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ANDERSON’S THEOREM FOR COMPACT OPERATORS

HWA-LONG GAU AND PEI YUAN WU

(Communicated by Joseph A. Ball)

Abstract. It is shown that if A is a compact operator on a Hilbert space with

its numerical range W (A) contained in the closed unit disc D and with W (A)
intersecting the unit circle at infinitely many points, then W (A) is equal to

D. This is an infinite-dimensional analogue of a result of Anderson for finite
matrices.

The numerical range W (A) of a bounded linear operator A on a complex Hilbert
space H is the subset {〈Ax, x〉 : x ∈ H, ‖x‖ = 1} of the complex plane, where 〈·, ·〉
and ‖ · ‖ are the inner product and norm in H, respectively. Basic properties of the
numerical range can be found in [5, Chapter 22] or [4].

In the early 1970s, Joel Anderson proved an interesting result on the numerical
ranges of finite matrices. Namely, if A is an n-by-n complex matrix, considered as
an operator on Cn equipped with the standard inner product and norm, with its
numerical range W (A) contained in the closed unit disc D (D ≡ {z ∈ C : |z| < 1})
and intersecting the unit circle ∂D at more than n points, then W (A) = D (cf. [9,
p. 507]). The purpose of this paper is to prove an infinite-dimensional analogue of
Anderson’s result for compact operators.

Theorem 1. If A is a compact operator on a Hilbert space with W (A) contained
in D and W (A) intersecting ∂D at infinitely many points, then W (A) = D.

Anderson never published his proof of the above-mentioned result. As related by
him many years later via an e-mail to the second author, his proof was based on the
application of Bézout’s theorem to the Kippenhahn curve of the matrix A. Gener-
alizations of this result along this line can be found in [3]. In recent years, there
appeared three more proofs. One is by Dritschel and Woerdeman [2, Theorem 5.8],
based on the canonical decomposition and radial tuples for numerical contractions
developed by them. (A numerical contraction is an operator A with W (A) ⊆ D.)
The second one is due to the second author (cf. [12, Lemma 6]); it depends on
the classical Riesz-Fejér theorem on nonnegative trigonometric polynomials. More
recently, Hung gave another proof in his Ph.D. dissertation [6, Theorem 4.2.1] by
making use of Ando’s characterization of numerical contractions.
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We will prove Theorem 1 using the support function dA of the compact convex
set W (A) of an operator A:

dA(θ) = max W (Re (e−iθA))

= max W (cos θReA + sin θIm A)

for θ in R, where Re A = (A + A∗)/2 and ImA = (A − A∗)/(2i) are the real and
imaginary parts of A. Note that dA(θ) is simply the signed distance from the origin
to the supporting line Lθ of W (A) which is perpendicular to the ray Rθ from the
origin that forms angle θ from the positive x-axis (cf. Figure 2).

Our main tool is the next theorem, due to Rellich [10, p. 57], on the analytic
perturbation for multiple eigenvalues of Hermitian operators; an elegant and ele-
mentary proof can be found in [11, p. 376]. The present form is from [8, Theorem
3.3].

Theorem 3. Let θ �→ Aθ be a real analytic function from an open interval I of
R to Hermitian operators on a fixed Hilbert space, and let d(θ) = max W (Aθ) for
θ in I. Assume that for some θ0 in I, d(θ0) is an isolated eigenvalue of Aθ0 with
finite multiplicity n. Then there is an open subinterval J of I which contains θ0

and there are m, 1 ≤ m ≤ n, real analytic functions d1, . . . , dm : J → R such that
(a) d1(θ0) = · · · = dm(θ0) = d(θ0),
(b) for every θ in J \ {θ0}, the dj(θ)’s are distinct isolated eigenvalues of Aθ

with respective multiplicity nj independent of θ which satisfies
∑m

j=1 nj = n,
(c) there is some dj1

(resp., dj2
) such that d(θ) = dj1

(θ) (resp., d(θ) = dj2
(θ))

for all θ, θ < θ0 (resp., θ > θ0) in J , and
(d) d(θ) = max {d1(θ), . . . , dm(θ)} for all θ in J .

We are now ready to prove Theorem 1.

Proof of Theorem 1. We first express our assumptions in terms of dA. The con-
dition W (A) ⊆ D is obviously equivalent to dA(θ) ≤ 1 for all θ. Under this, we
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then have, for a fixed θ, the equivalence of eiθ ∈ W (A) and dA(θ) = 1. Indeed,
eiθ belonging to W (A) is equivalent to 1 belonging to W (e−iθA), which is the
same as 1 belonging to ReW (e−iθA) = W (Re (e−iθA)) (because W (e−iθA) ⊆ D)
or dA(θ) = 1.

Now let eiθn , n ≥ 1, θn ∈ [0, 2π), be a sequence of distinct points in W (A)∩ ∂D.
Passing to a subsequence, we may assume that θn converges to θ0 in [0, 2π]. Since
dA(θn) = 1 for all n and the function θ �→ W (Re (e−iθA)) is continuous (cf. [5,
Solution 220]), we obtain dA(θ0) = 1. Moreover, since W (Re (e−iθ0A)) equals
the convex hull of the spectrum of the compact operator Re (e−iθ0A), we infer
that dA(θ0) is an isolated eigenvalue of Re (e−iθ0A) with finite multiplicity. Thus
Theorem 3 may be applied to obtain two real analytic functions d1 and d2 on some
neighborhood J = (θ0 − ε, θ0 + ε) of θ0 such that dA = d1 on (θ0 − ε, θ0] and
dA = d2 on [θ0, θ0 + ε). Without loss of generality, we may assume that (θ0 − ε, θ0]
contains infinitely many θn’s. Hence d1(θn) = dA(θn) = 1 for such θn’s. Since
θn converges to θ0 and d1 is analytic on J , we obtain d1 = 1 on J . Therefore,
d1 ≤ dA ≤ 1 implies that dA = 1 on J . Let α = {θ ∈ R : dA(θ) = 1}. The
above arguments also show that if θ′ is a limit point of α, then there is some
neighborhood (θ′− ε′, θ′ + ε′) contained in α. Now let a = sup {θ ∈ R : [θ0, θ) ⊆ α}
and b = inf {θ ∈ R : (θ, θ0] ⊆ α}. We infer from the above that a = ∞ and b = −∞,
that is, α = R. This shows that dA = 1 on R or, equivalently, ∂D ⊆ W (A).
As we have seen in the first paragraph of this proof, dA(θ) = 1 is equivalent to
1 ∈ W (Re (e−iθA)). Since this latter set equals the convex hull of the spectrum of
the compact operator Re (e−iθA), we infer that 1 is an eigenvalue of Re (e−iθA).
Hence 1 is in W (Re (e−iθA)) or in W (e−iθA) (since W (e−iθA) ⊆ D), which is the
same as eiθ in W (A). We conclude that ∂D ⊆ W (A). The convexity of W (A) then
implies that W (A) = D, completing the proof. �

An alternative proof for the last part of the preceding proof is, after obtaining
W (A) = D from ∂D ⊆ W (A) and the convexity of W (A), to invoke [5, Solution
213] that any compact operator A with 0 ∈ W (A) has W (A) closed, concluding
that W (A) = D.

We end this paper with some further remarks. First, any compact operator A
with W (A) = D must have norm bigger than one. This is because if ‖A‖ ≤ 1,
then from the equality case of the Cauchy-Schwarz inequality, we easily derive that
W (A)∩ ∂D = ∂D consists of eigenvalues of A, which is impossible for the compact
A. Second, we note that in Theorem 1 the condition that W (A) intersects ∂D
at infinitely many points cannot be weakened. For example, for each n ≥ 1, if
An is the finite-rank operator diag (1, ωn, . . . , ωn−1

n , 0, 0, . . .), where ωn is the nth
primitive root of 1, then W (An) � D and W (An) intersects ∂D at the n points
1, ωn, . . . , ωn−1

n . Finally, Theorem 1 can be generalized from the unit disc to any
elliptic disc centered at the origin: if A is a compact operator with W (A) contained
in the closed elliptic disc

E = {x + iy ∈ C :
x2

a2
+

y2

b2
≤ 1}, a, b > 0,
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and with W (A) intersecting ∂E at infinitely many points, then W (A) = E. This
can be reduced to Theorem 1 by considering the affine transform

B =
1
a
Re A +

i

b
Im A

of A since the numerical range of B equals D.
[7] and [1] are the other papers which contain information on the numerical

ranges of compact operators.
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