 and 0.95 for normal
shift alternatives.

0.90 0.95

Power � = θ/σ 0.3 0.5 1.0 1.5 0.3 0.5 1.0 1.5

Equal group sizes (m = n)
Exact variance 400 146 38 18 504 182 46 22
Lehmann 400 146 38 18 506 184 48 22
Noether 406 150 44 24 512 190 54 30
Lower bound 400 144 38 18 502 180 46 20
Upper bound 416 156 42 20 526 196 54 26
Average bound 408 150 40 20 514 188 50 24

Unequal group sizes (m = n/3 and m = 3n)
Exact variance 532 192 52 24 672 244 60 28
Lehmann 536 196 52 24 676 244 64 28
Noether 540 200 60 32 684 252 72 40
Lower bound 480 172 44 24 596 208 52 24
Upper bound 620 240 68 32 800 308 88 40
Average bound 552 208 56 28 700 260 72 32

First, we summarize the estimated sample sizes corresponding to both equal and unequal
group sizes (m = n, m = n/3 and m = 3n) for uniform, normal, double exponential and expo-
nential shift alternatives in tables 1–4, respectively. The power levels are set at 0.90 and 0.95
and a total of four selected values of location shift in terms of � = θ/σ are considered: 0.3,
0.5, 1.0 and 1.5. For example, when � = 0.3, the distribution is uniform, and group sizes are
balanced, the exact variance method gives the sample size estimate 410 in order to achieve
power level 0.90. In the same situation, the sample size estimates of the other four approxi-
mations defined in (4)–(7), denoted by Lehmann, Noether, lower bound and upper bound, are
382, 416, 410 and 428, respectively. As expected, the results in the tables reveal the general
relation that sample sizes increase and decrease with increasing power and shift, respectively.
Comparatively, the equal-group-sizes design yields a smaller total of the sample sizes than the
other two unbalanced designs. This shows that a balanced design is the optimal sample allo-
cation scheme to maximize the overall power. Analytically, it can be shown that σ 2

L = σ 2 for
uniform distribution with equal group sizes (m = n). Hence, in this case the exact variance

Table 3. Sample sizes required to attain power levels 0.90 and 0.95 for double
exponential shift alternatives.

0.90 0.95

Power � = θ/σ 0.3 0.5 1.0 1.5 0.3 0.5 1.0 1.5

Equal group sizes (m = n)
Exact variance 264 100 30 16 332 124 36 20
Lehmann 256 94 24 12 322 118 30 14
Noether 268 104 34 22 338 132 44 26
Lower bound 262 98 28 16 328 122 34 18
Upper bound 276 108 34 18 348 136 40 22
Average bound 268 102 30 16 338 128 38 20

Unequal group sizes (m = n/3 and m = 3n)
Exact variance 352 132 40 20 444 168 48 24
Lehmann 340 124 32 16 432 156 40 20
Noether 356 140 48 28 452 176 60 36
Lower bound 312 116 36 20 384 140 40 24
Upper bound 416 168 52 28 536 216 68 36
Average bound 368 144 44 24 464 180 56 28
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Power and sample size determinations for the Wilcoxon–Mann–Whitney test 39

Table 4. Sample sizes required to attain power levels 0.90 and 0.95 for
exponential shift alternatives.

0.90 0.95

Power � = θ/σ 0.3 0.5 1.0 1.5 0.3 0.5 1.0 1.5

Equal group sizes (m = n)
Exact variance 166 70 26 16 210 88 30 18
Lehmann 128 48 14 6 162 60 16 8
Noether 170 74 30 20 216 94 38 24
Lower bound 164 68 24 14 206 86 28 16
Upper bound 176 76 28 16 224 96 34 20
Average bound 170 72 26 16 214 90 32 18

Unequal group sizes (m = n/3)
Exact variance 240 104 40 24 308 132 48 28
Lehmann 172 64 20 8 216 80 24 12
Noether 228 100 40 28 288 128 52 32
Lower bound 196 80 28 20 240 100 36 20
Upper bound 272 120 44 24 348 156 56 32
Average bound 236 100 36 24 296 128 44 28

Unequal group sizes (m = 3n)
Exact variance 204 84 28 20 252 100 36 20
Lehmann 172 64 20 8 216 80 24 12
Noether 228 100 40 28 288 128 52 32
Lower bound 196 80 28 20 240 100 36 20
Upper bound 272 120 44 24 348 156 56 32
Average bound 236 100 36 24 296 128 44 28

method and the lower bound method give the identical sample sizes as shown in table 1.
It is clear that the exact variance method gives identical sample size estimates for the two
unbalanced designs with respective sample ratio m/n = 1/3 and 3 under the symmetric shift
alternatives in tables 1–3. This is due to the fact that p2 = p3, provided the distribution is
symmetric. In addition, all four approximate formulas give the same sample sizes for the
two unbalanced designs throughout the four different distributions. Such phenomena shall
continue to exist between unbalanced designs with reverse sample ratios in other continu-
ous settings. It is worthwhile to note that the ordering of sample size estimates is consistently
upper bound > Noether > exact variance method. The methods of Lehmann and Lower bound
tend to produce small sample sizes without a conclusive order between the two approaches.
Lehmann’s approximation may seriously underestimate the sample size and can therefore be
misleading in some cases. As suggested by a referee, we also evaluate the ‘average bound’
approach that employs the simple mean (σ 2

L + σ 2
U)/2 for the exact variance σ 2. It appears that

the resulting sample sizes are not accurate as expected.
In order to identify the most reliable method, we proceed to evaluate the performance of

these formulas in terms of the discrepancy between their nominal power and the estimated
actual power, where they all use the same sample size. The sample sizes of the exact variance
method presented in tables 1–4 at the power value of 0.90 are utilized as the basis in the
simulation study. Accordingly, the nominal (approximate) powers are computed for all six
approaches and the results are presented in tables 5–8 for the four shift models, respectively.
The nominal values of the exact variance method are slightly larger than the pre-specified
nominal level 0.90, whereas those associated with the other approaches vary around 0.90.
Estimates of actual power for the given sample sizes and model configurations are then com-
puted through Monte Carlo simulation using 10,000 replicate data sets. For each replicate, m

and n observations are generated from the selected distributions F and G, respectively. Then
the standardized Wilcoxon–Mann–Whitney test statistic (W − µ0)/σ0 is computed and the
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40 G. Shieh et al.

Table 5. Nominal power and simulated power at specified sample size for uniform shift alternatives.

� = θ/σ 0.3 0.5 1.0 1.5

Sample sizes (m, n) (205, 205) (77, 77) (21,21) (10, 10)
Simulated power 0.8985 0.8995 0.9032 0.9086
Nominal power (percentage error)

Exact variance 0.9003 (0.20) 0.9018 (0.25) 0.9084 (0.57) 0.9181 (1.05)
Lehmann 0.9175 (2.12) 0.9261 (2.96) 0.9403 (4.11) 0.9483 (4.37)
Noether 0.8963 (−0.24) 0.8913 (−0.91) 0.8703 (−3.64) 0.8372 (−7.86)
Lower bound 0.9003 (0.20) 0.9018 (0.25) 0.9084 (0.57) 0.9181 (1.05)
Upper bound 0.8899 (−0.96) 0.8829 (−1.85) 0.8697 (−3.71) 0.8627 (−5.05)
Average bound 0.8950 (−0.39) 0.8920 (−0.83) 0.8878 (−1.70) 0.8879 (−2.27)

Sample sizes (m, n) (137, 411) (51, 153) (14, 42) (7, 21)
Simulated power 0.9000 0.8967 0.9020 0.9262
Nominal power (percentage error)

Exact variance 0.9011 (0.12) 0.9005 (0.42) 0.9102 (0.91) 0.9362 (1.08)
Lehmann 0.9182 (2.03) 0.9251 (3.16) 0.9414 (4.37) 0.9584 (3.48)
Noether 0.8970 (−0.34) 0.8896 (−0.79) 0.8703 (−3.51) 0.8527 (−7.94)
Lower bound 0.9273 (3.03) 0.9329 (4.03) 0.9428 (4.52) 0.9596 (3.61)
Upper bound 0.8616 (−4.27) 0.8443 (−5.84) 0.8258 (−8.44) 0.8343 (−9.93)
Average bound 0.8910 (−0.99) 0.8822 (−1.62) 0.8729 (−3.23) 0.8850 (−4.45)

Sample sizes (m, n) (411, 137) (153,51) (42, 14) (21, 7)
Simulated power 0.8998 0.9005 0.9075 0.9252
Nominal power (percentage error)

Exact variance 0.9011 (0.14) 0.9005 (0.00) 0.9102 (0.30) 0.9362 (1.19)
Lehmann 0.9182 (2.05) 0.9251 (2.73) 0.9414 (3.74) 0.9584 (3.59)
Noether 0.8970 (−0.32) 0.8896 (−1.21) 0.8703 (−4.10) 0.8527 (−7.84)
Lower bound 0.9273 (3.05) 0.9329 (3.59) 0.9428 (3.89) 0.9596 (3.72)
Upper bound 0.8616 (−4.25) 0.8443 (−6.24) 0.8258 (−9.00) 0.8343 (−9.83)
Average bound 0.8910 (−0.97) 0.8822 (−2.03) 0.8729 (−3.81) 0.8850 (−4.35)

Table 6. Nominal power and simulated power at specified sample size for normal shift alternatives.

� = θ/σ 0.3 0.5 1.0 1.5

Sample sizes (m, n) (200, 200) (73, 73) (19, 19) (9, 9)
Simulated power 0.8994 0.8986 0.9081 0.9012
Nominal power (percentage error)

Exact variance 0.9005 (0.12) 0.9033 (0.52) 0.9096 (0.16) 0.9173 (1.78)
Lehmann 0.9003 (0.10) 0.9027 (0.45) 0.9079 (−0.02) 0.9165 (1.69)
Noether 0.8971 (−0.26) 0.8937 (−0.54) 0.8716 (−4.02) 0.8335 (−7.51)
Lower bound 0.9011 (0.19) 0.9048 (0.69) 0.9142 (0.67) 0.9248 (2.62)
Upper bound 0.8906 (−0.98) 0.8853 (−1.48) 0.8736 (−3.80) 0.8670 (−3.80)
Average bound 0.8957 (−0.41) 0.8948 (−0.42) 0.8926 (−1.71) 0.8933 (−0.88)

Sample sizes (m, n) (133, 399) (48, 144) (13, 39) (6, 18)
Simulated power 0.8986 0.8981 0.9105 0.9110
Nominal power (percentage error)

Exact variance 0.9000 (0.16) 0.9001 (0.22) 0.9185 (0.88) 0.9220 (1.21)
Lehmann 0.8998 (0.13) 0.8996 (0.16) 0.9158 (0.59) 0.9195 (0.93)
Noether 0.8964 (−0.25) 0.8901 (−0.90) 0.8790 (−3.46) 0.8335 (−8.51)
Lower bound 0.9271 (3.17) 0.9342 (4.02) 0.9528 (4.64) 0.9535 (4.66)
Upper bound 0.8607 (−4.22) 0.8443 (−5.99) 0.8372 (−8.05) 0.8223 (−9.73)
Average bound 0.8904 (−0.91) 0.8827 (−1.71) 0.8846 (−2.84) 0.8739 (−4.07)

Sample sizes (m, n) (399, 133) (144, 48) (39, 13) (18, 6)
Simulated power 0.9008 0.8941 0.9122 0.9121
Nominal power (percentage error)

Exact variance 0.9000 (−0.09) 0.9001 (0.67) 0.9185 (0.69) 0.9220 (1.09)
Lehmann 0.8998 (−0.11) 0.8996 (0.61) 0.9158 (0.40) 0.9195 (0.81)
Noether 0.8964 (−0.49) 0.8901 (−0.45) 0.8790 (−3.64) 0.8335 (−8.62)
Lower bound 0.9271 (2.92) 0.9342 (4.48) 0.9528 (4.45) 0.9535 (4.54)
Upper bound 0.8607 (−4.45) 0.8443 (−5.57) 0.8372 (−8.22) 0.8223 (−9.84)
Average bound 0.8904 (−1.15) 0.8827 (−1.27) 0.8846 (−3.02) 0.8739 (−4.18)
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Table 7. Nominal power and simulated power at specified sample size for double exponential shift alternatives.

� = θ/σ 0.3 0.5 1.0 1.5

Sample sizes (m, n) (132, 132) (50, 50) (15, 15) (8, 8)
Simulated power 0.8996 0.8984 0.8976 0.9053
Nominal power (percentage error)

Exact variance 0.9015 (0.21) 0.9028 (0.49) 0.9122 (1.63) 0.9174 (1.33)
Lehmann 0.9090 (1.04) 0.9195 (2.35) 0.9510 (5.95) 0.9726 (7.43)
Noether 0.8975 (−0.24) 0.8917 (−0.75) 0.8707 (−2.99) 0.8324 (−8.06)
Lower bound 0.9036 (0.45) 0.9079 (1.06) 0.9259 (3.15) 0.9384 (3.66)
Upper bound 0.8900 (−1.07) 0.8837 (−1.64) 0.8806 (−1.89) 0.8785 (−2.96)
Average bound 0.8967 (−0.33) 0.8953 (−0.34) 0.9018 (0.46) 0.9060 (0.07)

Sample sizes (m, n) (88, 264) (33, 99) (10, 30) (5, 15)
Simulated power 0.9032 0.9052 0.9046 0.8819
Nominal power (percentage error)

Exact variance 0.9018 (−0.16) 0.9007 (−0.49) 0.9145 (1.09) 0.9008 (2.14)
Lehmann 0.9092 (0.66) 0.9178 (1.39) 0.9524 (5.28) 0.9661 (9.55)
Noether 0.8975 (−0.63) 0.8890 (−1.79) 0.8707 (−3.74) 0.8108 (−8.07)
Lower bound 0.9328 (3.28) 0.9393 (3.77) 0.9558 (5.66) 0.9478 (7.47)
Upper bound 0.8575 (−5.06) 0.8412 (−7.08) 0.8306 (−7.59) 0.8109 (−8.05)
Average bound 0.8907 (−1.38) 0.8825 (−2.51) 0.8848 (−2.18) 0.8633 (−2.11)

Sample sizes (m, n) (264, 88) (99, 33) (30, 10) (15, 5)
Simulated power 0.9087 0.8970 0.9036 0.8883
Nominal power (percentage error)

Exact variance 0.9018 (−0.76) 0.9007 (0.42) 0.9145 (1.20) 0.9008 (1.41)
Lehmann 0.9092 (0.06) 0.9178 (2.31) 0.9524 (5.40) 0.9661 (8.76)
Noether 0.8975 (−1.23) 0.8890 (−0.89) 0.8707 (−3.64) 0.8108 (−8.73)
Lower bound 0.9328 (2.65) 0.9393 (4.71) 0.9558 (5.77) 0.9478 (6.70)
Upper bound 0.8575 (−5.64) 0.8412 (−6.23) 0.8360 (−7.48) 0.8109 (−8.71)
Average bound 0.8907 (−1.98) 0.8825 (−1.62) 0.8848 (−2.08) 0.8633 (−2.81)

simulated power is the proportion of the 10,000 replicates whose values exceed the critical
value zα . Consequently, the adequacy of the power approximations is determined by the dif-
ference between their nominal power and the simulated power. The results of both simulated
power and percentage error are presented in tables 5–8 where percentage error is defined as

Percentage error = nominal power − simulated power

simulated power
× 100%.

Examination of these tables shows that the performance of the exact variance approach
is excellent over the whole range of conditions that were considered. The accuracy of the
four approximate methods varies considerably with the structures of the shift alternatives.
It is easily seen that the nominal powers of Lehmann’s [1] approach tend to be higher than
the simulated powers while Noether’s [5] method shows the opposite pattern, namely that the
nominal powers are generally lower than the simulated powers. Specifically, the approximation
of Lehmann [1] gives satisfactory results for � = 0.3 and 0.5 and is surprisingly accurate for
all normal shift alternatives. In contrast, its percentage errors for exponential shift models
are too large to be acceptable. On the other hand, the simplified formula of Noether [5] is
reliable for � ≤ 0.5 throughout the simulation except in the last unbalanced setting of the
exponential shift models. For the two methods based on the general lower and upper bounds
of the non-null variance, the results suggest that both are extremely vulnerable to error when
the sample sizes are unbalanced. Note that the upper bound approach frequently gives the
largest errors among the formulas. The only situations where both variance bound methods
maintain a reasonable magnitude of errors are with small location shifts and balanced designs.
Unsurprisingly, the percentage errors of the average bound method are always between those
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Table 8. Nominal power and simulated power at specified sample size for exponential shift alternatives.

� = θ/σ 0.3 0.5 1.0 1.5

Sample sizes (m, n) (83, 83) (35, 35) (13, 13) (8, 8)
Simulated power 0.9038 0.8974 0.9104 0.9259
Nominal power (percentage error)

Exact variance 0.9001 (−0.41) 0.9015 (0.45) 0.9211 (1.17) 0.9375 (1.25)
Lehmann 0.9547 (5.63) 0.9746 (8.60) 0.9964 (9.45) 0.9997 (7.97)
Noether 0.8938 (−1.10) 0.8861 (−1.26) 0.8742 (−3.98) 0.8523 (−7.95)
Lower bound 0.9036 (−0.03) 0.9092 (1.31) 0.9393 (3.17) 0.9625 (3.96)
Upper bound 0.8855 (−2.03) 0.8797 (−1.97) 0.8918 (−2.04) 0.9077 (−1.97)
Average bound 0.8943 (−1.06) 0.8938 (−0.41) 0.9141 (0.41) 0.9338 (0.85)

Sample sizes (m, n) (60, 180) (26, 78) (10, 30) (6, 18)
Simulated power 0.9012 0.9000 0.9214 0.9159
Nominal power (percentage error)

Exact variance 0.9003 (−0.10) 0.9029 (0.32) 0.9261 (0.52) 0.9376 (2.37)
Lehmann 0.9666 (7.26) 0.9847 (9.41) 0.9988 (8.40) 0.9999 (9.17)
Noether 0.9141 (1.43) 0.9138 (1.53) 0.9121 (−1.01) 0.8868 (−3.18)
Lowerbound 0.9502 (5.64) 0.9638 (7.08) 0.9846 (6.86) 0.9922 (8.33)
Upper bound 0.8714 (−3.30) 0.8681 (−3.54) 0.8882 (−3.60) 0.9004 (−1.69)
Average bound 0.9074 (0.69) 0.9102 (1.13) 0.9332 (1.28) 0.9456 (3.24)

Sample sizes (m, n) (153, 51) (63, 21) (21, 7) (15, 5)
Simulated power 0.9056 0.9108 0.9006 0.9525
Nominal power (percentage error)

Exact variance 0.9042 (−0.15) 0.9094 (−0.15) 0.9095 (0.99) 0.9690 (1.74)
Lehmann 0.9407 (3.88) 0.9618 (5.60) 0.9879 (9.70) 0.9995 (4.93)
Noether 0.8711 (−3.81) 0.8554 (−6.08) 0.8062 (−10.49) 0.8317 (−12.68)
Lower bound 0.9156 (1.11) 0.9175 (0.73) 0.9104 (1.09) 0.9697 (1.81)
Upper bound 0.8257 (−8.83) 0.8064 (−11.46) 0.7768 (−13.75) 0.8425 (−11.55)
Average bound 0.8634 (−4.66) 0.8504 (−6.64) 0.8256 (−8.33) 0.8948 (−6.06)

of the two procedures based on the lower and upper bounds. However, the performance of the
average bound method is not as satisfactory as anticipated. Overall, the exact variance method
has a clear advantage over the approximate counterparts.

4. Conclusion

In this article, we discuss power and sample size calculations for the Wilcoxon–Mann–
Whitney test within the framework of location shift models. The asymptotic normal property is
employed to obtain an approximation to the power function of the Wilcoxon–Mann–Whitney
statistic. Extensive numerical study of power and sample size determinations is conducted
to evaluate the impact of certain simplifications made by various competing approximations.
A major criterion for the selection of an appropriate method is how well the nominal power
matches the actual power corresponding to a given sample size and model configuration.
The modifications of the exact mean and variance made in previously proposed large-sample
approximations appear to affect and degrade the accuracy of sample size and power calcu-
lations in significant and distinctive ways. The application of these approximations should
be restricted to shift models with relatively small departures from the null hypothesis. The
findings in our numerical study suggest that the methods of Lehmann [1] and Noether [5]
may be quite inaccurate for location shifts � = θ/σ > 0.5. In contrast to previous results
in the literature, we find that the use of Noether’s approximation for medium and large shift
alternatives is problematic.
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The sample sizes produced by the exact variance method are not only based on a more realis-
tic mean and variance structure than the other approximate approaches, they also give smaller
power discrepancies than the other approximations with the same sample size. Although com-
putation is slightly more involved when using the exact variance formula, the extra complexity
is outweighed by its superiority in accuracy. The normal approximation to the power of the
Wilcoxon–Mann–Whitney test can be further improved through an Edgeworth expansion.
However, the empirical results of this study show a simple normal approximation is adequate
for most purposes. We feel that the method advocated in this paper is a practical way to investi-
gate power and sample size selection, important issues that are often overlooked in discussions
of the Wilcoxon–Mann–Whitney test.
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