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€0 ABSTRACT

The present invention, in some embodiments thereof, relates
to a technique for extracting one or more features of a per-
son’s gait from acceleration and velocity measurements col-
lected by motion sensors associated with the person.
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Gaussian curve fitting over IMF power distribution for constructing Gaiting Impact
and Gaiting Perturbation waveforms
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One-sided Gaussian fitting over IMF power distribution for
constructing Gaiting Perturbation waveforms
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373 Gaiting Cycle Waveforms of 3D Linear Acceleration or 3D Angular Velocity

401 402 403
Zero Crossing Extrema Instantaneous
Localization Localization Frequency Estimation
451
Zero Crossing Instants
404
452 453
Relative Phase Extrema Instants & Amplitudes  Instantaneous Frequencies
Measurement
454

Phase Offsets between Gaiting Cycle Waveforms

Workflow of feature extraction from waveforms of Gaiting Cycle waveforms

FIG. 6
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374 Gaiting Impact Waveforms of 3D Linear Acceleration (1% Principal Component only)

| 455-1 Localization

Extrema Amplitudes of
- Gaiting Impact Waveform

455
Extrema Instants & Amplitudes of
Gaiting Impact Waveform

406 b 407

Statisticat Analysis. of : Extrema Paint
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- 457

456
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Extrema Amplitude Distribution 208 Gaiting impact Waveform
451 Extrema Point
Zero Crossing INstants of wwemmmmmsssmnd3s Setection
Gait Cycle Waveforms {Optional)

458
Selected Extrema Instants & Amplitudes
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Workflow of feature extraction from Gaiting Impact
waveform {PCA 1)

FIG.7



US 2015/0293143 A1

Oct. 15,2015 Sheet 8 of 18

Patent Application Publication

v0

8Ol
{1-v2d) wiopaem Ppedul} Sunien o sjuiod eWIBIING JO UOLNGLSIP Apnijduiy

20 10 0 L0 zo

0

964869 SISOy
ZETT - 1SSOUMDNS
6STT'O 49 PIS
£200°0- ‘ueapy

G0

104

02

“|oe

oy

0%

109

Syedd jo wribosiH

oL



US 2015/0293143 A1

Oct. 15,2015 Sheet 9 of 18

Patent Application Publication

0ozt

0001

6°0ld

(1-vod)

wiojonem pedul Suies jo sjulod BLIBIIXD PBUDDIDS

008

009 00v

002

40

o

] ]

]

o

)

g0

hA's

“1L0

[AY

UOIEINS(] PIBPUELS | BPISING

(44



US 2015/0293143 A1

Oct. 15,2015 Sheet 10 of 18

Patent Application Publication

Ot ‘B

(T-VOd) wiojaaem pedul} Sunien Jo sjuelisu] BLUBIIXD PBIID|3S

0024 000} 008 009 ooy

o

003

)

g0

4%

€0

0

110

1¢0

€0

%0



US 2015/0293143 A1

Oct. 15,2015 Sheet 11 of 18

Patent Application Publication

Ge

TT 'Oid
1ed uewny |EWIOU JO $S1EUIPJIO0I APOq U} UOEIB[PDIE 1BdUl| € POREIGIED JO SWIOJINEM

(8) sruig

Qz Gt oL < 0

16070

=110

(s} suny,

oz Gi o] g 0

ag

(s) sy

oc gt ot g Q
T T T T

z0

SUONEIAS3DY Jesul]



US 2015/0293143 A1

Oct. 15,2015 Sheet 12 of 18

Patent Application Publication

<1 "9

}ed uewiny [EULIOU JO UOLEID|DIDE JBDUI| AE JO SHINI POIIDOS

i i H
H

g OTdIAN 64N 5 84N L3N

941Nl SANE PN m €4INI (<131

i

T4t

1098 laont 1098 800

§ LONDGINSY Buines | !

5 5'€
speduwi Bunes

P o Gust
woe e

sspATy Bunien

P PR SRR PR PR PR N N RN v e e el

% sk s ek dodk dnek el o ide e s e e s 300 300 GOM BOGH 30K 300( 3004 06K 360! 300 WOE 1008 108



US 2015/0293143 A1

Oct. 15,2015 Sheet 13 0f 18

Patent Application Publication

B E-Evd

€1 'Ol

Med vewny j[2uwiou Jo uoyesaiaode

Jeaulj g jo uanngasip Jamod N| jo swesdolsig

PYEE

&t 1

-~

ST

B L H-Td




US 2015/0293143 A1

Oct. 15,2015 Sheet 14 of 18

Patent Application Publication

4c

{(auo wonoq) speduw| Sunen pue (22143 dol) saPA) SUIES JO SWIOJAABM S1IDIIBIRYD

(v

LA LE ]

(s} e
gl

Ot

T PHEZINTT VO

o

N
e

Ot

-

(s) s
Gt
P ~ s
JA ’
(L\\
(s) ey,

s}

(s) oy

¢
H o 94Nl evod ——
G2
H o Gdl gvDd -
74

G YOG e

oz




US 2015/0293143 A1

Oct. 15,2015 Sheet 15 0f 18

Patent Application Publication

ST "Oid
ULIDIDAEM pedug Mc_.._._mw jo sjuiod ewdIxnd jo mmvsu__nrcm pue sjuelsuy]
{s) sy
sz 02 <18 oL g 0
] ]

sHuod deed

S0°0

L0



US 2015/0293143 A1

Oct. 15,2015 Sheet 16 of 18

Patent Application Publication

szujod yead Jjayl yum waoasem aoAD 3upien jo sdojaaua spmyjdwy

91 'Sid

{s) aui|

oL

S0

$0°0



US 2015/0293143 A1

Oct. 15,2015 Sheet 17 of 18

Patent Application Publication

LT "OH
swiojanem apA) Sunien jo sapuanbaiy snoaueiuelsug

{s) suary

gy

£vod g
evad i
wod

] ‘gg



US 2015/0293143 A1

Oct. 15,2015 Sheet 18 of 18

Patent Application Publication

@ 0z st ot s 0
I
it [ I
L 5 o & o - -
Bvod B Ivod
£¥0d 8 2v0d
Evad B WO g

8T 'O

swojanem 394D Suiiey uaamiaq saseyd aane|sy

(s) sy

feRay

80

s



US 2015/0293143 Al

FEATURE EXTRACTION FROM HUMAN
GAITING PATTERNS USING PRINCIPAL
COMPONENT ANALYSIS AND
MULTIVARIATE EMPIRICAL MODE
DECOMPOSITION

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the priority benefit of U.S.
Provisional Application serial No. 61/856704, filed on Jul.
21, 2013. The entirety of the above-mentioned patent appli-
cation is hereby incorporated by reference herein and made a
part of this specification

FIELD OF INVENTION

[0002] The present invention, in some embodiments
thereof, relates to a technique for extracting one or more
features of a person’s gait from acceleration and velocity
measurements collected by motion sensors associated with
the person.

SUMMARY OF INVENTION

[0003] This invention relates to a signal processing tech-
nique for extracting gaiting cycles—in the form of amplitude
and frequency modulated sinusoids—and stepping impact
impulses from acceleration and velocity measurements col-
lected by the motion sensors. Optionally, the technique of the
present invention further includes parameterization mecha-
nisms that measure time-varying amplitudes, frequencies and
relative phases of these characteristic signals, to extract fea-
tures of the gaiting cycles, such as step size, stepping force,
body wavering, and gaiting speed. These features may be
used to distinguish normal vs. abnormal gaiting behaviors in
lieu of the actual motion waveforms and can be used in
detection, classification and compressed representation of
human gaiting patterns. The technique of the present inven-
tion is robust and can produce correct results regardless of the
orientation of the motion sensor. The technique is also com-
putationally efficient and can thus be implemented on mobile
phones or advanced wireless sensors.

[0004] In some embodiments of the present invention, an
input is received in form of data indicative of three-dimen-
sional (3D) linear acceleration and angular velocity. Principal
component analysis (PCA) is first applied as a pre-processing
step to whiten and re-orientate the input signals in order that
the input signals become unit-variant and orthogonal to one
another. This enables simplified multivariate empirical mode
decomposition to be applied onto these signals.

[0005] Multivariate empirical mode decomposition
(MEMD) is then used to decompose the principal compo-
nents of both linear acceleration and angular velocity into
their sinusoid-like intrinsic mode functions (IMFs). Different
IMFs are selected based on their signal power and then com-
bined to form the waveforms of gaiting cycles and stepping
impulses. Optionally, instantaneous frequencies as well as the
peak and zero-crossing points of these waveforms are calcu-
lated and used as feature parameters to characterize human
gaiting behaviors.

DESCRIPTION OF DRAWINGS

[0006] FIG. 1 shows the signal processing and parameter-
ization pipeline that deduces feature parameters from the 3D
linear acceleration and the 3D angular velocity of human
gaiting behaviors.

Oct. 15, 2015

[0007] FIG. 2 shows the signal flow and operation sequence
to decompose 3D linear acceleration and angular velocity
into their intrinsic mode functions (IMFs) using principal
component analysis (PCA) and multivariate empirical mode
decomposition (MEMD).

[0008] FIG. 3 shows the workflow to construct the Charac-
teristic Waveforms of gaiting behaviors including those of
Gaiting Cycles, Gaiting Trends, Stepping Impacts and Gait-
ing Perturbation from the IMFs of the principal components
of 3D linear acceleration and 3D angular velocity.

[0009] FIG. 4 illustrates the Gaussian curve fitting tech-
nique used to select the intrinsic mode functions (IMFs) for
constructing the Characteristic Waveforms of Stepping
Impacts and Gaiting Perturbations.

[0010] FIG. 5 shows the One-sided Gaussian fitting over
IMF power distribution for constructing Gaiting Perturbation
waveforms.

[0011] FIG. 6 shows the workflow to deduce feature param-
eters from the Characteristic Waveforms of Gaiting Cycles.
[0012] FIG. 7 shows the workflow of feature extraction
from Gaiting Impact waveform.

[0013] FIG. 8 illustrates the amplitude distribution of
extrema points of Gaiting Impact waveform

[0014] FIG. 9 shows screened extrema points of Gaiting
Impact waveform (PCA-1)

[0015] FIG. 10 shows selected extrema points of Gaiting
Impact waveform (PCA-1)

[0016] FIG. 11 shows the original waveforms of 3D linear
acceleration in body coordinates.

[0017] FIG. 12-FIG. 18 display the waveforms and the
feature points of the gaiting patterns of a healthy user. FIG. 12
shows the power profile of the IMF components of 3D linear
acceleration caused by normal human gaiting behaviors.
[0018] FIG. 13 displays the histograms of IMF power dis-
tribution of 3D linear acceleration of normal human gait
[0019] FIG. 14 shows the Characteristic Waveforms of
Gaiting Cycles and Stepping Impacts.

[0020] FIG. 15 shows the instants and amplitudes of
extrema points of Gaiting Impact waveform

[0021] FIG. 16 shows the peak points and the envelops of
the Gaiting Cycles of the principal components of 3D linear
accelerations.

[0022] FIG. 17 and FIG. 18 show the instantaneous fre-
quencies and relative phases of the Gaiting Cycles of the same
principal components. FIG. 17 shows Instantaneous frequen-
cies of Gaiting Cycle waveforms.

[0023] FIG. 18 shows the relative phases between Gaiting
Cycle waveforms

DETAILED DESCRIPTION OF INVENTION

1. Overview

[0024] The invented gaiting feature extraction method con-
sists of three stages: (1) Multivariate Implicit Mode Function
(IMF) Decomposition 102, (2) Characteristic Waveform
Construction 103 and (3) Feature Parameterization 104. FIG.
1 shows the signal flows and the processing stages of the
invented method.

[0025] Any kind of wearable motion sensors 101 that are
capable of yielding measured data indicative of three dimen-
sional linear acceleration and angular velocity of body
motions can be used to provide input signals 150 to the feature
extraction process. Sensors that measure angular acceleration
or changes in Euler angles (row, pitch and yaw) can be used,
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and the data output therefrom can be used to calculate angular
velocity. Raw acceleration and velocity measurements from
microelectromechanical (MEMS) motion sensors can be
accepted if they are measured with respect to the world/earth-
based coordinate system. Nonetheless, calibrated linear
acceleration and angular velocity in the body or sensor coor-
dinates that are processed by Kalman filters and motion data
fusion algorithms are preferred in order to have ensure high
signal-to-noise ratios. Though high data sampling rates (50-
100 samples/second) are preferred as they can improve the
resolution and accuracy of extracted feature parameters, the
inventors have obtained accurate results with input sampled at
10 samples/second. FIG. 11 shows the waveforms of three-
dimensional (3D) linear acceleration in the body coordinates,
which were measured at the rate of 50 sample/second and
calibrated using Kalman filters and data fusion algorithms.
[0026] For the purpose of capturing the measurements of
full body motions, users should wear the motion sensor on
their torsos instead of their limbs so as to diminish the inter-
ference of limb movements. However, if monitoring of limb
movements is intended then the motion sensors should be
attached to the limbs concerned.

[0027] The sampled and digitized three-dimensional (3D)
linear acceleration and three-dimensional (3D) angular
velocity 151 are processed first in the Multivariate Implicit
Mode Function (IMF) Decomposition stage 102, which will
be described in more detail below. A total of six input signal
components are fed into this stage. This processing stage
yields a maximum of'six sets of IMFs, each set corresponding
1o a principal component with significant signal power. Up to
three IMF sets may be derived from the 3D linear accelera-
tion; similarly, up to three IMF sets may be derived from the
3D angular velocity. All IMFs have the same sampling rates
as the input signals.

[0028] The Characteristic Waveform Extraction stage 103
(which will be described in more detail below) manipulates
each set of IMFs separately with identical signal processing
steps; however, the process parameters may be set to different
values for each set of IMFs. Selected IMF's of each principal
component are combined to yield the following three groups
of characteristic waveforms:

[0029] The waveform of Gaiting Cycle—which is a sinu-
soidal waveform with time-varying amplitude and fre-
quency corresponds to the basic gaiting cycles of the
human user. Each cycle of the waveform may corre-
spond to a “half'step” caused by the movement of one leg
ora“full step” caused by the movement of both legs. The
“full-step” cycles usually correspond to the oscillatory
side-movements of user’s body when he/she moves his/
her feet forward. The “half-step” cycles, on the other
hand, correspond to the up-down or forward movement
of his/her body when he/she moves each of her feet.

[0030] The waveform of Gaiting Impacts—which is a
quasi-periodic waveform with sharp peaks, each of
which corresponds to the acceleration or deceleration
caused by the impact of user’s feet with the walking
surface. The noisy fluctuations of the waveform also
show the acceleration or deceleration caused by the
user’s limb movements.

[0031] The waveform of Gaiting Perturbation—which is
a low-frequency quasi-periodic waveform that shows
the wavering of user’s body between steps. Significant
perturbation may reveal a pathological condition of
user’s gaiting behaviors.

Oct. 15, 2015

[0032] The waveforms produced by the Characteristic
Waveform Extraction stage 103 are then analyzed separately
in the Feature Parameterization stage 104. In this stage, the
properties of each waveform such as its time-varying ampli-
tude and frequency as well as the relations among these
waveforms such as their relative phases can be measured and
treated as feature parameters. These parameters can be used
in detection, classification and compressed representation of
the gaiting patterns in lieu of actual motion waveforms.
2. Multivariate Implicit Mode Function Decomposition using
Principal Component Analysis (PCA) and Multivariate
Empirical Mode Decomposition (MEMD)
[0033] This processing stage 102 employs a novel combi-
nation of Principal Component Analysis (PCA) [as described
in references 1 and 2] with Multivariate Empirical Mode
Decomposition (MEMD) [as described in reference 3] in
order to accomplish the following objectives: (1) eliminate
the influence of arbitrary orientation of the motion sensor to
the 3D linear acceleration and angular velocity inputs 151, (2)
discard the input components that have significantly less sig-
nal power as they are less relevant to users’ body motions, and
(3) decompose compose the significant components of the
input signals into corresponding sets of implicit mode func-
tions (IMFs). Each of these sets contains the same number of
IMFs. Furthermore, the corresponding IMFs in each of these
sets occupy the same frequency bands that can be specified in
terms of a bank of dyadic filters [as described in reference 4].
[0034] FIG. 2 shows the signal flows and operations of this
processing stage. The 3D linear acceleration 251 and the 3D
angular velocity 252 are subjected to separate signal whiten-
ing processes 201 and 202 based on Principal Component
Analysis (PCA) such that the variance of all signals is equal-
ized to unity. In the case that the 3D linear acceleration and 3D
angular velocity are measured with respect to the world coor-
dinates with reference to the true vertical direction then these
inputs may skip the PCA process and can simply be normal-
ized with respect to their signal power because this simpler
process also reduce their variance to unity.
[0035] The signal whitening process can be described by
the following formula. Let the input to the PCA process be a
3xN matrix X with N being the number of signal samples.
PCA vyields the positive eigenvalues A,, A,, A; and the
orthonormal eigenvectors w |, w,, w5 of the covariance matrix
of X. The whitened (uncorrelated and unit variant) principal
components Z of X can be computed as

Z=A""PWX with A%diag [A, hy, Ay and W €[w,

Wy, W3

[0036] This PCA process produces the whitened principal
components 253 and 254 of the 3D linear acceleration 251
and the 3D angular velocity 252 respectively. It also produces
the positive eigenvalues A, A, A, in 255 and 256 along with
the principal components. If one or more of the eigenvalues
are significantly smaller (by at least an order of magnitude)
than the others then the corresponding principal component
(s) may be discarded. The remaining ones are referred here-
after as the significant principal components.
[0037] The whitened principal components with significant
eigenvalues 253 and 254 are then processed together using
Multivariate Empirical Mode Decomposition (MEMD) 203.
The unit-variance property of the whitened principal compo-
nents enhances the ability of MEMD to separate each input
signal into a set of implicit mode functions (IMFs) that
occupy distinct frequency bands. Additional input of zero-
mean white Gaussian noise can be injected to the MEMD
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process in order to reduce the “mode mixing” effect of
MEMD [4]. Up to two Gaussian-noise inputs, each of which
haveup to ten percent (10%) of total input signal power canbe
added to this process. However, their corresponding IMFs
shall be removed from the MEMD output.

[0038] Inordertoscale the IMFs to their actual amplitudes,
the MEMD output shall be multiplied with the positive
square-roots of the corresponding eigenvalues 255 and 256
by the constant multipliers 204 and 205. The corresponding
sets of IMFs 257 and 258 of the significant principal compo-
nents of the 3D linear acceleration and the 3D angular veloc-
ity respectively can be computed as the vector Y in the fol-
lowing equation:

Y=AY2Z=wx

3. Characteristic Waveform Construction from Implicit Mode
Functions

[0039] Ineach setof IMFsobtained from the previous stage
102, one or more IMFs from the significant principal compo-
nents are combined to form the Characteristic Waveforms of
the 3D linear acceleration and the 3D angular velocity. These
Characteristic Waveforms carry important biophysical infor-
mation of user’s gaiting behaviors. This process is performed
in the stage 103. FIG. 3 shows the sequential operation that
produces three kinds of Characteristic Waveforms, which are
referred to as (1) Gaiting Cycles, (2) Gaiting Impacts and (3)
Gaiting Perturbation. The IMFs of each significant principle
component of the 3D linear acceleration and the 3D angular
velocity can produce a set of Characteristic Waveforms. The
waveforms are then processed together in the Feature Param-
eterization stage 104 to yield the gaiting feature parameters.
[0040] The selection of IMFs for the construction of Char-
acteristic Waveforms is based on the signal power of indi-
vidual IMF. The signal power of each waveform is first cal-
culated in 301. The selection process is then performed
sequentially by the selection operations 302-304. Each opera-
tion removes the selected IMF(s) from the existing set of
IMFs before passing the remaining sets (351-353) to the
subsequent operations.

[0041] The distribution of IMF signal power is highly
asymmetric or bi-modal. As shown in FIG. 13, each set of
IMFs consists of a dominant cluster of low-power IMFs and
a smaller cluster of significant higher-power IMFs. In the
subsequent steps, the high-power IMFs shall be selected for
the construction of the Gaiting Cycle and the Gaiting Impact
waveforms while a few low-power IMFs shall be selected for
the construction of the Gaiting Perturbation waveforms.
[0042] Inthe first step, the waveforms of Gaiting Cycles are
constructed in 302 and 312 from the IMFs with the highest
level of signal power such as those highlighted in FIG. 13.
These high-power IMFs under different significant principal
components tend to reside in two adjacent frequency bands
that contain the “half-step” and “full-step” gaiting wave-
forms. Only those IMFs under each significant principal com-
ponent are selected to form the Gaiting Cycle Waveforms. For
example, among the IMFs in FIG. 12, only IMF5 of PCA1,
IMF5 of PCA2 and IMF6 of PCA3 were selected. Note that
IMFS5 of PCAL was merely the third most powerful IMF
under PCA1. It was selected because first it resided in the
high-power IMF cluster and it also resided in the frequency
band that contained the most powerful IMF of PCA2 (IMF5)
and in the adjacent frequency band that contained the most
powerful IMF of PCA3 (IMF6). In 312, the IMFs in the
higher-frequent band (such as the IMF5 of PCAL, PCA2 in
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the example) are combined to produce the “half-step” gaiting
waveform while the IMFs in the lower-frequency band (such
as the IMF6 of PCA3) are combined to produce the “full-
step” gaiting waveform. The “half-step” and “full-step” gait-
ing waveforms are so called because they are frequency and
phase locked to the physical movement of users’ bodies. The
“full-step” waveforms correspond to the oscillatory side-
movements of user’s body when he/she moves his/her feet
forward. The “half-step” waveforms, on the other hand, cor-
respond to the up-down or forward movement of his/her body
when he/she moves each of her feet.

[0043] The top three waveforms displayed in FIG. 14 are
the “half-step” and “full-step” Characteristic Waveforms
constructed from the 3D linear acceleration waveforms
shown in FIG. 11.

[0044] In the Second step, the waveforms of Gaiting
Impacts are constructed in 303 and 313 from the IMFs
selected from those remaining in the high-power cluster
based on a profiling of their signal power. FIG. 4 illustrates
the selection procedure performed in 303. First, a Gaussian
curve (in black) is fitted through the high-power IMFs as they
are arranged in the ascending order of their frequency
bands.—Such an arrangement corresponds coarsely the fre-
quency distribution of their signal power—The mean p, and
the standard deviation o, of the Gaussian distribution are
calculated. Then, select the IMFs that lie within the main lobe
of the Gaussian distribution. These are the IMFs with their
indices lying between |, -0, | and [p, +0, | where | | and [ ]
denote the floor and the ceiling functions. The IMFs selected
are then combined in 314 to produce the Gaiting Impact
waveform. These Gaiting Impact Waveforms are composed
of the IMFs with frequencies higher than the half-step and
full-step gaiting waveforms; moreover, they clearly show the
time and amplitudes of acceleration and deceleration caused
by the impact of user’s feet with the walking surface.

[0045] After the IMFs for producing the Gaiting Impact
waveform have been selected, the signal power of all the
IMFs are adjusted by subtracting the Gaussian-fitted signal
power from their actual signal power as illustrated in F1G. 4.
The adjusted profile of IMF signal power is passed through
353 for the construction of Gaiting Perturbation waveforms.
[0046] Inthe last step, the waveforms of Gaiting Perturba-
tion are constructed in 305 and 315 from the IMFs that have
their signal power falling in the main lobe of the residual
Gaussian signal power distribution. Similar to the procedure
described in [0041], a Gaussian curve (in navy blue) is fitted
through the remaining IMF's as they are arranged according to
the ascending order of their frequency bands. Then, the mean
1, and the standard deviation o, of the Gaussian curve are
calculated. Again, the IMFs with their indices lying between
|w,—0,] and [u,+0,] are selected. The selected IMFs are
combined in 315 to produce the Gaiting Perturbation wave-
form. Contrast to the Gaiting Impact Waveforms, the Gaiting
Perturbation Waveforms are composed of the IMFs with fre-
quencies lower than the half-step and full-step gaiting wave-
forms; hence, they correspond to users’ body movement
among steps.
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1. A method is disclosed that can decompose human gait-
ing patterns produced while walking, running, climbing up
and down slopes or stairs or repetitive body and/or limb
movements that change the positions and velocities of the
center of gravity of those body parts into the components of
three-dimensional (3D) Impact Waveforms, Gaiting Wave-
forms and Perturbation Waveforms from the 3D linear accel-
eration and 3D angular velocity signals captured by motion
sensors attached to those body parts using a combination of
Principal Component Analysis (PCA) and Multivariate
Empirical Mode Decomposition (MEMD) along with the
selection of Intrinsic Mode Functions (IMFs) produced based
on their signal power distribution.

2. A method is disclosed to reduce the computational com-
plexity of Multivariate Empirical Mode Decomposition
(MEMD) by applying Principal Component Analysis (PCA)
as a pre-processing step to ensure orthogonality among the
components of 3D linear accelerations and 3D angular
velocities as well as the unit-variance property of these com-
ponents. This pre-processing is commonly referred to as the
whitening step.

3. The method of claim 1 decomposes each orthogonal
component of 3D linear accelerations and 3D angular veloci-
ties into Intrinsic Mode Functions (IMFs) with different sig-
nal power and instantaneous frequency distributions. Mul-
tiple Gaussian distributions will be fitted over the signal
power distribution of these IMFs in order to separate them
into high-power clusters with adjacent frequencies in each
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dimension and common frequencies across the three dimen-
sions. These IMFs are combined to form the Gaiting Wave-
forms in each dimension.

4. The method of claim 1 also identifies a high-power
Gaussian cluster of IMF's in each dimension with their instan-
taneous frequencies lying above the average instantaneous
frequencies of the Gaiting Waveforms. In each dimension,
these IMFs are combined to form the Impact Waveform in
that dimension. These waveforms show the timing and the
amplitude of decelerations/accelerations of the body parts as
they impact a surface.

5. The method of claim 1 also identifies a relatively a
high-power Gaussian cluster of IMFs (except the lowest fre-
quency ones less than a full cycle) in each dimension with
their instantaneous frequencies lying below the average
instantaneous frequencies of the Gaiting Waveforms. In each
dimension, these IMFs are combined to form the Perturbation
Waveform in that dimension. These waveforms show the
amplitude and relative time/phase of body movements among
individual gaiting cycles.

6. Means and standard deviations of the amplitudes, the
instantaneous frequencies, the relative phases of the Impact
Waveforms, Gaiting Waveforms and Perturbation Waveforms
in each dimension can be estimated using common statistical
analysis techniques and treated as the signatures or features of
human gaiting patterns.

7. The method of claim 2 enables Multivariate Empirical
Mode Decomposition (MEMD) to compute the waveforms of
Intrinsic Mode Functions (IMFs) along geodetic circles
bisecting the high-dimensional unit sphere sparely instead of
densely in uniform distribution. Consequently, the method
can reduce the amount of computation significantly due to
this reduction.



