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ANDERSON’S THEOREM FOR COMPACT OPERATORS
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ABSTRACT. It is shown that if A is a compact operator on a Hilbert space with
its numerical range W (A) contained in the closed unit disc D and with W (A)
intersecting the unit circle at infinitely many points, then W(A) is equal to
D. This is an infinite-dimensional analogue of a result of Anderson for finite
matrices.

The numerical range W (A) of a bounded linear operator A on a complex Hilbert
space H is the subset {(Ax,x) : z € H,||z|| = 1} of the complex plane, where (-, -)
and || - || are the inner product and norm in H, respectively. Basic properties of the
numerical range can be found in [5, Chapter 22] or [4].

In the early 1970s, Joel Anderson proved an interesting result on the numerical
ranges of finite matrices. Namely, if A is an n-by-n complex matrix, considered as
an operator on C" equipped with the standard inner product and norm, with its
numerical range W (A) contained in the closed unit disc D (D = {z € C: |2] < 1})
and intersecting the unit circle 9D at more than n points, then W(A) = D (cf. [,
p. 507]). The purpose of this paper is to prove an infinite-dimensional analogue of
Anderson’s result for compact operators.

Theorem 1. If A is a compact operator on a Hilbert space with W (A) contained

in D and W (A) intersecting 0D at infinitely many points, then W (A) = D.

Anderson never published his proof of the above-mentioned result. As related by
him many years later via an e-mail to the second author, his proof was based on the
application of Bézout’s theorem to the Kippenhahn curve of the matrix A. Gener-
alizations of this result along this line can be found in [3]. In recent years, there
appeared three more proofs. One is by Dritschel and Woerdeman [2, Theorem 5.8],
based on the canonical decomposition and radial tuples for numerical contractions
developed by them. (A numerical contraction is an operator A with W (A) C D.)
The second one is due to the second author (cf. [I2] Lemma 6]); it depends on
the classical Riesz-Fejér theorem on nonnegative trigonometric polynomials. More
recently, Hung gave another proof in his Ph.D. dissertation [6l, Theorem 4.2.1] by
making use of Ando’s characterization of numerical contractions.
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We will prove Theorem 1 using the support function d4 of the compact convex
set W(A) of an operator A:

da(f) = max W(Re (e "A))
= max W(cosfRe A + sin6Im A)

for 0 in R, where ReA = (A + A*)/2 and Im A = (A — A*)/(2i) are the real and
imaginary parts of A. Note that d4(6) is simply the signed distance from the origin

to the supporting line Ly of W(A) which is perpendicular to the ray Ry from the
origin that forms angle 6 from the positive z-axis (cf. Figure 2).

Our main tool is the next theorem, due to Rellich [I0, p. 57], on the analytic
perturbation for multiple eigenvalues of Hermitian operators; an elegant and ele-
mentary proof can be found in [TI, p. 376]. The present form is from [8, Theorem
3.3].

Theorem 3. Let 0 — Ay be a real analytic function from an open interval I of
R to Hermitian operators on a fized Hilbert space, and let d(0) = max W (Ay) for
0 in I. Assume that for some 0y in I, d(0y) is an isolated eigenvalue of Ag, with
finite multiplicity n. Then there is an open subinterval J of I which contains 6y

and there are m, 1 < m < n, real analytic functions dy,...,dy : J — R such that
(a) di(bo) = -+ = dp(00) = d(6h),
(b) for every 6 in J\ {6}, the d;(0)’s are distinct isolated eigenvalues of Ag

with respective multiplicity n; independent of 0 which satisfies Z;nzl nj =n,
(c) there is some dj; (resp., d; ) such that d(0) = d; (0) (resp., d(0) = d;, (0))
for all 8, 0 < 0y (resp., 8 > 8y) in J, and
(d) d(#) = max{di(0),...,dn(0)} for all 0 in J.

We are now ready to prove Theorem 1.

Proof of Theorem 1. We first express our assumptions in terms of d4. The con-
dition W (A) C D is obviously equivalent to da() < 1 for all §. Under this, we
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then have, for a fixed #, the equivalence of ¢ € W (A) and d4(f) = 1. Indeed,
e belonging to W(A) is equivalent to 1 belonging to W (e—%A), which is the
same as 1 belonging to Re W (e~ A) = W (Re (e~ A)) (because W (e~ A) C D)
or da(f) = 1.

Now let €= n > 1, 6, € [0,27), be a sequence of distinct points in W (A) NID.
Passing to a subsequence, we may assume that ,, converges to 6, in [0, 27]. Since
da(6,) = 1 for all n and the function § — W (Re (e~ A)) is continuous (cf. [5
Solution 220]), we obtain da(6y) = 1. Moreover, since W(Re (e~ A)) equals
the convex hull of the spectrum of the compact operator Re (e~ A), we infer
that d4(6p) is an isolated eigenvalue of Re (e~%% A) with finite multiplicity. Thus
Theorem 3 may be applied to obtain two real analytic functions d; and ds on some
neighborhood J = (6 — ¢,6p + ) of 6y such that d4 = dy on (g — ¢,00] and
da = dy on [0y, 0y + ). Without loss of generality, we may assume that (6y — e, 6]
contains infinitely many 6,’s. Hence dy(6,) = da(6,) = 1 for such 6,’s. Since
0, converges to 6y and dy is analytic on J, we obtain dy = 1 on J. Therefore,
dy < dy < 1 implies that dg = 1 on J. Let a« = {6 € R : ds(f) = 1}. The
above arguments also show that if 6’ is a limit point of «, then there is some
neighborhood (6/ —¢’, 6’ +¢’) contained in o. Now let a =sup {6 € R: [0p,0) C o}
and b=inf {# € R: (6,00) C a}. We infer from the above that a = oo and b = —o0,
that is, « = R. This shows that d4 = 1 on R or, equivalently, 0D C W (A).
As we have seen in the first paragraph of this proof, d4(6) = 1 is equivalent to
1€ W(Re(e~"A)). Since this latter set equals the convex hull of the spectrum of
the compact operator Re (e~ A), we infer that 1 is an eigenvalue of Re (e~%A).
Hence 1 is in W (Re (e~ A)) or in W(e=?A) (since W (e~ A) C D), which is the
same as e in W(A). We conclude that D C W (A). The convexity of W(A) then

implies that W (A) = D, completing the proof. O

An alternative proof for the last part of the preceding proof is, after obtaining
W(A) = D from 0D C W(A) and the convexity of W(A), to invoke [5, Solution
213] that any compact operator A with 0 € W(A) has W(A) closed, concluding
that W(A) = D.

We end this paper with some further remarks. First, any compact operator A
with W (A) = D must have norm bigger than one. This is because if ||A| < 1,
then from the equality case of the Cauchy-Schwarz inequality, we easily derive that
W (A) N oD = 0D consists of eigenvalues of A, which is impossible for the compact
A. Second, we note that in Theorem 1 the condition that W (A) intersects oD
at infinitely many points cannot be weakened. For example, for each n > 1, if

A, is the finite-rank operator diag (1,w,...,w"1,0,0,...), where w, is the nth
primitive root of 1, then W(A,) & D and W(A,,) intersects 9D at the n points
1,wn,...,wt~ . Finally, Theorem 1 can be generalized from the unit disc to any

elliptic disc centered at the origin: if A is a compact operator with W (A) contained
in the closed elliptic disc

. 22 2
E:{az—l—zye(C:?—beQSl}, a,b>0,
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and with W (A) intersecting OF at infinitely many points, then W(A) = E. This
can be reduced to Theorem 1 by considering the affine transform

B='Red+ ‘tmA
a b

of A since the numerical range of B equals D.
[7] and [I] are the other papers which contain information on the numerical
ranges of compact operators.
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