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Abstract: Demand forecasting is important for the decision maker facing a
newsboy problem as goods cannot be carried over to be sold in the following
period. In this paper, we develop a model to assist the decision maker using an
unequally weighted method in combining forecasts to improve forecast accuracy.
The optimal weights are decided by minimizing the variance of combined
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forecasts. We find that the optimal weights of uncorrelated forecasts decrease with
their variances. When two uncorrelated forecasts are considered, one should select
the forecast with smaller variance to combine with current forecasts in hand.
Theoretically, the best combination of forecasts can be found by a complete
search algorithm. We also propose three algorithms: a forward algorithm, a
backward algorithm, and a correlated search algorithm to save computational time
when the number of forecasts to be considered is large.

Keywords: Newsboy problem; Demand forecasting; Search algorithm

1. Introduction

In practice, forecasts of demand drive business planning, which involves
tasks such as planning inventory and workforce levels, planning purchasing and
production, budgeting, and scheduling. Thus, forecasting accuracy is one of the
important factors that affect the effectiveness of business planning. Empirical
studies show that forecasting accuracy is usually improved when forecasts are
combined (Chan et al., 1999). The newsboy problem can be used to handle the
ordering of perishable items or style goods. Demand forecasting is important for a
newsboy problem because the shelf life of goods in the problem is limited.
Combining forecasts is seldom discussed in the papers regarding the newsboy
problem. But papers in other fields have studied the combination of forecasts. For
a more extensive review of the literature, please refer to Clemen (1989) and de
Menezes et al. (2000).

Why should we combine forecasts? Clemen (1989) points out that if one can
not recognize the underlying generating process of demand, it is better to combine
forecasts from different forecasting methods that are able to capture different
aspects of the information. How should forecasts be combined? Makridakis and
Winkler (1983) find that the equally weighted method works well empirically,
relative to the unequally weighted method. The popular approach to the unequally
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weighted method is to obtain the optimal weights by minimizing the mean
squared forecast errors subject to the constraint that the weights sum to 1. Freeling
(1981) shows that the weights will be larger for more accurate and less correlated
forecasts; however, if the correlations between forecasts are strong and positive,
the weights may be negative. Newbold and Granger (1974, 1984) note that in
practice, users may find it expensive or impossible to obtain the covariance matrix
of errors, and that the matrix is rarely stable over time. Bordley (1982, 1986)
suggests a Bayesian approach to combine forecasts, and shows that under a
normality assumption of forecast errors the optimal combination is a linear
average of the forecasts, although an intercept is needed. Bates and Granger (1969)
propose assigning the most weight to the model that has recently performed best.
Bunn (1975) suggests an approach to assign weights that are proportional to the
number of times that the model of interest has outperformed all other models to
date. Weights of forecasts should be updated over time. Armstrong (2001)
suggests updating the weights if evidence is strong. Winkler and Clemen (1992)
develop graphs and sampling distributions for the weights. Deutsch et al. (1994)
propose a method with changing weights that are derived from switching
regression models or from smooth transition regression models. Chan et al. (2004)
use cumulative sum (CUSUM) techniques to update the weights. Regarding the
best number of forecasts to be combined, Makridakis and Winkler (1983) report
that the accuracy of combined forecasts increases as more forecasts are combined;
Bopp (1985) further reports that the accuracy tends to level off. Armstrong (2001)
suggests combining at least five forecasts when possible.

The remainder of the paper is organized as follows. Section 2 proposes our
model. Section 3 suggests rules and algorithms to find the optimal or near-optimal
combination of forecasts and save computation time. Section 4 reports the results

of numerical analysis. Section 5 concludes the paper.
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2. The Model

Consider a newsboy problem. There are two stages in the decision process
for each period. At the first stage, the decision maker has prior information of
demand from historical data, but the decision maker can choose to buy other
sources of information within a budget amount. After selection, forecasts from the
selected sources are combined by using an unequally weighted method. Then, the
combined forecast is used to update the prior demand to obtain the posterior
demand. At the second stage, the decision maker decides the order quantity based
on the posterior demand.

Let X be a random variable that represents the demand for the period.
Assume that X follows N(6, 7°) and that h(x) is its density function. The
distribution of X is considered as the prior information. At the first stage, the
actual demand x is unknown. However, the decision maker may use
expense-incurring information sources to estimate x; e.g., outside experts could be
hired to provide forecasts that may be able to capture different aspects of the
information (Clemen, 1989). Let Yjx denote the conditional estimator of x from
the ith source, whose distribution and forecast errors (or variance) can be obtained
from past records of Yix. In practice, outside experts are willing to provide the
records of their past forecasts, or the decision maker can keep track of the
performance of information sources. Then, Yi|x is assumed to follow N(x, s,-2), and
also assumed to be an unbiased estimator of x. For a biased forecast, it should be
obvious that a bias which is known will always be removed by offsetting.
Therefore, we do not discuss the case of biased forecasts in this paper. Suppose
there are n such sources available to choose from, thus i = 1, 2,..., n. Let 4 be the
set of selected information sources and b; be a binary value. If i€A, the ith source
is selected and b; = 1; otherwise, the ith source is not selected and b; = 0. After
selection, forecasts from the selected sources are obtained. Then, the decision
maker is assumed to use an unequally weighted method to combine forecasts. Let
A be the weight of Yijx and Y]x be the combined forecast. Then,
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Ylx= 2,1,.b,1/,.|x, Zl,l =1,b,=0orl,if b =1,4 #0;if b, =0,4 =0.

It is clear that Y]x follows N(x, s*), and the decision maker is assumed to
decide the optimal weights of forecasts by minimizing the variance of combined

forecast s°:

min $= min (D EBs} +2D AAbb,COV(Y|x,Y |x)},
yeeesfop L 5 | i=1

i<j

St. Y A, =1,b;=0o0rl, ifb, =14 #0;ifb,=0,4,=0. (1)
i=l
Let 17= (1, 1,..., 1) and X be the covariance matrix of the forecasts. Solving
(1) by Lagrangian method, we obtain the vector of the optimal weights A" = (1'),
A'5,..., A'y), the optimal Lagrangian multiplier 4, and the optimal s*:

A*=X7"1/1"t™"), )
B*=2/1"E™"), 3)
s?=1/(1"x7'1). 4)

The optimal weights in (2) are the same as those obtained by minimizing the
mean squared forecast errors (Bates and Granger, 1969). In practice, models that
assume independence between the individual forecast perform considerably better
than those that attempt to consider correlation (Newbold and Granger, 1974,
1984). Besides, outside experts seldom provide the information of correlations

among their forecasts. Thus, we assume that Yi|x, i = 1, 2,..., n are independent,

n
i.e, s’=D Ab}s}. But, the cases of correlated forecasts are discussed in Sections
&

3.2 and 4.2.
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1
" s7 1
Theorem 1. 1.=—'—, jed, B = ,and s* =
. 1 1 zi
2 2 ;
i€A i i€d Vi 4 S

Proof: /l*j , B, and s° are obtained by simplifying (2), (3), and (4), respectively.
From Theorem 1, forecasts with greater variances are given lower weights
(see Freeling, 1981).
Lemma 1. When one of two forecasts is considered to be included into A, one
should include the forecast such that its variance is smaller, so that the decrease
in s° is more significant.
Proof: Lemma 1 is proved from Theorem 1.
Lemma 2. s° decreases and tends to level off as more forecasts are combined.
Proof: Lemma 2 is true from Theorem 1.
Let g(y|x) be the density function of Y]x. Then, the density function u(y) of ¥
is:

u@hﬁéwmmnﬂ=z§ﬁﬁjﬁmvo~mwxﬁ+f» )

The unconditional Y follows N(6, s> + 7°). Next, the conditional Xly is
regarded as the posterior demand, and its density function f{x|y) is obtained as

follows.
_g0 _ 1 —(x=p(y))’ 6
f(dy) 208 T e exp( S ), (6)
HY)=EX )= (T’y+s°0)/(T* +5°), @)
o = Var(Xly) =7°s* (7% +5%), (8)

s* =Y Ablsl, D A4 =1,b=0orl. )
i=1 i=1

xz’
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From (7), the posterior mean () is a weighted average of the prior mean &
and the forecast y. Moreover, the weights are disproportionate to their variances.

Lemma 3. lim u(y)=6 and lim o’ =7".

Proof: This is easily shown from (7) and (8).

From Lemma 3, if s> approaches infinity, no forecast is selected and only the
prior information is used; the posterior demand X]y is reduced to the prior demand
X. This may happen when the costs of sources are too expensive or uncertain.
Lemma 4. & decreases with s° and the optimal weights in (2) also minimize o°.
Proof: This is easily shown from (8), (1), (2), and Theorem 1.

Next consider the decision at the second stage. Let O be the order quantity.
Define H(Q) = 0 if O = 0; otherwise, H(Q) = 1. Let E(TC,) be the expected total
cost before ordering, and c;, ¢,, and ¢, be the fixed ordering cost, unit overage
cost, and unit underage cost, respectively. The decision maker’s objective function

is:
min E(TC,(Q)) = ¢,H(Q) +e, [/ (x~0)f (dx +¢, [} (@=x)f(fp)dx.  (10)

Equation (10) is a newsboy problem with fixed ordering cost. Let O; be the
optimal order quantity when fixed ordering cost is ignored. Then,

[ FGlyydx=c, [, +¢,) = Bk), k=@ (¢, (¢, +¢,)).

1=max {uy) + ko, 0.
(11) Let Q" be the optimal order quantity. Then,

. [0, E(TC,(0)) < E(TC,(Q,
0 { (TC,(0)) < E(TC, () (12)

~ .. E(TC, (0)) > E(TC,(Q,))

Next, from (11), a condition for Q" > 0 is:

M) + ok > 0. (13)
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Inserting (7) and (8) into (13), we have
y>-s*{k/o+0/7*}=r. (14)

Let Z denote N(0, 1), and ¢ and @ be its density function and distribution
function, respectively. Let W follow N(% &°) and w(w) be its density function. We
obtain the following formulas (Silver et al., 1998).

j;’wv(w)dw =7 j:(z —k)#(2)dz+Q j: #(2)dz=1 j: z4(z)dz + aj: #(z)dz . (15)

[ 20(2)dz = p(k), k=(Q-)/x.

(16)
Then, (10) can be simplified by (15) and (16) as follows.
Y "=0
E(rc,)=|*0) Q=0 17)
¢, +(c, +c,)op(k), O >0

From (12), for 0> 0, E(TC,(Q1)) < E(TC,0)). Therefore, from (17) we

have

y>s*{c, +(c, +c,)op(k)} c, 0 —6&>/T° =t. (18)

Lemma 5. There exists a threshold value of forecasty” = max{r, t, 0}.
Proof: Since y > 0, this is proved from (14) and (18).
From Lemma 5, if y, the value of the combined forecast Y]x, exceeds the
threshold value y*, an order will be issued; otherwise, nothing should be ordered.
Now, consider the decision at the first stage. At the first stage, the decision
maker decides which information sources should be selected. The results of
selection can be classified into two situations: 4 is empty and only prior
information is used from Lemma 3; and A4 is not empty. After selection, forecasts
are produced and combined to update the prior demand to obtain the posterior
demand. The combined forecast has two effects on the ordering decision. One
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effect is that an order is issued if the combined forecast y is larger than the
threshold value y". Let c; be the cost of the ith forecast. The total cost when Q"> 0

is as follows from Lemma 5 and (17):
TC, =(c, +c,)op(k) +c, + Zc,.b,., y>y',b=0o0r1,and 4 #9¢.
i=l

The other effect is that an order is not issued if the combined forecast does
not exceed the threshold value. From Lemma 5 and (17), the total cost when Q"=
01s:

TCy= cy(y) + Y cb,, y<y,bi=0orland4 = ¢.
i=l

From (5), Y is N(6, s* + 7) and u(y) is its density function. Let E(7Cy) be the
expected total cost before forecasting. Then, the objective function at the first

stage is:
‘ [ 1Cu()dy+ [ TCu(y)dy, A#9.
min E(TC,)=41 " N 0
s H(Q)+c,[ (x~Qh(xdx+c, [ (Q~x)h(x)dx, 4= ¢.
St. D ¢h, <bb,=0orl. (19)
i=1

In (19), b is the budget for buying demand information. Equation (19),
where 4 is not empty, is simplified by (15) and (16) as follows:

E(TC,)={~c,0+(c, +¢,)op(k) +c,} j: #(2)dz — c p(k,)T* I\s* + 72

+c,0+) be,, k=" -8)/s* +7*,
i=1

St. D ¢b, <bb,=0orl. (20)
i=1

Equation (19), where 4 is empty, is simplified by (15) and (16) as follows:
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c,0, 0 =0

. 21)
¢, +(c, +¢,)mpk), QO >0

E(TC,) ={

When the number of forecasts that could be chosen is small, (19) can be
solved by the method of complete search and the number of evaluated
combinations is 2". Next, we propose other search algorithms to save

computational time when the number of forecasts is large.

3. The Heuristic Rules and Search Algorithms

3.1 Uncorrelated Forecasts

It is logical to infer from Lemma 1 that more accurate but less costly
forecasts are preferred when selecting forecasts. Thus, we have the following
heuristic rules.

Rule 1. If c; < cj and s; <sj, the ith forecast is no worse than the jth forecast and
has a higher or equal priority to be included in A (the set of selected forecasts), or
a lower or equal priority to be excluded from A.

Rule 2. If ¢c; <c;<...<c,and s; <s; <...<'sy,, the order of inclusionin Ais 1, 2,...,
n or the order of exclusion from Aisn, n—1,...,1.

From Lemmas 2 and 4, adding more forecasts results in a more accurate X]y,
but the accuracy tends to level off (Makridakis and Winkler, 1983, and Bopp,
1985). The cost of forecasts may finally outweigh the benefits of accuracy. Thus,
we have
Rule 3. Without considering the budget limit, when the forecasts are included one
by one into A by the order decided by Rule 2, E(TCy will decrease and then
increase.

Rule 4. Without considering the budget limit, when the forecasts are excluded one
by one from A by the order decided by Rule 2, E(TCy will decrease and then

increase.
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Rules 3 and 4 imply that E(7C)) is a concave upward function of the number
of forecasts if forecasts are included by the “true” order of inclusion or excluded
by the “true” order of exclusion. It is hard to prove these rules but they are
discussed in the numerical analysis section. Since Rules 1 and 2 may be
insufficient to decide the priorities for all forecasts, we define a cost-deviation
index of the ith forecast as c¢;s; to assist in deciding the order of inclusion or
exclusion. The forecast with high cost-deviation index is considered to be less
likely to be included or more likely to be excluded since its cost or standard
deviation is high.

Rule 5. The forecast with the lower value of cost-deviation index has a higher
priority to be included in A or a lower priority to be excluded from A.

Note that Rule 5 is also a heuristic rule based on Lemma 1. Next, we develop
a forward algorithm and a backward algorithm by the concepts in Lemmas 1 and
2, and Rules 3, 4, and 5, to find the optimal or near-optimal combination and save
computational time. For the two algorithms, the maximal number of evaluated
combinations is n + 1, where n is the number of information sources. Comparing
the forward and backward algorithms with the complete search algorithm, when n
= 5 (Armstrong, 2001, suggests using five or more forecasts), the saving in
computation time is at least 84%.

The forward algorithm assumes that A4, the set containing forecasts to be
combined, is empty then the forward algorithm begins to include forecasts one by
one into 4 till the budget is violated or the expected cost increases. The backward -
algorithm assumes that all forecasts are already included in A4 then the backward
algorithm begins to exclude forecasts one by one from A till the expected cost
increases and budget is not violated.

Forward Algorithm

Step 1. Start from A = & and calculate E(TCy 4 by (21).

Step 2. Determine the priority of inclusion for all forecasts by Rules 1 and 5.

Step 3. Include the current highest priority forecast into A. For the current A,
check whether the budget constraint is violated. If yes, exclude the newly included
forecast from A and go to Step 6.
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Step 4. Calculate E(TCyy by (20). Check whether E(TCp, increases. If yes,
exclude the forecast in Step 3 from A and go to Step 6, otherwise, go to the next
step.

Step 5. If all forecasts are in A, go to Step 6, otherwise, let the forecast that has
the next-highest priority be the current highest and go to Step 3.

Step 6. The current A is the solution set.

Backward Algorithm

Step 1. Start from A, including all forecasts. Calculate E(TCy4 by (20).

Step 2. Determine the priority of exclusion for all forecasts by Rules 1 and 5.

Step 3. For the current A, check whether the budget constraint is satisfied. If yes,
Feasible = Yes, otherwise, Feasible = No.

Step 4. Exclude the current highest-priority forecast from A. If A = & calculate
E(TCp4 by (21); otherwise, calculate E(TCy4 by (20).

Step 5. If Feasible = Yes and E(TCy)4 increases, add the excluded forecast in Step
4 into A and go to Step 7, otherwise, go to the next step.

Step 6. If A = & go to Step 7; otherwise, let the forecast with the next-highest
priority be the current highest and go to Step 3.

Step 7. The current A is the solution set.

3.2 Correlated Forecasts

For correlated forecasts, weights and s° are calculated by (2) and (4),
respectively. Let Ay ,, be the mth combination set when k correlated forecasts are
selected. Define ¢ , to be its corresponding total cost of forecasts and s, to be
the corresponding combined conditional standard deviation. For example, there
are five correlated forecasts to be considered, then 4,3= {1, 4}, 523 = (A%s)> +
A’ss + 24 ACOV(Yi|x, Yalx))'” and ¢33 = ¢ + ca.

Rule 6. If ckxm <Ckm, and Sk m <Skm’, Ak m is no worse than Ay, and has a
higher or equal priority to be selected.

We define a combined cost-deviation index of 4 ;. », as ¢k mS k. m- Then, we
have

Rule 7. The set with the lower value of index has a higher priority to be selected.
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Rules 6 and 7 are also heuristic rules. The following algorithm is proposed to
find the optimal or near-optimal set. The expected number of evaluated
combinations is n + 1.

Correlated Search Algorithm

Step 1. Let k = 0 and Tempcost = oo,

Step 2. Find all sets containing k forecasts.

Step 3. For those sets in Step 2 that do not violate the budget constraint, calculate
their indexes. Find the selection set with the highest priority by Rule 7, and
calculate its E(TCy) using (20) or (21).

Step 4. Let Tempcost(k) be the E(TCy in Step 3 and Tempset(k) be the
corresponding selection set.

Step 5. If Tempcost(k) < Tempcost, then Tempcost = Tempcost(k) and Tempset
=Tempset(k). Otherwise, nothing is done. !

Step 6. If k = n, go to the next step. Otherwise, k = k + 1. Go to Step 2.

Step 7. Tempcost is the optimal cost and Tempset is the optimal solution set.

4. Numerical Analysis

Set the values of some model parameters in Section 4 to be as follows.
X  the prior demand follows N(6,7), 8= 5,000, and 7 = 1,500°.

¢, unit underage cost is $2.4.

C, unit overage cost is $2.

¢s fixed ordering cost is $4,500.

4.1 Uncorrelated Forecasts

We first investigate the validity of Rules 1 and 5. Suppose the decision
maker has to choose one of two forecasts. Consider the following three cases. In
Case 1, the variances of the two forecasts are s;> = 55> = 1,400%, the costs of the
two forecasts are c; = 200, and ¢; changes from 150 to 550. In Case 2, ¢; = ¢; =
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200, §o2 = 1,6002, and s; changes from 1,200 to 2,000. The results of computer
output are in Tables 1 and 2. We find that Rules 1 and 5 are useful since correct

decisions are made.

Table 1
The Validity of Rules 1 and 5 for Uncorrelated Forecasts in Case 1
Ci E(TCJ’)(” E(TC/)(Z) C|S1 C2S2 Best Set Rule 1 Rule 5
150 6,421 6,671 210,000 560,000 {1} Correct Correct
250 6,521 6,671 350,000 560,000 {1} Correct Correct
350 6,721 6,671 490,000 560,000 {1} Correct | Correct
450 6,821 6,671 630,000 560,000 {2} Correct | Correct
550 6,921 6,671 770,000 560,000 {2} Correct | Correct
Table 2
The Validity 6f Rules 1 and 5 for Uncorrelated Forecasts in Case 2
Sl E(TCf)(” E(TCf){z) C1S1 C2S2 Best Set Rule 1 Rule 5
1,200 6,315 6,599 240,000 320,000 {1} Correct | Correct
1,400 6,471 6,599 280,000 | 320,000 {1} Correct | Correct
1,600 6,599 6,599 320,000 320,000 {1} or {2} Correct | Correct
1,800 6,703 6,599 360,000 320,000 {2} Correct | Correct
2,000 6,788 6,599 400,000 320,000 {2} Correct | Correct

Next, in Case 3, ¢; = 200, ¢, = 400, ;> = 1,400% and s, changes from 1,200
to 3,600. The results are in Table 3. We find that Rule 1 is useful when it is
applicable. When s; > 3,000, Rule 1 can not be applied but correct decisions are

made by using Rule 5. Thus, Rule 5 is useful. However, when indices are close to
each other (or c;sy is between 360,000 and 480,000), wrong decisions are made by

using Rule 5 and the cost error is within 3.69%.

Table 3
The Validity of Rules 1 and 5 for Uncorrelated Forecasts in Case 3
S1 E(TC[){” E(TC/){Z} C|S1 CzSz Best Set Rule 1 Rule 5
1200 6,315 6,671 240,000 560,000 {1} Correct Correct
1800 6,703 6,671 360,000 | 560,000 2} NA." | Wrong
2400 6,917 6,671 480,000 560,000 {2} N.A. Wrong
3000 7,039 6,671 600,000 560,000 {2} N.A. Correct
3600 7,114 6,671 720,000 560,000 {2} N.A. Correct

Note : *: Not applicable.
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In Case 4, five uncorrelated forecasts are considered to be combined. Set the

new values of the model parameters to be:

Yipx the ith forecast follows N(x, s,-z), i=1,2,3,4,and 5.

st 517 =1,400%, 5,> = 1,400, 55° = 1,600%, 54 = 1,500°, and s5” = 1,3007,

¢i  the cost of Yx, ;=$200, c,=$400, c3 =$200, c4=$600, and ¢s=$250.

b  the budget amount is $1,500.

The order of inclusion can not be determined by Rule 1. Then, in computing

the cost-deviation index c¢;s;, by Rule 5, we find that the order of inclusion is 1, 3,
5, 2, and 4 or the order of exclusion is 4, 2, 5, 3, and 1. The results are in Tables 4
and 5.
Table 4
The Expected Costs for Sets of Uncorrelated Forecasts in Case 4

Set | E(TC) [ Set | E(TC) | Set E(TC) [ Set E(TC) [ Set E(TC)

@ | 7,116 | {1,3} | 6,381 | {3,5} | 6,386 | {1,45} |6,757 | {1,245} | 7,022
{1} 6,471 {1,4} | 6,751 {4,5} 6,759 | {2,3,4} 6,976 | {1,3,4,5} 6,850
2y 6671 | {15} | 6327 | {1,2,3} | 6,552 | {2,3,5} | 6,575 | {2,3.4,5} | 7,050
{3} 6,599 | {2,3} | 6,581 {1,2,4} | 6,934 | {2,4,5} 6,957 | {1,2,3,4,5}" | 7,144
4y 6938 | {24} [ 6951 | {1,25}]6,537 | {345} |6,797
(5} | 6,447 | {25} | 6,527 | {1,3,4} | 6,776 | {1,2,3,4} | 7,020
(12} | 6517 | 34} ]6820 | {1,3,5} 6375 | {1,23,5} | 6,634

Note :+: Violate budget constraint.

Table 5
The Found sets for Various Numbers of Forecasts in Case 4
No. of The Complete Search The Forward The Backward

Forecasts Algorithm Algorithm Algorithm

0 %) %) N.A

1 {5} {1} N.A

2 {1,5}° {1,3} {1,3}

3 {1,3,5} {13,5}" {1,3,5}"

4 {1,2,3,5} {1,2,3,5} {1,2,3,5}

5 {12345} N.A. {1,2,3,4,5}"

Note: *: Also found as the optimal set by a different algorithm
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From Tables 4 and 5, the optimal set is {1, 5}, and the expenditure on

forecasting is $450 (=c; + ¢s). In using the complete search algorithm, the number
of evaluated sets is 32 (=2°). In using the forward and backward algorithm, the
number of evaluated sets is 5 and 4, respectively, an 84% reduction compared to
32 evaluated sets for the complete search algorithm; the near optimal set {1, 3, 5}
is found and the cost error is $48, which is about 0.76% of the expected optimal
cost ($6,327). Thus, use of the forward and backward algorithms may
considerably reduce computation burden within reasonable cost errors. We find
that the differences in cost-deviation indices among Forecasts 1, 3, and 5 are
relatively small compared to those involving other forecasts. Thus, the forward
and backward algorithms fail to find the optimal set. Then, the following rule can
be used to find the optimal set.
Rule 8. Revise the order of inclusion without violating Rule 1. Find out all
possible revised orders. Then, apply forward or backward algorithms for each
revised order to find the optimal sets and their corresponding optimal expected
costs. Then, compare these costs with the cost of the optimal set of the original
order to find any cost improvement.

The effectiveness of Rule 8 depends on the number of possible revised
orders. In this case, 1, 5, 3, 2, and 4 is a possible revised order. From the results of
Tables 4 and 5, the optimal set in Case 4 can be found by Rule 8.

4.2 Correlated forecasts

Suppose two correlated forecasts are considered to be combined. In Case 5,
c1 = ¢ = 200, 517 = 1,4002 and s,° = 1,6002, and covariance changes from
-1,792,000 to 1,792,000. Since -1 < p < 1, -0:0,< COV(x, y) < 0:0; The results
are in Table 6. From Table 6, when the coefficient of correlation is positive, the
best set is {1}; otherwise, the best set is {1, 2}, and the weight of Forecast 2, A,
decreases with covariance. It seems better to combine negatively correlated
forecasts because overestimated forecasts may be traded off by other
underestimated forecasts. In other words, it is less useful to combine “redundant”
forecasts, i.e. highly positively correlated forecasts.
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Table 6
Comparison Between Positively and
Negatively Correlated Forecasts in Case 5

COVLZ p E(TC/){]} E(TCf){z} E(TCf)“’z} Best Set /11 /12
-1,792,000 | -0.92 6,471 6,599 5,653 {1,2} 0.533 0.467
-896,000 -0.46 6,471 6,599 6,123 1,2} 0.542 0.458
0 0 6,471 6,599 6,381 {1,2} 0.555 0.445
896,000 0.46 6,471 6,599 6,551 {1} 0.583 0.417
1,792,000 0.92 6,471 6,599 6,663 {1} 0.664 0.336
Table 7
The Validity of Rules 6 and 7 for Correlated Forecasts in Case 6
C3 E(TC[)(]_Z) E(TC/‘)“‘:;) Cl + C3 Index of {1,3} Best Set Rule 6 Rule 7
50 | 6,027 6,398 300 353,834 {12} | N.A. | Wrong
250 6,027 6,598 500 589,724 {1,2} N.A. | Correct
450 6,027 6,798 700 825,613 {1,2} Correct | Correct
650 6,027 6,998 900 1061,503 {1,2} Correct | Correct
850 6,027 7,198 1,100 1297,393 {1,2} Correct | Correct

Next, we study the validity of Rules 6 and 7. In Case 6, three forecasts are
considered and suppose that Forecast 1 is already selected. Furthermore, ¢; = 250,
¢2 = 400, ¢3 changes from 50 to 850, 5,° = 1,300% s5,> =1,400%, s3> = 1,6007, the
covariance of Forecasts 1 and 2, COV,, is -120,000, and COV; 3 = 80,000. Note
that in this case, ¢; + ¢ = 650, the combined standard deviation of {1, 2} is 556
(rounding to integer), the cost-deviation index of {1, 2} is 361,606, and the
combined standard deviation of {1, 3} is 1,179. The other results are in Table 7.
We find that Rule 6 is useful when it is applicable. When c; is about 250, Rule 6
can not be applied but correct decisions are made by using Rule 7. Thus, Rule 7 is
useful. However, when c¢; is about 50, the combined cost-deviation indices are
close to each other (one is 6,027 and the other is 6,398). Wrong decisions are
made by using Rule 7 and the cost error is within 6.16%.

In Case 7, COV 3 = 20,000, 53 changes from 500 to 2,100, and the values of
other parameters are the same as those in Case 6. Note that in Case 7, ¢; + ¢; =
650, ¢; + ¢3 = 450, the combined standard deviation of {1, 2} is 556, and the
cost-deviation index of {1, 2} is 361,606. The other results are in Table 8. From
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Table 8, Rule 6 is useful when it is applicable. When 1,300 < s;, Rule 6 can not be
applied but correct decisions are made by using Rule 7. Thus, Rule 7 is useful.
However, when s; is about 900, the combined cost-deviation indices are close to
each other (one is 6,027 and the other is 6,147). Wrong decisions are made by
using Rule 7, and the cost error is within 1.99%.

Table 8
The Validity of Rules 6 and 7 for Correlated Forecasts in Case 7
Ss | E(TCPg1ay | E(TCPyisy | Stdof {1,3} | Index of {1,3} | Best Set | Rule 6 | Rule 7
500 6,027 5,742 498 224,268 {1,3} Correct | Correct
900 6,027 6,147 795 357,972 {1,2} N.A. | Wrong
1,300 6,027 6,348 972 437,450 {1,2} N.A. | Correct
1,700 6,027 6,453 1,077 484,430 {1,2} N.A. [ Correct
2,100 6,027 6,517 1,145 515,224 {1,2} N.A. | Correct
Note :": Rounding to integer
Table 9

The Validity of Rules 6 and 7 for Correlated Forecasts in Case 8

COV,; p | Stdof {13} | Indexof {1,3} | E(TC)yz | BestSet | Rule6 Rule 7

-1,664,000 | -0.8 459 204,009 5,674 {1,3} | Correct | Correct
-832,000 | -04 784 352,757 6,132 {1,2} N.A. | Wrong
0 0 1,009 454,027 6,386 {1,2% N.A. | Correct
832,000 | 0.4 1,185 533,460 6,553 {1,2} N.A. | Correct
1,664,000 | 0.8 1,300 584,874 6,647 {1,2} N.A. | Correct

In Case 8, COV, 3 changes from -1,664,000 to 1,664,000, and the values of
other parameters are the same as those in Case 6. Note that in Case 8, ¢; + c; =
650, ¢; + ¢3 = 450, the combined standard deviation of {1, 2} is 556, and the
cost-deviation index of {1, 2} is 361,606. The other results are in Table 9. We find
that Rule 6 is useful when it is applicable. When 0 < COV 3, Rule 6 can not be
applied but correct decisions are made by using Rule 7. Thus, Rule 7 is useful.
However, when COV 3 is about -832,000, the combined cost-deviation indices are
close to each other (one is 361,606 and the other is 352,757). Wrong decisions are
made by using Rule 7 and the cost error is within 1.74%.

Next, consider Case 9. In this case, the setting and the values of model
parameters are the same as those in Case 4. Besides, the covariance matrix is a
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positive semi-definite symmetric matrix as follows. The combined cost-deviation

index ¢y mS k m are computed by Rules 6 and 7. Applying the correlated search

algorithm and the complete search algorithm, the respective results are in Tables

10 and 11.
1960000  — 1000000 800000  — 700000 600000
1960000  — 1300000 400000 - 1200000
Y= 2560000  — 900000 800000
2250000 — 500000
1690000
Table 10
The Expected Costs for Sets of Correlated Forecasts
Set | E(TC) [ Set [ E(TC) | Set E(TC)) | Set E(TC) | Set E(TC)
@ | 7,116 | {1,3}]6536 | {35} |6548 | {145} [6,642 | {1,24,5) |6,582
(1} | 6471 | {14} | 6,545 | {45} |6,610 | {234} |6,583 | {1,345 |6,782
2y 6671 | {1,5} 6473 | {1,23} | 6,151 | {23,5} |6,075 | {2,345} | 6,571
3y 16599 | {23} ]6,154 | {124} |6,615 | {24,5} |6,549 | {1,234,5}" | 6,679
4y 16938 | {24} [7041 | {125} 6,075 | (34,5} |6,675
(5} |6447 | {2,57]6,027 | {134} ]6,602 | {1,234} ]6592
(12} | 6,166 | {34} | 6,580 | {1,3,5} | 6,640 | {1,2,3,5} | 6,194
Table 11
The Found Sets for Various Numbers of Correlated Forecasts
No. of Forecasts The Complete Search Algorithm The Correlated Algorithm
0 %) %)
1 {5} {1}
2 2,5} {2,5)"
3 {1,2,5} {1,2,5}
4 {1,2,3,5} {1,2,3,5}
5 {1,2,3,4,5}" {1,2,3,4,5}"

By the correlated search algorithm, the optimal set {2, 5} is found, and

Forecasts 2 and 5 are negatively correlated. Thus, it is better to combine

negatively correlated forecasts. However, if the near-optimal set is found, the

following rule is useful.

Rule 9. Revise the order of inclusion without violating Rule 6. Find out all
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possible revised orders. Then, apply forward or backward algorithms for each
revised order to find the optimal sets and their corresponding optimal expected
costs. Then, compare these costs with the cost of the optimal set of the original
order to find any cost improvement.

Finally, Figure 1 depicts E(TCy) when using the true order of inclusion in
Cases 4 and 9. The expected costs decrease then increase (concave upward) in
both cases. It shows that Rules 3, 4, 5, 6, and 7 are useful.

Figure 1

Expected cost and the number of combined forecasts
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5. Conclusions

This paper develops a model for a decision maker facing a newsboy problem
to combine demand forecasts. Consider a sequential decision process in a
newsboy problem. The decision maker already has the prior information of
demand from past records, but there are different sources of demand information

that may be purchased. The decision maker needs to decide which sources to be



Chiao Da Management Review Vol. 34 No.1, 2014 197

purchased without violating the budget. After selection, forecasts from selected
sources are combined to update the prior demand to obtain the posterior demand.
The order quantity is then decided based on the posterior demand. The present
results confirm some results of previous studies. Other important results are as
follows.

(i). The optimal weights of uncorrelated forecasts decrease as their variances
increase.

(i1). Without considering the costs of forecasts, when two uncorrelated forecasts
are compared, we select the forecast with smaller variance to combine with
current forecasts in hand.

(iii). It is better to combine negatively correlated forecasts.

(iv). When no forecast is selected, the decision maker uses the prior information
only.

(v). When the number of uncorrelated forecasts is large, we suggest the use of the
forward algorithm or the backward algorithm to find the optimal set or
near-optimal set within a reasonable cost error and to reduce computation time; as
for the correlated forecasts, we suggest the use of the correlated search algorithm.
Use of the complete search algorithm to find the optimal set is suggested when the
number of forecasts is small.
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