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Abstract 

Authenticated encryption schemes need redundancy schemes to link up the message blocks; however, these redundancies 
increase communication costs. To construct links without increasing communication costs, we propose a general solution for 
all the authenticated encryption schemes based on the discrete logarithm problem. Because the computation cost to construct 
links is small, the improved scheme adopting our solution is almost as efficient as the original one. Moreover, by our 
solution, the recipient can easily determine the missing message blocks, and then acknowledge the sender to send only these 
blocks again. The communication cost will be also reduced. Adopting our solution, we also propose two new authenticated 
encryption schemes with message linkage. 
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1. Introduction 

Authenticated encryption schemes are useful for 
transmitting confidential data in insecure networks 
since they provide the data confidence, authentica- 
tion and integrity, simultaneously. Based on the dis- 
crete logarithm problem, Nyberg and Ruppel [4] 
proposed the first authenticated encryption schemes. 
To reduce the communication cost of Nyberg and 
Rupple’s schemes, Horster et al. [2] proposed their 
improved schemes. However, Horster et al.‘s schemes 
need the aid of additional one-way functions to 
provide the encryption function. To remove addi- 
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tional one-way functions, Hwang et al. [3] proposed 
another authenticated encryption scheme without any 
additional one-way function. 

However, there still exists a common disadvan- 
tage for the above authenticated encryption schemes. 
Usually, the length of the message is so long that the 
message must be divided into many message blocks 
first. Then the sender encrypts and signs these mes- 
sage blocks into the corresponding cipher-text blocks, 
respectively. Finally, the sender sends these cipher- 
text blocks out. Despite deriving no message block 
from the ciphertext block, an eavesdropper could 

remove some blocks from the ciphertext blocks. The 
recipient cannot detect this removal since the authen- 
ticated encryption schemes cannot use one-way hash 
functions. This removal is usually detected by a 
redundancy scheme on messages. That is, each mes- 
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Table 1 
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The original signature equations for the authenticated encryption scheme 

Signature equation 

(1) si X k, = 1 + r, X x,(mod Q) 

The computation of y2 mod P 

y;i = ( ya X yJ;)ts~)- 
I 

mod P 

(2) ri X ki = 1 + si X x,(mod Q) yi = (ya X ~&sg)(~i)-’ mod P 

(3) ki = si + ri X x,(mod Q) y?=ykXy2a mod P 

(4) si X ki = r, + x,(mod Q> y4 = (~2 X yAaYsi)-’ mod P 

(5) rik, = si + x,(mod Q> y$ = (~2 X yABYrt)-’ mod P 

(6) ki = ri + si X x,(mod Q) y2 = (yg X y&j mod P 

sage block contains the redundant bits to link up 
message blocks, but these redundancies increase 
communication cost. 

To link up the message blocks without increasing 
communication cost, we propose a general solution 
for the authenticated encryption schemes based on 
the discrete logarithm problem in the next section. In 
Section 3, by integrating our solution into Horster et 
al.‘s scheme, we propose our first authenticated en- 
cryption scheme, Scheme 1. To remove the addi- 
tional one-way function from Scheme 1, we propose 
Scheme 2, in Section 4. The final section states our 
conclusions. 

2. Our general solution 

In this section, we describe our general solution to 
link up message blocks without increasing communi- 
cation cost for the authenticated encryption schemes 
based on the discrete logarithm problem. To link up 
message blocks, we ought to construct the link be- 
tween any two successive message blocks, but the 
construction of links will increase the computation 
cost to encrypt (or decrypt) ciphertext blocks. To 

reduce the cost, we have to utilize the computed item 
that is also authenticated by the recipient. 

To find the computed and authenticated item, we 
reconsider the signature equation. In an authenticated 
encryption scheme based on the discrete logarithm 
problem, the sender adopts a signature equation to 
generate the ciphertext block (ri, si> for the ith 
message block. In the signature equation, there are 
three important items ri, ki, and x,, where ki is the 
secret random number selected by Sender A and x, 
is the secret key of Sender A. Besides the ith 
message block, ki is also authenticated by (rir si>. 
Moreover, ki is the function of the ith message 
block. Therefore, ki is the most suitable one to 
construct links among message blocks. 

To construct the links, our general solution is to 
add the secret ki_ I for the (z’ - 1)th message block 
into the signature equation for the ith message block. 
If the original equation contains the constant item, 
the constant item can be removed. Then, the recipi- 
ent uses (ri, si> and pi_, as the authentication 
parameters of the ith message block, where pi_, = 
y$- I mod P and ya is the public key of the recipi- 
ent. Consequently, we have built the link between 
the itb and (i - 11th message blocks. Since pi_, has 
been computed before the ith message block is 

Table 2 
The six modified signature equations to linlr up message blocks 

Signature equation The computation of y2 mod P 

(1) ~iXk,=ki_,+riXXA(mod Q) y$ = (~2-1 x yip)-’ mod p 

(2) ri X ki E ki_ , - si X x,(mod Q) yt = (yii- I x yip)-’ mod p 

(3) ki = k,_ 1 + si + ri X x,(mod Q> y$=yk’-l Xy;Xyi;b mod P 
(4) si X k, = ki_ , + ri + x,(mod Q) yk = (y$-1 X yfi X ~~a)(‘,)-’ mod P 
(5) riki = ki_ , + si + x,(mod Q> y$ = (y$-1 x yk X bus)-’ mod P 
(6) ki=ki_, + r, + si X x,(mod Q) y$ = (yi’-1 X yk X y&) mod P 
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verified, we also reduce computation costs for the 
construction of links. 

In Table 2, the six signature equations of Nyberg 
and Rupple [4] have been modified. Meanwhile Table 
1 shows the original equations of Nyberg and Rupple 
[4]. To compare Table 2 with Table 1, we find that 
there is no additional computation cost for Eqs. (1) 
and (2). The additional computation cost for Eqs. 
(3)~(6) in Table 2 are all one multiplication modulo 
P and one addition modulo Q. The computation cost 
of our general solution is so small that the authenti- 
cated encryption scheme with message linkage is 
almost as efficient as the original one. 

Since our solution links up message blocks, our 
method can detect which message block is missing. 
When some message blocks are missing, the recipi- 
ent can find them and tell the sender to send the 
correct ones again. Comparing with the one-way 
hash functions, although the one-way hash function 
can also detect whether or not the recovered message 
is incomplete, it cannot point out which is the miss- 
ing message block. Here the incomplete message is 
the message in which some information is lost. The 
sender must send all of the sent message blocks 
again. Upon detecting lost message blocks, our solu- 
tion is better than the one-way hash function. Our 
solution also avoids paying the heavy communica- 
tion cost to overcome the problem of missing mes- 
sage blocks. 

3. A new authenticated encryption scheme 

3.1. Review of Horster et al’s scheme 

We give a brief description of Horster et al’s 
scheme in the following. A trusted center first pub- 
lishes two large primes P and Q, where Q I( P - 11, 
the element (Y of order Q modulo P, and one secure 
one-way function F : GF( P) + GF( P). Each user, 
say A, chooses his secret key xA and then computes 
his public key yn = CY~A mod P. 

Suppose that User A wants to transmit User B the 
message m E GF( P) within a suitable redundancy 
scheme. User A first selects a random integer k from 
the range [I, Q] and computes r = m x 
F(yi)-’ mod P. Then he constructs s satisfying 

the signature equation s = k - r X x,(mod Q). Fi- 
nally, User A sends the ciphertext (r, s) to User B. 
User B first computes y; = yi X yia(mod P), where 
the session key y,, = ( yAjX6 mod P. Then User B 
recovers m = r X F( yk) mod P and checks if m 
satisfies the redundancy scheme. 

The redundancy scheme has to deal with the links 
among the message blocks because the authenticated 
encryption scheme does not provide the link func- 
tion. Next, the one-way function F is necessary for 
the encryption function; otherwise, an eavesdropper 
first derives the session key from yi mod P and 
then could recover any message block from the 
corresponding ciphertext block [2]. 

3.2. The description of our scheme 

Now we present our authenticated encryption 
scheme, Scheme 1, which can link up the message 
blocks. Suppose that the parameters constructed by 
the trusted center and the users are the same as the 
ones in Horster et al.‘s scheme. Suppose that User A 
wants to transmit the message M to User B. First, 
User A partitions M into t message blocks 

{ml. m,,..., m,), where mi E GF(P) within a suit- 
able redundancy scheme for i = 1, 2,. . . , t. Here the 
redundancy scheme does not need to provide the 
function to link up message blocks. User A performs 
the following steps to encrypt and sign each message 
block. 

Step 1. Select t distinct random integers 
k,, k 2 ,..., k, from the range [l, Q]. 

Step 2. Compute pi = y$ mod P and ri = m, X 
F(pi)-’ mod P for i= 1, 2 ,..., t. 

Step 3. Construct si satisfying the signature equa- 
tion si + ki_ , = ki - ri X x,(mod Q) for i = 
1,2,..., t, where k, = 0. 

Finally, User A sends a set of ciphertext blocks 
{(r,, s,>, (r2, s,>,. . ., (r,, s,)} to User B. User B 
executes the following steps to recover all message 
blocks and checks whether the recovered message 
blocks are sent by User A. 

Step 4. Compute pi E yi = yi-l X y; X 
yAb(mod P) for i = 1, 2,. . . , t, where the session 

key yAB = ( yA)‘n mod P. 
Step 5. Recover m, = ri X F( pi) mod P and 

check whether mi satisfies the redundancy scheme 
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for i= 1,2,..., t. If mi does not satisfy the redun- 
dancy scheme, then he tells the sender to send m, 
again. 

Since User B obtains and verifies all message 
blocks, he recovers and verifies the message M. In 
Step 5, the recipient can also determine whether 
there exists missing message blocks after m,_ , . The- 
orem 1 shows the recipient has the ability to obtain 
the correct message block mi from (ri, si>. 

Theorem 1. The message block mi is obtained by 
mi=riXF(yi-lXyaXy,‘g mod PImod P for i 
= 1,2,..., t, where k, = 0. 

Proof. First, we show that the recipient recovers the 
correct value p,, where p, = y$ mod P. Because 

s,=k,-r-,Xx*-kO=k,-r,XxA-O(modQ), 

we have 

pi = yk = ys; X y&,(mod P), 

where y*n = ( y,, >” B mod P. Consequently, the re- 
cipient recovers the correct value pi, for i = 
2, 3,. . . ) t by computing 

pi~y~~y~-lxy~Xy~B mod P 

for i=2,3,..., t, since ki=ki_, +riXxA+si 
mod Q, where pi = y$ mod P. Therefore the ith 
message block m, can be obtained by 

mi=riXF(yk-lXygXy.& mod P) mod P 

=miXF( &)-l XF( pi) mod P. 0 

3.3. The security and performance considerations 

Due to the following analysis, the user’s secret 
key x, the session key between any two users, and 
the random integers ki are secure. It is difficult to 
derive the secret key x and the random integer ki 
from the public key y and ri, respectively, because 
the derivations are equivalent to solving the discrete 
logarithm problem. The signature equations do not 
reveal the secret key and the random integers since 
the number of the unknown variables is more than 
the number of equations. Consequently, the session 
key yAa between Users A and B is still secure based 

on the hardness of the Diffie and Hellman problem 
[ll. The intruder cannot derive the session key yAB 
from pi since pi is also protected by the secure 
one-way function F. 

Consider whether an intruder can forge <r:, $1 for 
/3; = y$ mod P and m\. To forge (I,,, s’,) for PI 
and m’,, (rl,, s;> must satisfy s’, = k’, - I-; X 
x,(mod Q>. Since the secret key xA is secure, the 
intruder cannot construct ( r’, , s’, ) from the s; = k’, - 
ri x x,(mod Q). He is forced to forge <r;, s’,) satis- 
fying 

/3; 2 yz = yi X yig(mod P). 

This work is equivalent to solving the discrete loga- 
rithm problem, so he cannot forge (r;, s’,> for pi 
and m’,. Now both k, and m, are authenticated and 
fixed after verifying the first message block m, since 
m, satisfies the redundancy scheme. In addition, k, 
is secret. Assume that ki_ , is an authenticated and 
secret integer after verifying the (i - 11th message 
block. If the intruder forges (r{, s;> for /3,! and m\, 
he is faced with the same difficult work to forge 
<r;, s’,>. The intruder cannot forge (rj, si> for pi and 
mi. 

The order of the message blocks is guaranteed by 
our message linkage in Scheme 1. Due to the above 
analysis, the intruder cannot forge (ri, si> for pi and 
m, for i= 1,2,..., t. That is, the k,‘s are authenti- 
cated by the recipient at the same time though the 
ki’s are secret. Consequently, the link constructed by 
ki is also authenticated. Therefore, these links guar- 
antee that the order of the message blocks is deter- 
mined by the sender. 

The encryption function of Scheme 1 is secure. 
The intruder cannot obtain pi to decrypt the ith 
message block from the ciphertext block (ri, si> 
since the session key yAB is secure and secret in 
Scheme 1. 

In Scheme 1, the Sender A performs one expo- 
nentiation modulo P and one inverse modulo P, 
then executes F once in Step 2. The Recipient B 
needs to compute two exponentiations modulo P in 
Step 4 and execute F once in Step 5. Comparing 
with the computation cost of Horster et al.‘s scheme, 
the recipient performs one additional multiplication 
modulo P while the sender performs one additional 
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addition modulo Q. That is, the one multiplication 
modulo P and one addition modulo Q are the costs 
for integrating our general solution into Horster et 
al.‘s scheme. Since the additional cost is small, our 
Scheme 1 is almost as efficient as Horster et al.‘s 
scheme. 

4. Another authenticated encryption scheme 

4.1. The description of our other scheme 

To remove the additional one-way functions in 
Scheme 1, we present another scheme, Scheme 2, 
which can also link up the message blocks. The 
parameters constructed by the trusted center and the 
users are the same as the ones in Scheme 1 exclud- 
ing the one-way function F. Suppose that User A 
wants to transmit the message M to User B. User A 
first partitions M into a set of t message blocks 
{m,, m2...., m,}, where mi E GF(P) within a re- 
dundancy scheme for i = 1, 2,. . . , t. Replacing Step 
2 in Scheme 1 by Step 2’, User A executes Steps 
l-3 in Scheme 1. 

Step 2’. Compute 

Pi=Y$ mod P and ri = mi X CX-~~ mod Q mod P 

for i= 1,2,..., t. Then the set of ciphertexts, 
{(r,, s,), (r2, s2> ,..., (rl, s,>}, is sent to User B. 
Replacing Step 5 in Scheme 1 by Step 5’, User B 
performs Steps 4 and 5 in Scheme 1. 

Step 5’. Recover 

mj=riX apgmodQ mod P 

and check whether mi satisfies the redundancy 
scheme for i= 1, 2,..., t. If mi does not satisfy the 
redundancy scheme, he tells the sender to send m, 
again. 

Finally, User B has recovered and verified the 
message M. The following theorem shows why the 
message block mi obtained from (ri, si) is correct. 

Theorem 2. The message block mi 

m, = ,.. x a(~k-1X~2X~ib mod P)mod Q 
I I 

fori=1,2 ,..., t, wherek,=O. 

is recovered by 

mod P 

Proof. Due to the same inference for pi in the proof 
of Theorem 1, we also show that the recipient recov- 
ers the correct value pi by 

&~y$ey2-lXyaXy:~(m& p) 

for i= 1,2,..., t, where pi = yi mod P and k, = 

0. Thus the recipient recovers mi by 

m, E ,., x aY(~klX~tfX~ib mod P)mod Q 
1 I 

=miXa -p,modQX crPrmodQ(mod p). r~ 

4.2. The security and pelformance considerations 

Similar to the security analysis for Scheme 1, we 
find that the secret key x and all the random integers 
ki are secure. The session key is still secure without 
the one-way function F since it is also difficult to 
derive the session key yAB from 

r, = m, x a(~%‘-lX~f(X~h mod 0 mod Q 
I I mod P. 

Due to the similar security analysis to forge <r:, sj> 
for j?ll= y$ mod P and rn:. in Scheme 1, an intruder 
cannot forge (r-i, si> for the /3,! and tii in Scheme 2. 
Since the session key y,, is still secure in Scheme 
2, the encryption function of Scheme 2 is secure, 
too. In Scheme 2, the order of the message blocks is 
authenticated by the recipient because all the ki’s are 

secret and authenticated. 
In Scheme 2, the sender performs two exponentia- 

tions modulo P while the recipient performs three 
exponentiations modulo P. The computation cost to 
link up message blocks is also one multiplication 
modulo P and one addition modulo Q. It is still 
small. Scheme 2 is more efficient than Hwang et 
al.‘s scheme, since the total commutation cost of 
Hwang et al.‘s scheme is seven exponentiations 
modulo P. 

5. Conclusions 

In this paper, we propose a general solution to 
link up message blocks without increasing the com- 
munication cost for the authentication encryption 
schemes based on the discrete logarithm problem. 
The computation cost to construct the link between 
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successive message blocks is small, so the improved 
authenticated encryption scheme is almost as effi- 
cient as the original one. In addition, by our solution, 
the recipient can determine which message blocks 
are lost and then tell the sender to send only these 
lost ones again. This also reduces the communication 
costs caused by the missing problem of message 
blocks. Adopting our solution, we propose two au- 
thenticated encryption schemes: Schemes 1 and 2. 
Scheme 1 still needs additional one-way functions 
while Scheme 2 does not. In addition, our Scheme 2 
is more efficient than Hwang et al.‘s scheme [2]. 
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