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A Wavelet Network Control Method for Disk Drives

C. M. Chang and T. S. Liu

Abstract—This paper proposes a wavelet network control
method to online learn and cancel repetitive errors in disk drives.
In contrast to Fourier transforms, wavelet transforms can pro-
vide detailed local information of signals. Based on the wavelet
transform, wavelets can approximate any finite energy function.
This paper proposes wavelet networks to approximate periodic
functions. Accordingly, a wavelet network controller is developed
to eliminate repetitive error caused by repetitive disturbance.
Experiments for flying height control of a disk drive system are
implemented to demonstrate the present method in comparison
with another method using Fourier series based network control.

Index Terms—Bender, disk drive, flying height control, PZT,
repetitive error, wavelet network (WN), wavelet theory.

I. INTRODUCTION

RACKING control commonly appears in servomecha-

nisms where high accuracy is demanded. Tracking errors
can be classified into two types: repetitive and nonrepeti-
tive errors. In general, repetitive tracking errors appear due
to tracking periodic inputs or disturbances. Many methods
have been proposed to deal with repetitive errors, such as in-
ternal-model-based repetitive control, observer-based learning
control [1], and neural-network-based control techniques [2].
On the other hand, the wavelet transform emerges as a new
powerful tool for signal processing and function approximation.
Comparing with the short-time Fourier transform that gives
signal information with a fixed time window, the wavelet trans-
form gives detailed local information of a signal by translating
and narrowing a time window for detecting high-frequency
behavior while widening one for investigating low-frequency
behavior. Hence, on a time-frequency plane, wavelet transforms
achieve a better compromise between time and frequency do-
mains [3]. The repetitive error due to spindle motor rotation
of disk drives lies in the low-frequency region. Wavelets with
a large time window can detect low-frequency information of
the repetitive error, while maintaining good time localization
property. Inspired by the wavelet transform theory and neural
networks, to deal with disk drives, this paper develops a wavelet
network controller using wavelets to generate periodic control
signals that can cancel repetitive errors. Experimental results
and simulation results are presented to demonstrate the effec-
tiveness of the proposed method.
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Fig. 1. Experimental setup for PZT-disk system.

II. PZT-DisK SYSTEM

In order to control the flying height of a pickup head to follow
disk deformation of a disk drive in this paper, an apparatus in-
cluding a PZT bender and a disk drive is shown in Fig. 1. The
control algorithm is executed on a PC and its output via a PZT
driver controls the bending displacement ypzr at the tip of the
PZT bender. When the spindle motor rotates at a constant speed,
the disk surface deformation d is composed of a repetitive com-
ponent d, and a nonrepetitive component dy,,. The flying height
y = ypzT — d is measured by using a laser Doppler vibrometer
as the feedback signal.

The block diagram of the present control system is depicted
in Fig. 2 where r denotes the desired flying height. The wavelet
network (WN) control signal r. is used to cancel repetitive disk
surface deformation d, that causes repetitive errors. During
disk rotation, the disk surface deformation d is treated as an
output disturbance in controlling bending displacement of the
PZT bender tip to follow the disk surface. The PZT driver
that amplifies the control voltage u. can be treated as a con-
stant gain K. A linear model P(s) of the plant, i.e., the PZT
bender, is identified and Bode plots of open-loop gain K P(s)
are depicted in Fig. 3. To stabilize the closed-loop system, a
compensator C(s) is designed so that K C(s)P(s) becomes a
type 1 system with the gain margin and phase margin of 20.5
dB and 67.7 deg, respectively. According to Fig. 2, the flying
height of the PZT bender tip is expressed by

(s) = KC(s)P(s)R(s) D,,,(s)
1+ KC(s)P(s) 14+ KC(s)P(s)
KC(s)P(s)R.(s) — D.(s)
14+ KC(s)P(s)

ey

Dealing with the third term on the right-hand side (RHS), in
order to cancel the repetitive disturbance d,.(t), the WN con-
troller proposed in the next section is trained until its control
signal r.(t) achieves R.(s) = D,(s)/KC(s)P(s). Accord-
ingly, the repetitive error caused by the repetitive disturbance
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Fig. 2. Block diagram of PZT-disk system.
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Fig. 3. Compensator design in frequency domain.

can be eliminated and the flying height y depends on the de-
sired flying height r subject to remaining nonrepetitive distur-
bance d,;.

III. WAVELET NETWORK CONTROL

In contrast to Fourier series expansions that express a peri-
odic function in terms of trigonometric series, a wavelet series
expansion expresses a finite energy function with a series set ob-
tained by dilating and translating a zero-mean mother wavelet.
Concerning the wavelet theory, mathematical foundations of
wavelets were developed by Grossmann and Morlet [4]. Mallat
[5] presented wavelet representations to approximate signals at
a given resolution. The wavelet transform and the short-time
Fourier transform (STFT) were compared by Daubechies [3].
The wavelet transforms better compromise in localization be-
tween time and frequency domains than the STFT. The wavelet
network was proposed by Zhang and Benveniste [6] to approxi-
mate nonlinear functions. Delyon et al. [7] carried out accuracy
analysis to approximate a continuous function using a wavelet
network. In contrast to wavelets, a biased wavelet has a nonzero
mean and can better reproduce signal components that are in
the low-frequency region on the time-frequency plane since the
nonzero mean enlarges low-frequency gain [8]. In this paper for
disk drives, the spindle motor speed is 90 Hz which lies in the
low-frequency region among 5-kHz measurement bandwidth in
experiments. Hence, this paper employs biased rather than un-
biased wavelets and a wavelet network controller is developed.

A. Biased Wavelet
A set H of biased wavelets h, ; () is defined by [8]

H= {ha,b,c(t) = ol [1/’ <¥>

+ co <¥)] ,aGR—{O},meR} 2)

where ¢ € L2(R),i.e., [7°_|1(t)]? dt < oo, denotes a mother
wavelet and a and b are dilation and translation parameters of
the biased wavelet, respectively. In contrast to wavelets, biased
wavelets have an adjustable nonzero mean bias function o €
L?(R) that improves representation capability of biased wavelet
expansions, which better reproduce signal components in the
low-frequency region on the time-frequency plane than wavelet
expansions. The set H reduces to a wavelet set ¥ when the bias
parameter c is set to zero, since hq b0 = Yaq.. Any finite en-
ergy function f(t) € L%(R) can be expanded using the biased
wavelet set H or the wavelet set ¥. In general, v/, ; are not lin-
early independent, which means that both H and ¥ are frames
for L?(R) rather than bases.

B. Wavelet Network Approximation

Based on the wavelet transform, the wavelet network pro-
posed in [6] is of the form

ol t—b;
Int) = at < - > +0
i=1 ¢

where 1 (t) is a wavelet, a; and b; denote dilation and translation
parameters, respectively, ¢; are weightings, and 6 is an offset
to help deal with nonzero mean functions. In order to achieve
better approximation, particularly for signals that lie in the low
frequency region on the time-frequency plane, this paper pro-
poses a biased wavelet network on the basis of biased wavelet
sets hi(t) = (t) + c;0(t), defined as

ol t— b
fN<t):qui( = )+e

=1

N
=Y (<t_b"> +e <t_bi>> +0. 4
i=1 i i

This paper will use (4) in constructing biased wavelet networks.
A Mexican hat wavelet ¥(t) = (1 — t%)exp(—t2/2) is
chosen as the mother wavelet and the bias function is defined
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as a Gaussian function [8] o(t) = exp(—t?/2). Substituting

into (2) yields a biased wavelet

h(1) = (1) + co(r) = (1 + ¢ — 7%) exp(—72/2) 5)

where 7 = (t — b)/a.

C. Periodic Function Approximation

The wavelet networks cannot be directly applied to approx-
imate a periodic function g(t), since g(t) is not a finite energy
function, i.e., g(t) ¢ L?(R). However, if the periodic function
g(t) with a period 2! satisfies an integration condition

!
[ 1 < ©
J—1
one can find a finite energy function f(t) that satisfies f(¢) =
g(t) when —I < t < [ and has a wavelet network approximation
fn(t). Hence, the periodic function g(t) can be rewritten as

o) =f0,  -l<t<l -
g(t+20) = g(t), otherwise
and a wavelet network approximation gy (t) is expressed as
gn(t) = fn (1), —1<t<li ®)
gn(t+20) = gn(t), otherwise.

In other words, the wavelet network is trained to learn the finite
energy function f(t) instead of the original periodic function
g(t). In practice, it is not necessary to exactly define the finite
energy function f(t). The wavelet network fy () is just trained
to approximate some function f(¢) that is equal to g(¢) in the
domain ¢t € [—[,1) regardless of t ¢ [—[,]). In other words,
parameters of fx (¢) are updated until fy (¢) approximates g(t)
in the domain ¢ € [, ). Hence, the finite energy function f(¢)
can be any finite energy function that satisfies

{f(t) =9(t),
f() = fn(t),

Besides, the definition of f(¢) in the domain ¢ ¢ [, 1) is arbi-
trary and of no significance during training.

-1 <t<l
otherwise.

©))

D. Approximation by Periodic Continuous Function

If a periodic function ¢(t) is continuous, i.e., g(—1) = g(l).
As a consequence, its corresponding approximation fy(t) has
to satisfy fn(—!) = fn (). On the other hand, a biased wavelet
h(7) in (5) decreases quickly and is negligible when |7| > A,
where A is prescribed as 4 in this paper. The biased wavelets
h(7) when |7| < X play a major role in approximation. Hence,
this paper proposes a wavelet network approximation fy (t) for
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periodic continuous functions. The wavelets h;((t — b;)/a;) in
fn(t) have the following characteristics: (i) dilation parameter
a; satisfies 0 < a; < [/A\. (ii) translation parameter b; satisfies
—1 < b; < L. (iii) repetitions at translations b; — 2/ and b; + 2.
The wavelets h;((t — b;)/a;) have maximum dilation when the
dilation parameter a; = [/ A, i.e., h;(A(t — b;) /1), and h;(t) are
equal to h(\) att = [+ b;. The wavelet network approximation
fn(t) is defined as

fn(t) = é(b (hi (#)

+h; (t_ bi) + hy (M)) +6 (10
a; a;

and has fx(—1) = fn(l). Parameters in fx () are trained to
approximate the finite energy function f(¢) defined in (9). The
biased wavelet h(7) decreases quickly and the value of h(7)
when |7| > A can be treated as zero. Hence, the approximation
effect of h(7) when |7| > A can be negligible and the wavelet
sets

—b;—2 —b;
hi<t b l>+hi(t b)
a; a;

— b +2
+hi<w>7—l§t<l (11)

a;

in (10) reduce to 7);(t), which is a periodic function defined as
shown in (12) at the bottom of the page. The periodic function
7;(t) reproduces the major portion of the wavelet h;(¢) with a
period 2!. Truncation of the wavelet h; ((t—b;)/a;) leads to h(7)
with —I/a < 7 < [/a. When the dilation parameter a; = [/},
the major portion of the wavelet h;((t — b;)/a;) is h(7) when
—A < 7 < X and equals h(7) when a; tends to become zero.
As a result, the wavelet approximation (8) becomes

N
gn(t) = aqimi(t) +0 (13)
=1

where 7;(t) are defined in (12).

E. Wavelet Network Controller

According to (13), a WN controller with IV nodes in the single
hidden layer can be expressed as

N
re(t) = aqimi(t) + 6. (14)
=1

The WN control signal r.(t) is a continuous function with a
period 2/ and has an adjustable parameter vector defined as
W = [a;,b;,ci, ¢, 0]. The total number of parameters in W

{mﬂ:m0i0=w0$

n:(t + 21) = n;(t),

)-1—01:'

o (55), (<l+b) << (bi+])

12)

otherwise.
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Fig. 4. Comparison of flying height errors during learning using biased and
unbiased wavelets.

is Ny = 4N + 1. In this paper, a sampling frequency f is pre-
scribed as 10 kHz and W can be updated online using a gradient
training rule to minimize the error function

ko+4Lf.

E= Y k)

k=kq

5)

where e(k) denotes the system error, & is a sampling step, and
kq is the initial step in two periods. The error function F is the
squared sum of e(k). The parameter w; is in turn updated to
become a new value

(w,;)j+1 = (’wqj)]‘ — 67 Sgn(AEj) (16)
where (w;) ;41 is the updated value of w; in the jth iteration,
AE; is the variation of E and a signum function sgn( - ) deter-
mines the training direction of w;.

In order to examine the stability of the proposed scheme
in Fig. 2, a nonnegative function is defined as V; = WJ- W;,
where W; = W, — W denotes in the jth iteration a pa-
rameter error vector relative to an optimal parameter vector
W. If the nonrepetitive disturbance d,,, is a random distribu-
tion during learning and will not affect training direction in
(16), Vj4+1 will be limited to the neighborhood of zero; i.e.,
lim; . V; < Zfivl"'l |6; + 8;c;)||> where «; > 0 is the
perturbation of w; with respect to the nonrepetitive disturbance
dy,. Hence, parameters are limited to the neighborhood of the
optimal parameters and the WN control signal . is bounded.
For a bounded 7., the system stability depends on the design
of the compensator C(s) in Fig. 2. According to (15) and (16),
the gradient training rule will converge slowly if the learning
step ¢; is small. However, a large §; leads to large oscillation
in W ;. Hence, the learning step 6; is prescribed as a large con-
stant in the beginning to reduce the system error e(k) quickly.
Afterwards, a smaller §; is used to improve precision.

FE. Simulation Results

Fig. 4 compares learning histories of WN controllers between
biased and unbiased wavelets. The latter does without bias pa-
rameters, i.e., ¢; = 0 in (12). The root-mean-square (rms) value
of the flying height error is donated as rms(e) = /E/4lfs.

RMS(e) (um)

35 40 45 50 55

0 5 10 15 20 25 30
Time (s)

0 5 10 15 20 25 30 35 40 45 50 55

Time (s)
()
Fig. 5. Learning histories in experiments. (a) rms(e). (b) ay, b1, c1,q1,
and 6.

Both WN controllers have three neurons in the single hidden
layer and have to follow a measured disk surface deformation
with peak-to-peak variation of 9 pym at 5400 rpm. Before
learning, parameters in the unbiased WN controller are pre-
scribed the same as those in the biased WN controller except
¢;. Fig. 4 shows that the biased WN controller not only results
in smaller error, but also faster convergence. Hence, the biased
wavelet sets are used for WN controllers in experiments.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the proposed WN
controller, experiments are carried out, where a PZT bender is
commanded to follow surface deformation of a hard disk ro-
tating at 5400 rpm. A WN is online trained by prescribing a
desired flying height » = 9. The WN has three neurons in the
single hidden layer. Fig. 5(a) shows that the rms error converges
after 20 s. Fig. 5(b) depicts learning histories of the first neuron
in the hidden layer, and 6. In the presence of the compensator
C(s), the WN controller is not enabled until ¢ = 5 s. As shown
in Fig. 6, flying height variation rapidly reduces to £0.7 pm in
11 ms. Fig. 7 compares power spectrums of the flying height
error when the WN controller is disabled and when enabled.
As a consequence, the resultant flying height error power re-
duces 87, 25, and 31 dB at 90, 180, and 270 Hz, respectively,
due to the WN controller. Hence, the present WN controller suc-
cessfully cancels the repetitive disturbance d,. and let the PZT
bender follow the disk surface.
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Fig. 6. Measured control results when the PZT bender follows a hard disk with
desired flying height 7.
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Fig. 7. Comparison of power spectrums for flying height error among WN
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Fig. 8. Comparison of the WN control signal 7., the FSBN control signal 7,

and disk deformation d, where [ is half period.

In addition to the WN controller, Fig. 7 also compares with a
Fourier series-based network (FSBN) controller [9] defined as

M
t t
Te(t) = Ag + Z A,, cos <nT7r> + B, sin (nTw> 17

n=1

where M = 3 denotes the number of harmonic frequencies;
Ay, Ay, and B,, are Fourier coefficients. For comparison, the
FSBN controller yields 7. that replaces the WN control signal
r. in Fig. 2. The FSBN controller results in a flying height that
varies between £1 pm in contrast to £0.7 gm by using WN.
The FSBN controller reduces flying height error power 57, 52,
and 5 dB at 90, 180, and 270 Hz, respectively.
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The high-frequency repetitive errors at 360 Hz, 450 Hz, etc.
have small amplitudes in experimental environment. They are
not reduced by WN controllers when more neurons are added
in the hidden layer, nor are FSBN controllers with higher order
terms n > 4 in (17).

Fig. 8 compares the WN control signal 7., the FSBN control
signal 7., and the measured disk deformation d. The WN con-
trol signal r.. leads the disk deformation d by [ /2, which consists
with a 90° phase delay of the open-loop system K C(s)P(s) in
the low frequency region as shown in Fig. 3. The FSBN con-
trol signal 7. behaves similarly to the WN control signal 7. in
t € [1.51,2.71], but oscillates in ¢ € [0.71,1.5]]. Therefore, the
WN control performs better than FSBN control on the time axis
responding to the disk deformation d.

V. CONCLUSION

Based on a proposed wavelet network, this paper has pre-
sented a WN controller to reduce repetitive error in disk drives.
The WN controller, which uses the system time in (12) as the
only input signal in the input layer, can generate the required
control signal that has the same period as the disturbance pe-
riod. The repetitive error caused by the repetitive disturbance
is hence reduced. Experimental results have validated the pro-
posed WN controller, which effectively reduces repetitive flying
height error.
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