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Frequency-Selective Transmission by a Leaky
Parallel-Plate-Like Waveguide

Ruey Bing Hwang, Member, IEEE, and Cherng Chyi Hsiao

Abstract—The phenomena of high frequency-selective trans-
mission of a plane wave by a dielectric two-dimensional (2-D)
periodic waveguide, comprising a uniform dielectric layer sand-
wiched by two finite thickness 2-D periodic structures served
as the waveguide wall is described. This structure is termed a
leaky parallel-plate-like waveguide because the waveguide walls
are not perfect reflection mirrors. The scattering characteristics
and dispersion relation, including the phase and attenuation
constants, of the 2-D periodic waveguide are thoroughly analyzed
with the modal transmission-line method and Floquet theory. The
extraordinary open stopbands caused by the contra-flow cou-
pling between a leaky parallel-plate-like waveguide and the leaky
waves, which are generated by 2-D periodic structures (waveguide
walls), are displayed in the form of the Brillouin diagram. The
phase-match condition is used to verify the resonant coupling
between the incident plane wave and the leaky parallel-plate-like
waveguide modes. Specifically, the transmission peak frequencies
are accurately predicted.

Index Terms—Frequency selective structure (FSS), leaky par-
allel-plate-like waveguide, resonant coupling, two-dimensional
(2-D) periodic structures.

I. INTRODUCTION

FREQUENCY selective surface (FSS) has been extensively
studied for many years. FSS is generally categorized as

metallic FSS typically consisting of many thin conducting
elements printed on a dielectric substrate for support [1]–[12],
and the dielectric waveguide gratings with periodic variation on
its permittivity or permeability [13]–[18]. The total reflection
and transmission frequencies of the periodic dielectric layer
were accurately estimated from the surface-wave dispersion re-
lation by the average dielectric constant of the one-dimensional
(1-D) periodic layer [13]. Resonant scattering from multilay-
ered dielectric gratings has been investigated using the modal
transmission line method [14]. A frequency-selective structure
based on guided-mode resonance effects in all-dielectric wave-
guide grating has been demonstrated theoretically and verified
experimentally [15]. A recent study analyzed the scattering and
guiding characteristics of a dielectric FSS using a full-wave
analysis based on a vectorial modal method [16]. Addition-
ally, the dielectric frequency-selective structures consisting of
photonic crystals with point or line defects were also applied
as Fabry–Perot resonators [19]–[21]. The electromagnetic
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band-gap (EBG) superstrates including two-dimensional (2-D)
periodic structures and controllable defects for a class of patch
antennas were adopted as spatial angular filters [22].

The numerical methods for resolving scattering- and guiding-
characteristics, and the electromagnetic fields with the 2-D pe-
riodic structures have been well developed. To mention a few,
these methods include modal transmission line [23]–[27], gen-
eralized scattering matrix [28], lattice-sum for 2-D cylinders
array [29], finite-difference time domain [30] and finite-element
frequency (and time) domain methods [31], [32].

Concerning the phenomena of frequency-selective transmis-
sion with the periodic structures [13]–[16], they were based on
the phase-match condition between the incident plane wave and
the leaky wave with first-order space harmonic. Namely, a plane
wave will couple to the space harmonic, and through it excite
the waveguide mode. Once excited, this mode will reradiate
plane wave into the air region through the same space harmonic,
thereby acting as a leaky wave.

This investigation presents a dielectric frequency-selective
transmission structure including a leaky parallel-plate-like
waveguide. The structure under consideration consisted of a
uniform guiding layer sandwiched by two finite 2-D periodic
structures as its sidewalls. The structure was named a leaky
parallel-plate-like waveguide because that the reflection mir-
rors (2-D periodic structures) were not perfect. Besides, this
structure also supports the surface- and leaky- waves and their
corresponding space harmonics. We found that the leaky-waves
with space harmonics are responsible for the higher
cutoff frequency of the leaky parallel-plate waveguide mode.
This structure enables energy to leak away from the waveguide
into air. According to the reciprocal theorem, the leaky wave
mechanism is the same for receiving and transmitting. The
same concept was applied in designing grating couplers acting
as a beam-to-surface wave coupling device [23], [24].

This investigation studies the wave phenomena in such a 2-D
periodic waveguide in order to clarify the physical picture of
wave processes involved in the structure. Specifically, the rela-
tionship between the scattering and guiding characteristics of
the 2-D periodic waveguide was carefully examined to accu-
rately predict the peak frequencies of transmission, rather than
observing frequency-selective transmission.

The dielectric frequency-selective structure can be regarded
as a stack of 1-D periodic layers. The Floquet theory and modal
transmission-line method [23]–[25] was used to formulate the
electromagnetic boundary-value problem as a transmission-line
network, thus obtaining the transfer matrix (or generalized scat-
tering matrix) of each 1-D periodic layer. Moreover, the building
block (module) scheme, popular in microwave engineering, was
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used to systematically analyze its scattering and guiding char-
acteristics. Each 1-D periodic (or uniform) layer was taken as
a module in the mathematical analysis procedures. Upon deter-
mining the input-output relation of each 1-D periodic layer, the
response of the overall structure can be immediately obtained
by cascading these building blocks.

Extensive numerical calculations were performed based on
the theory described previously. Specifically, the scattering
characteristics of the 2-D periodic structures were analyzed
to observe the phenomena of frequency-selective transmis-
sion. Additionally, the dispersion relation of the 2-D periodic
waveguide was rigorously calculated to observe its leaky-wave
phenomena. The phase-match condition was applied to identify
the resonant coupling between the incident plane wave and
leaky parallel-plate-like mode. Bertoni, Cheo, and Tamir [13]
successfully used this approach to estimate the total reflection
and transmission frequencies in the 1-D periodic layer. Fur-
thermore, the frequency-selective transmission frequency was
correctly predicted using the rigorous dispersion relation. Ad-
ditionally, the quality factor of the 2-D periodic waveguide was
calculated to qualitatively predict the transmission bandwidth.

The rest of this paper is organized as follows. Section II
describes the geometric structure and incident condition with
the problem under consideration. Section III outlines the math-
ematical analysis procedure. Section IV includes extensive
numerical examples to examine the frequency-selective trans-
mission. Furthermore, the dispersion relation, including the
phase and attenuation constants, was calculated rigorously by
transverse resonance. The phase-match condition was used to
verify the resonant coupling. Conclusions are finally drawn in
Section VII.

II. PROBLEM STATEMENT

The dielectric frequency-selective structure consists of a
stack of 1-D periodic layers and uniform dielectric separators,
as displayed in Fig. 1(a). This structure can be regarded as a
uniform guiding layer sandwiched by two 2-D periodic struc-
tures. Half of the structure was redrawn as shown in Fig. 1(b).
The thickness of the half uniform guiding layer is given by ,
and the relative dielectric constant is assumed to be . The
2-D periodic structure can be treated as a stack of 1-D periodic
layers. For instance, the 2-D periodic structure contains five
1-D periodic layers, as shown in Fig. 1(b). Each 1-D periodic
layer is composed of two dielectric media with dielectric con-
stants and and widths and . The thickness of the 1-D
periodic layer is given by . The dielectric separator between
two 1-D periodic layers is denoted as , and the width is given
by . The periods along the and directions are given by

and , respectively. The uniform
layer in the middle can be regarded as a defect in the width or
constituent medium of a complete 2-D periodic structure. Sig-
nificantly, this structure converges into a 2-D periodic structure
if the thickness of the uniform layer and .

The fields and structure were assumed not to vary along
the direction. Therefore, the overall problem can be sep-
arately treated as a scalar electromagnetic boundary-value
problem with TE or TM polarization. A plane wave

Fig. 1. Structure configuration: (a) dielectric frequency-selective structure
consisting of a uniform guiding layer (thickness is 2h) sandwiched by two
finite 2-D periodic structures, and (b) half of the structure with open-circuit or
short-circuit bisection.

is obliquely incident from the input region, designated as air,
with an incident angle .

Besides the scattering problem, the dispersion relation of
waves, such as the surface waves and leaky waves, in such a
2-D periodic structure were also computed. The structure can
be considered as open-circuit bisection (OCBS) and short-cir-
cuit bisection (SCBS) bisections owing to the symmetry of the
structure along the direction, as revealed in Fig. 1(b). Thus,
only half of the structure with open-circuit or short-circuit
termination need be considered, reducing the complexity of
mathematical calculations.

III. METHOD OF ANALYSIS

The structure under consideration was a cascade of multiple
1-D periodic layers, as shown in Fig. 1. The electric and mag-
netic fields in each 1-D periodic layer were expressed in terms of
the Floquet solutions, and the periodic medium was expanded
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by the Fourier series expansion. By imposing the electromag-
netic boundary conditions at the interface between two adja-
cent layers, the input-output relation of the discontinuity could
be obtained, yielding the input-output relation (transfer matrix)
of a 1-D periodic layer. Notably, the uniform layer could be
treated as a 1-D periodic layer with vanishing periodic varia-
tion, and thus its input-output relation can also be expressed
similarly to that of a 1-D periodic layer. Furthermore, the scat-
tering characteristics of the overall structure were determined
by cascading these transfer matrices. Two schemes, the scat-
tering of plane waves by the structure and the dispersion re-
lation of waves guided in the structure, were used to analyze
this problem. The detailed mathematical procedures regarding
in these two schemes were developed and could be found in lit-
erature [23]–[27]. In this paper, we merely list some important
equations for easy reference.

The periodic structure is assumed to extends infinitely along
the direction. Thus, the dielectric constant of the medium can
be expressed as

(1)

Such a periodic dielectric function can be expanded with the
Fourier series expansion, which yields

(2)

With periodic variation, the tangential components of electric
and magnetic fields in a 1-D periodic layer are expressed as

(3a)

(3b)

with . The index represents the th
1-D periodic layer where denotes the propagation constant
along the direction, which is given by the incident condition
when processing the scattering analysis, but is an unknown in
the dispersion relation calculation.

Subscript with the electric and magnetic fields in (3) rep-
resents the tangential component. Specifically, the field compo-
nents are for TE polarization, and for TM
polarization, respectively. The integer denotes the space har-
monic index, which ranges from negative to positive infinity.

The parameter denotes the propagation constant along
the direction, which is obtained by solving an eigenvalue
problem [17]. The parameters and are the compo-
nents of the eigenvector associated with the eigenvalue. The
unknown coefficients and denote the amplitudes of
the modes (eigen-functions) propagating along the positive-
and negative- directions, respectively, which were determined
once the incident condition was specified. Additionally, the
periodic variation of the uniform dielectric layer is assumed
to disappear. Thus, the tangential electric and magnetic fields
share a similar form as given in (3).

Moreover, the input-output relation of a 1-D periodic (or uni-
form) layer could be written as

(4)

where the parameters and represent the positions
of the two interfaces of the 1-D periodic layer. Where the vector

is a vector with its components representing the voltage am-
plitude of each space harmonic. The full matrix denotes the
transfer matrix, relating the electric field at the two interfaces of
a 1-D periodic (or uniform) layer. A detailed formulation and
mathematical procedure can be found in [23]–[27].

On determining the transfer matrix of each 1-D periodic layer,
the scattering characteristics of the overall structure, comprising
multiple 1-D periodic layers, can be further calculated by cas-
cading those transfer matrices. In doing so, the reflectance and
transmittance of each space harmonic are obtained as the inci-
dent plane wave is given. Additionally, the dispersion relation of
the source-free fields supported by the structure can be obtained
using transverse resonance technique [14]. In this case, the dis-
persion root , is generally a complex root, with its real and
imaginary parts denoting the phase and attenuation constants
along the direction.

IV. VERIFICATION OF THE COMPUTER PROGRAM

Before extensive numerical calculations are performed, the
plane wave scattering by a 2-D periodic structure containing
cylindrical dielectric rods arrays [32] (relative dielectric con-
stant , diameter is 4 mm, the period is 9 mm, and
incident angle is 50 ) was calculated to verify the accuracy of
the proposed computer program. We employed the staircase ap-
proach to partition the circular cylinders into many very fine
rectangular slices. Thus, the mathematical formulation proce-
dures described in the Section III are still available. We have
carried out the convergence test for the transmittance response
against the number of partitions for ensuring the accuracy of
the results. For each row of the circular cylinder array, we parti-
tioned it into 50 rectangular slices. In doing so, the permittivity
inside every layer can be assumed to vary in a simple step-wise
manner with respect to the -axis. Fig. 2 illustrates the varia-
tion of transmitted power against the operation frequency. A
good agreement was found among the four approaches, even
up to the high frequency range (for the frequency around 18.9
GHz, the result of this investigation agrees with that of the FEM-
nonorthogonal method).

V. NUMERICAL INVESTIGATION OF THE FREQUENCY

SELECTIVE TRANSMISSION FOR 2-D PERIODIC STRUCTURES

A. Example of Calculations

A computer program was written to compute the scattering
characteristics and the dispersion relation of the source-free
fields supported by the structure. The parametric studies for
the thickness of the uniform layer and the incident angle of
plane wave were conducted to observe the variations on the
transmittance response. Additionally, the dispersion relations of
waveguide modes in the uniform guiding layer were rigorously
computed. Moreover, the phase-match between the incident
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Fig. 2. Variation of transmitted power against frequency for a 4-layer circular
dielectric cylinders array incident by a plane wave with an oblique incident
angle.

plane wave and leaky-wave supported by this waveguide is
displayed herein to interpret the resonance coupling.

The structure parameters used in the numerical examples
throughout this study are given below. The relative dielec-
tric constants of the 1-D periodic layer are:
and . The uniform guiding layer has the same
relative dielectric constant as the dielectric separator, with

. The periods along the and directions are
the same . The duty cycles of the two dielectric
medium in a 1-D periodic layer is 50%. The thicknesses of
the 1-D periodic and dielectric separator layers are both .
Significantly, all the lengths in this work were normalized to the
period . The top and bottom surface of the uniform dielectric
layer both have three 1-D periodic layers.

Fig. 3 displays the variation of the transmittance against the
normalized frequency for various thicknesses of the uni-
form dielectric layer. Herein, we kept and iterated the wave-
length . This structure includes three 1-D periodic layers on
the top and bottom of the dielectric layer. The incident angle
of the plane wave is . Notably, cor-
responds to a complete 2-D periodic structure comprising six
1-D periodic layers. A significant stopband is present around
the normalized frequency . Specifically, a narrow
pass band occurs when the thickness was altered. Such a pass-
band has an excellent frequency-selectivity because it is located
in a stopband region. Additionally, the peak frequencies of total
transmission for each case were recorded in parentheses for fur-
ther comparison.

B. Band Structure of the 2-D Periodic Medium

This band structure is similar to a parallel-plate resonator, as
showed in the transmission response in Fig. 3. Therefore, the
2-D periodic structures acted as reflection mirrors to maintain
the resonator. To inspect the reflection characteristics of the re-
flection mirrors, the band structure of the 2-D periodic struc-
ture must be understood for allocating the frequency range of
stopband, where the reflection mirror operates. The following

Fig. 3. Variation of the transmittance against normalized frequency for the
dielectric frequency selective structure including three 1-D periodic layers on
the top and bottom surfaces of the uniform dielectric layer; widths of uniform
dielectric layer are: h = 0:25d , 0:95d , 1:0d , 1:05d .

example not only demonstrates the band structure of a 2-D peri-
odic structure with the parameters described previously, but also
provides a criterion for choosing the structure parameters.

The 2-D periodic medium can be treated as a stack of 1-D pe-
riodic layers. Therefore, the Bloch (periodic) condition was im-
posed on a unit cell including a 1-D periodic layer plus a uniform
dielectric separator [27]. A dispersion relation of waves propa-
gating in a 2-D periodic medium of infinite extent, which defines
the relationship among , , and , can thus be obtained.
The horizontal axis is the normalized phase constant along the

direction , while the vertical axis denotes the normal-
ized frequency , as indicated in Fig. 4. The zone drawn in
black color denotes the pass band region, in which the wave is
propagating and the phase constant is a real number.
The white zone, otherwise known as the stopband area, pos-
sesses a complex propagation constant exhibiting a strong re-
flection for the waves. The normalized frequency between
0.2 and 0.3 has a complete stop band. Significantly, the normal-
ized phase constant is less than unity enabling this 2-D
periodic structure to be used as a reflection mirror within this
stopband region.

The band structure for TM polarization was also calculated.
The stopband region of TE polarization conversely possessed a
passband behavior with TM polarization, although not shown
here.

Fig. 5 depicts the variation of transmittance of fundamental
space harmonic against the normalized frequency for various in-
cident angles. The structure configuration and parameters under
consideration were described in Section V-A. Additionally, the
half width of the guiding layer is . Herein, we kept
and iterated the wavelength . The incident angle was changed
from 0 to 50 in a 10 increment to observe the variation on
the transmitted peak frequency. The six transmission peaks are
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Fig. 4. Band structure of a 2-D periodic medium of infinite extent, the period
along x and z axes are both d ; the duty cycle in both axes are 50%, and the
regions drawn in black and white colors denote the passband and stopband areas,
respectively.

Fig. 5. Variation of the transmittance against normalized frequency for various
incident angles �, with h = 1:0d and TE polarization.

labeled in alphabetical order and their normalized frequencies
are given in round brackets. The increase in the incident angle
was found to cause the transmission peak to shift toward higher
frequency range, as revealed in Fig. 5. The increase in the
transmittance-peak frequency is not linear. Besides, the trans-
mission bandwidth changed as the incident angle was altered.
Specifically, the case with larger incident angle has a narrower
bandwidth. Moreover, the transmission-peak frequency can
be accurately predicted, and the tendency for the change with
the bandwidth can be qualitatively interpreted by computing
the dispersion relation of such a wave-guiding structure. The
transmission response with TM plane wave incidence was
also calculated. However, these results are not shown since no

Fig. 6. Dispersion relation of waveguide for various numbers of 1-D periodic
layers, open-circuit bisection case with the uniform dielectric layer thickness
h = d .

frequency-selective transmissions for various incident angles
were found. It is because that the stop band (total reflection) was
not present for the reflection mirrors (2-D periodic structure)
with TM polarization fields.

C. Dispersion Relation of the Leaky Parallel-Plate-Like
Waveguide

Fig. 6 illustrates the dispersion relation of the parallel-plate-
like waveguide for various numbers of 1-D periodic layers,
under open-circuit bisection (OCBS). Here, the dispersion root
is generally a complex number with its real and imaginary terms
denoting the phase and attenuation (leaky) constants ,
respectively. The number of 1-D periodic layers was altered
from 3 to 5 to observe their variation. Notably, the imaginary
part is mainly caused by the power leakage from the
waveguide, since all the dielectric media were assumed to be
lossless. The attenuation constant appears to be large and varies
rapidly when the normalized frequency is below .
Furthermore, the normalized phase constant decreased toward
zero as the number of periodic layer increased. The cutoff
phenomenon shows that the 2-D periodic structure functions
as a reflection mirror. The attenuation constant significantly
increased as the normalized frequency exceeded ,
due to the open stopband (a stopband in the fast-wave region)
resulting from coupling between leaky wave and the leaky par-
allel-plate waveguide mode. The next example clearly explains
the coupling using the Brillouin diagram.

Between these two normalized frequencies (
and 0.368), the normalized attenuation constants are insignifi-
cant for all three cases. The inset of Fig. 6 shows this region in
a magnified form for easy reference. The normalized attenua-
tion constant generally fell as the number of 1-D periodic layers
rose. The rise in the thickness of the 2-D periodic structures
(waveguide walls) lowered its attenuation constant, as was con-
firmed by intuition. Additionally, such a band limited waveguide
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has both lower and upper cutoff frequencies. Below the lower
cutoff frequency the wave is evanescent, while above the higher
cutoff frequency the wave experiences a strong reflection. Con-
sequently, this waveguide, unlike the traditional dielectric wave-
guide or metal waveguide, possesses limited bandwidth.

D. Brillouin Diagram of the Leaky Parallel-Plate-Like
Waveguide

To study the open stopband in the previous example, the dis-
persion relation was redrawn as displayed in Fig. 6 with the case
of three 1-D periodic layers, in terms of the Brillouin diagram.

This structure inherently contains two types of leaky wave;
one is termed the leaky parallel-plate-like waveguide modes,
as substantially explained in the previous examples, while the
other is the well known leaky wave due to the reflection mir-
rors (a stack of 1-D periodic layers). The leaky wave wave-num-
bers can be predicted by considering surface waves associated
with a layered medium composed of a stack of homogeneous
layers (separator and averaged 1-D periodic layers). When the
ratio of period to wavelength is sufficiently small, all the
space harmonics are evanescent in the open region. If this sur-
face-wave condition is not satisfied, then at least one space har-
monic must leak power into the air region. Consequently, the in-
troduction of the periodicity causes the presence of leaky space
harmonics. The bound surface wave was modified into the leaky
wave possessing a complex propagation constant.

From the literature [13], we know that the dispersion curve
of the space harmonic could be estimated from solving
the dispersion relation of a stack of uniform layers, where the
1-D periodic layer was approximated by a uniform dielectric
constant equal to the average value in the 1-D periodic layer,
if the modulation index (or dielectric contrast) is small enough.
However, the dielectric contrast ( and )
is significant in our numerical example. The results obtained
from the small perturbation analysis are not accurate. We have
to resort to the rigorous formulation described in Section III to
determine the propagation constants.

Notably, all the dispersion curves shown in this figure were
obtained by the same mathematical procedure described in
Section III. The area in shadow pattern denotes the bound-wave
region, while outside it is the fast-wave region, as was shown
in Fig. 7. The dispersion curves (for example, the six curves in
this figure) in this region are surface waves and their space har-
monics, with their normalized phase constant greater
than unity. The zone that separates the two groups of dispersion
curves is the surface-wave stopband, where the surface waves
can not propagate. Moreover, the curves in the fast-wave region,
extending from the surface waves in the bound-wave region,
are leaky waves. The two dispersion curves circled by a dashed
rectangle represent leaky parallel-plate-like waveguide modes,
where the lower curve corresponds to that displayed in Fig. 6.
The dispersion curves of the leaky parallel-plate-like waveguide
modes apparently intersected the leaky waves of space harmonic

. The contra-flow coupling in the vicinity of intersection
leads to a stopband. Moreover, the stop bands consist of two
individual stop bands because the leaky parallel-plate-like wave-
guide modes coupled with two leaky waves of space harmonic

, as depicted in the region denoted by a dashed circle.

Fig. 7. Brillouin diagram for the periodic waveguide shown in Fig. 1(b) with
open-circuit bisection (h = d ). The region marked with a dashed circle is
an open stopband. The two curves circled by a dashed rectangle denote leaky
parallel-plate-like waveguide modes.

Significantly, such an open (or leaky wave) stop band occurs
only in the present structure with periodicity along the di-
rection. If the periodicity along the direction disappears, that
is, the 1-D periodic layers are replaced by uniform layers, no
contra-flow coupling arises since no leaky wave is ex-
cited in this structure.

VI. PREDICT THE TRANSMISSION PEAK FREQUENCY BY THE

DISPERSION RELATION OF THE WAVEGUIDE

A. Phase-Match Condition

As we have known, when a plane wave, which can be con-
sidered as an excitation, is incident on a leaky waveguide, the
structure response is strong when the phase-match condition is
satisfied. In this sense the incident plane wave will couple to the
waveguide and excite the waveguide mode. Once excited, the
mode will reradiate into the open region. Such a coupling mech-
anism physically interprets the phenomenon of frequency-selec-
tive transmission and also provides us a way to predict the trans-
mission frequency.

To demonstrate the phase-match condition, the dispersion
curve of the case with three 1-D periodic layers, shown in Fig. 6,
was redrawn in Fig. 8, together with the phase constant distri-
bution of the incident plane wave. The horizontal axis is the
normalized frequency . The vertical axes are the normal-
ized propagation constant, with the left-hand axis denoting the
phase constant and the attenuation constant
at the right-hand side. A plane wave with incident angle is
obliquely incident on the waveguide, while the normalized phase
constant along the direction is . The dashed lines
in this figure show the normalized phase constants of the plane
wave with incident angle ranging from 10 to 50 with 10
increment. The intersection points reveal the phase matching
between the incident plane wave and the guided modes of the
waveguide. The number in parentheses after each character are
the normalized frequencies at the intersection point, which agree
very well with those transmission peak frequencies displayed
in Fig. 4. However, the normalized frequency of the transmis-
sion peak cannot be predicted in the normal incident case, the
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Fig. 8. Distribution of normalized phase and attenuation constants against the
normalized frequency; open-circuit bisection case with TE polarization; the
black curve denotes the phase constant; the gay curve denotes the attenuation
constant; the number of 1-D periodic layer is 3, and h = d .

phase-match condition is absent due to the lack of an intersection
point. Reciprocally, a single leaky mode does not radiate exactly
at the broadside with an infinite periodic waveguide, due to
its extremely large attenuation constant [33], [35]. Therefore,
the transmission peak frequency was estimated roughly by the
cutoff condition of the ideal parallel-plate waveguide with width

, which was given as: . The
dispersion relation of the short-circuit bisection case was also
calculated. However, these results are not shown, because this
mode did not contribute to the resonant coupling process.

The number of 1-D periodic layer was raised progressively
to observe the variations on the dispersion curves and the trans-
mittance response, although the resutls are not displayed in this
work. If the number of 1-D periodic layer is increased to 15,
the normalized attenuation constant is around . Besides,
the strong reflection occurs and the transmission is insignificant,
because that the 2-D periodic structures (waveguide walls) ap-
proach ideal reflection mirrors.

Concerning the phase-match condition, the attenuation
constant plays an important role in the physical process of
wave coupling. The attenuation constant indicates the ability of
the waveguide walls to preserve the energy in the waveguide.
Namely, the large attenuation constant (for a lossless structure)
means that a large amount of power will radiate into the air.
Conversely, if the attenuation equals zero, the waveguide is
isolated and the wave coupling can not occur. Thus, the fre-
quency-selective transmission can not take place.

B. Quality Factor of the Waveguide

Bandwidth also significantly affects the performance of the
frequency selective structure, in addition to the transmission
peak frequency. The quality factor of the waveguide should be
carefully studied, since the transmission characteristic strongly
relates to the resonance coupling. The quality factor of the wave-
guide was computed with three 1-D periodic layers under the

Fig. 9. Variation of the quality-factor against the normalized frequency for
the frequency-selective structure with three 1-D periodic layers; h = 1:0d ,
OCBS.

TABLE I
QUALITY FACTORS EVALUATED USING SEVERAL DEFINITIONS

OCBS termination condition. The qualify factor was defined as
( , where is the angular frequency; denotes
the attenuation, and represents the group velocity) in Collin’s
text book [34]. This definition is accurate for a dispersive trans-
mission resonator [34]. Significantly, the loss is mainly caused
by the radiation (power leakage from the waveguide), since the
dielectric media were assumed to be lossless. Furthermore, the
quality factor increased with the increase in the normalized fre-
quency, as demonstrated in Fig. 9. Recalling the transmission
response in Fig. 5, the transmission bandwidth narrowed as the
incident angle increased. This phenomenon indicates that the
larger the incident angle, the higher the value of Q.

The quality factor was also calculated by the other two defini-
tions, which are fractional bandwidth definitions and

. The Q-factor values obtained based on the three different
definitions are listed in Table I. The quality factor (obtained by
evaluating ) was closer to that obtained from the frac-
tional bandwidth definition than it was to that obtained by the
definition for the cases B, C and D, because that the wave-
guide is considerably dispersive. However, the values with the
cases E and F were not consistent among the three definitions.
Nevertheless, these three definitions of Q factor have similar
tendency of variation.
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Fig. 10. Dispersion relation of waveguide with channel widths h = 0:95d ,
1:0d and 1:05d ; open-circuit bisection case with TE polarization. The
horizontal line is the normalized phase constant of the incident plane wave with
oblique incident (� = 44:43 ).

C. Variation of the Waveguide Channel Width on the
Dispersion Relation and Transmission Peak Frequency

Fig. 10 shows the dispersion relation, including the normal-
ized phase and attenuation constants, of the waveguide with
channel widths , , and . The left-hand
and right-hand axes denote the normalized phase and attenua-
tion constants, respectively, while the horizontal axis represents
the normalized frequency. The dispersion relation of waveguide
is similar to that of the metallic parallel-plate waveguide, since
the 2-D periodic structure acts as a reflection mirror. There-
fore, the phase constant can be approximated using the simple

formula: . Moreover, the increase in
width leads to an increase in phase constant as the operation
frequency is fixed, which is confirmed in Fig. 10. Additionally,
the transmittance response in Fig. 3, with the incident condi-
tion designated as , is recalled.
Using the phase-match condition, the transmission peak fre-
quency could be correctly predicted from the intersection points
denoted by A, B, and C.

VII. CONCLUSION

This investigation presents the phenomena of high fre-
quency-selective transmission of the structure comprising a
uniform dielectric layer sandwiched by two 2-D periodic struc-
tures of finite thickness. The band-structure of the waveguide
wall (2-D periodic structure) was first calculated. Therefore,
the scattering characteristic of the parallel-plate-like waveguide
was computed to exhibit the frequency-selective transmission.
Additionally, the dispersion elation of such a 2-D periodic
waveguide was calculated to observe its wave-guiding phe-
nomena. The resonant coupling, owing to the coupling between
the incident plane wave and leaky parallel-plate-like waveguide
modes, was systematically verified with a phase-match con-
dition. The Brillouin diagram was utilized to investigate the

extraordinary open stopbands resulting from the contra-flow
coupling between a leaky parallel-plate-like waveguide and
the leaky waves contributed by the 2-D periodic structures
(waveguide walls).
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