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Abstract: One distinguishing feature of variable life insurance policy is that the
benefit payable at expiration depends on the market value of the linked reference
portfolio as contrasted with traditional life insurance policies. The conventional
pricing approach combines traditional law of large number considerations and
financial mathematics. Subsequent relevant studies follow such the valuation
approaches. Because recently secondary life insurance markets in America are
developing and growing rapidly, liquidity of life insurance contracts has
significantly improved. So life insurance contracts couid not only be guarantees
against losses, but also could be seen as tradable portfolio assets. This market
characteristic could serve an extra condition for the application of option pricing
model to the valuation of variable life insurance. In this article, in comparison
with the conventional pricing approaches for variable life insurance, an alternative
valuation method is developed with pure option pricing approach especially
incorporating the secondary life insurance market. The conventional valuation
approach and its properties are reviewed and its derived price is proved as a
special one with respect to a specific risk-neutral probability measure in the
present valuation framework. Numerical analysis illustrates the relationship
between no-arbitrage price bounds and the conventional pricing approach as well.
The results indicate that no-arbitrage bounds of the insurance contract would be
mnfluenced by asset price volatility, risk-free rate and mortality pattern in different
directions, and particularly would be augmented with liquidity risk premium in
the secondary life insurance market.

Keywords: Variable life insurance; Option pricing approach; Secondary life

insurance market

1. Introduction

Secondary life insurance markets have been growing rapidly in America. A
wide variety of similar products in secondary life insurance market have been
developed, including viatical settlements, accelerated death benefits (ADBs) and
life settlements. Secondary life insurance markets allow consumers to sell their
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policies to independent financial companies or originally-issued insurance
company for getting money back (Bhattacharya et. al. 2004). So life insurance
contracts could not only serve as guarantees against losses, but also could be seen
as tradable portfolio assets. This market characteristic could offer an extra
condition for the application of option pricing model to the valuation of life
insurance contract. This article focuses on the valuation of variable life insurance
under a pure option pricing framework. The conventional approach for the
valuation of variable life insurance combines traditional law of large number
considerations and financial mathematics. It usually assumes the independence
between the stochasticity of a reference fund and mortality distribution as well as
the insurer's risk neutrality with respect to mortality. The logic behind those
assumptions is that insurers usually suppose the policyholders with the same age
will have the same death distribution (said to be homogenous) and each
policyholder’s death is independent of other’s. Thus only when insurers can
obtain a large number of independent homogenous insurance buyers, the
conventional pricing approach could be applied. However, not all of insurance
companies can satisfy completely the requirement for pooling arrangements. In
comparison with the conventional pricing approach for variable life insurance,
this study develops an alternative valuation method with the pure option pricing
approach especially incorporating the secondary life insurance market. Without
requiring the independence assumption in the conventional approach, the price
process of a reference fund and the death process of an insured are considered
jointly to create an underlying stochastic process. A typical option pricing
approach usually begins with assuming an underlying asset following a specific
stochastic process. Contingent payments at each time are determined by exercise
price. The variable life insurance also could be treated as a contingent claim of the
market structure we create. This proposed approach will lead to prices that
coincide with those determined by the conventional pricing approach (CPA
henceforth) suggested by Brennan and Schwartz (1976, 1977, 1979). A different
insight into properties of the conventional pricing approach has been explored.
The distinguishing feature of variable life insurance is that benefit payable
at expiration depends upon market value of some reference portfolios that may
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consist of stocks, bonds or other financial assets with mutual funds as typical
cases. Because policyholders have to bear more risk for this type of insurance
product, insurers need to enhance the product attraction by posing additional
guarantees. Thus these insurance products typically provide policyholder with a
minimum guaranteed value on death of the insured or on maturity of the confract.
This kind of insurance product is called the guaranteed variable life insurance
policy. The benefit of the insurance contract thus can depend on the performance
of the linked reference fund and the guaranteed values. The conventional pricing
approach (CPA) initiated by Brennan and Schwartz basically starts by calculating
the market price of the payoffs which occur at each time point within the contract
term and then take account of the expectation on the mortality. In brief, the CPA
integrates the option pricing theory and the principle of equivalence. For example,
Brennan and Schwartz (1976, 1977) assumes that the price of the reference fund
follows a geometric Brownian motion process and then the guarantees are treated
as European-type put options which could be solved using Black-Scholes model
(Black and Scholes, 1973); hence the fair price can be derived by specifying the
market value of contingent payoffs times the mortality probability -using
independence assumption between market and mortality risks as well as the
traditional law of large numbers. With the CPA, several relevant studies in the
literature have been carried out. Some works consider other contract designs with
different structures of benefits such as the caps (Eker and Persson, 1996) and the
endogenous minimum guarantees (Bacinello and Ortu, 1993). stochastic interest
rates are incorporated into pricing models in several studies (Nielsen and
Sandmann, 1995; Bacinello and Persson, 2002; Gaillardetz, 2008). Besides,
Bilodeau (1997) and Bacinallo (2003, 2005, 2008) consider different types of
options embedded in the contract under the CPA framework. Following Brennan
and Schwartz (1976, 1977), this study is also concentrated on endowment policy
with guarantees which is primarily the combination of pure endowment policy
and term insurance.

As suggested by Embrechts (2000), institutional issues such as the
increasing collaboration between insurance companies and banks, and
deregulation of insurance markets will be regarded as two further important
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aspects. To search for combinations and unification of methodologies and
traditional principle for the two fields of insurance and finance may deserve as a
considerable issue. Obviously the variable life insurance products can involve
both financial and insurance risks. For example, Melnikov and Romanyuk (2008)
highlight the implications of efficient hedging for the management of financial
and msurance risks of variable life insurance policies with numerical examples.
As to the topic we concern here, one may wonder how the fair price of the
variable life insurance with guarantees could be determined if both the
independence assumptions and the insurer's risk neutrality are violated.
Accordingly, we jointly consider the price process of a reference fund and the
process mortality risk. We integrate the two risk processes into a new stochastic
process. The variable insurance products could be seen as contingent claims of the
new underlying process. To calculate the no-arbitrage price of the variable life
insurance, life insurance portfolio is viewed as a tradable asset in secondary life
insurance market. Investors then can have an additional basis asset to build the
portfolio for duplicating the contingent claims. Under the market structure
specified here, the complete market property cannot be preserved and insurers
cannot replicate perfectly the contingent payment to policyholders at a future date.
So the variable life insurance products couldn’t be duplicated exactly with the
portfolio consisting of the basis assets. Accordingly, the risk-neutral probability
measure in this market structure is not unique and thus the corresponding
no-arbitrage price composes an interval (see, Chl Pliska 1997). Hence this could
leave an open pricing problem in the incompleteness. Even liquidity of life
insurance portfolio cannot reach as high degree as general financial securities. In
fact, the insurance contracts could be sold to get money back earlier under special
conditions. For example, the senior life policies settlement or viatical settlement
can be traded in the second life insurance market in USA. Although the
assumption about the trading property of life insurance contracts don't meet fully
real world, we can make efforts to reposition the CPA with this treatment in the
option pricing framework. As compared with the Black-Scholes model, we won’t
render this model useless due to that the continuous self-financing strategy cannot
be carried out completely in reality. Moller (2001) ever deals with pricing and
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hedging problems for variable life insurance in an incomplete market. His main
contribution is fo obtain the optimal investment strategies that minimize the
variance of the insurer's future cost based on the criterion of risk-minimization
instituted by Follmer and Sondermann (1986). Nonetheless life insurance
portfolio is not assumed as tradable assets in his seminal article.

This paper aims at developing an alternative pricing method and reviewing
the CPA for variable life insurance using a pure no-arbitrage viewpoint. For
simplicity, this work is restricted to the single premium case. The first task of this
study is to present the general form of the no-arbitrage price bound for the
insurance - contracts. After that, we could verify that CPA will produce a
no-arbitrage price with respect to a specific risk-neutral probability measure. The
relationship between the present pricing approach and the CPA is explored.
Through numerical analysis, we investigate and discuss how certain key financial
factors can influence the relationship between the no-arbitrage price bound and
the price derived by the CPA. If the reasonable price of the insurance contract
would not be determined uniquely and could be affected by several financial
parameters, those facts implies that insurers need to specify a pricing practice
more sophisticatedly since they have more flexibility in pricing such insurance
product.

The remaining of the paper flows as follows. The market structure for the
variable life insurance contract is built firstly in Section 2. In Section 3, the
underlying discrete process of the insurance contract, which is the consequence of
combining the reference fund process and the mortality distribution, is established.
We present the general form of the proposed approach incorporating the
secondary life insurance market and explore the relationship between the CPA and
the proposed approach as well. In Section 4, the numerical analysis is employed
to illustrate the properties of fair price bound of the variable life insurance for

various situations. Finally, conclusive remarks are provided in Section 5.

2. The Market Structure for the Insurance Contract

The variable life insurance contracts could be regarded as contingent claims
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which can be affected by both the market risk and mortality risk. In this section,
we first set up the market risk model for the insurance contract and then take the
mortality risk into account. Here we consider the variable life insurance contract
with guaranteed value that issues at the beginning of the contract term and
matures 7 years later. The market risk associated with the insurance contract
comes from a stochastic evolution of the return rates of the reference fund. To
demonstrate a discrete-time model, ecach policy year is divided into n periods of
equal length such that the total period is N = 7/A with A= 1/n. Hence there are
totally N periods during T years. The #-th period is denoted A, for =1, 2, ... N-1,
N. Following Bacinello (2003) and Moller (2001), this study also uses the CRR
model proposed by Cox, Ross and Rubinstein (1979) to deal with pricing
problems about the variable life insurance properly. This discrete model assumes
that the risk-free interest rate r is constant and the financial market consists of two
basis tradable asset, a reference stock (or fund) .S and a risk free asset B. The CRR
model may be viewed as an approximation of the Black-Scholes model due to its
important properties of converging asymptotically to the later. The reference fund
price follows a stochastic process: S={S,:r<[0,T]} or S={5,5,..5y}-
The market price of the reference fund is set up as a binomial lattice. With a fixed
volatility coefficient 6 > A In(1+r), we can specify the accompanied
upward-moving factor u = exp(cAO'S), and downward-moving factor d = 1/u. The
unit price of the fund at the end of the #th period (S; ) would be either uS; or dS;in
the next period for ¢ = 1,2,..., N. S, is adapted to the filtration 7, of the binomial
process. Let B, = B,(1+ 7)™ with the constant annual interest rate r > 0 for # =
1,2,..., N. Typically frictionless market is assumed to simplify the analyses. The
financial treatments usually are based on the assumption of no-arbitrage
opportunities.

During any trading time period (e.g., the #-th period), to each contingent
claim f{S;, £), a unique self-financing trading strategy exists that can duplicate the
payoff. With this strategy, a portfolio consisting of a certain number of reference
fund and a certain amount of risk-free asset can be formed at any time to exactly
meet the claim and there is no need to make additional inflow or outflow of
capital. Such the financial market is called complete if the contingent claim can be
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duplicated perfectly and hence can be priced uniquely. So the no-arbitrage
condition could be satisfied. As is well known, the CRR model is a complete
market model. Consequently, the no-arbitrage condition is equivalent to the
existence of a risk-neutral probability measure under which all financial prices,
discounted by the risk-free rate, are martingale. The unique risk-neutral

probability measure, which is conditional on the information at time ¢, 15
g=[0+r"—dl/(u—d) and 1—-g=[u—(1+r)*1/(u—d) )

for {Sen = uS} and {Siw1 = dS}, respectively. Therefore, the risk-neutral
probability measure is defined by the sequence

0=1{0,,|1<t<NO< <1}, @)

for all possible paths {S, ; = Su'/d’ [I1<t<N,O< <1}
! . .

with @, ; = ( .Jq"’ (1-g)
J

The arbitrage-free price of a derivative of the underlying asset with payoffs A(S,, 1)
attime £, for =1, 2,..., N, , denoted by Pr may be written by

P =E2Y " (141 ™ £(S,.0), 3)

where E€is the conditional expectation operator with respect to the risk-neutral
probability measure in (2).

This insurance contract involves the risk associated with the future
development of the reference fund as well as the uncertainty about the mortality
of insured. Whereas the financial risk affects the amount of benefit for the
policyholders, the mortality risk determines the times in which the benefit is due.
For each period, there are two states for the insured’s life status, i.e., alive and
dead. Hence the death discrete process also could be set up as a binomial tree. It is
assumed that a policyholder makes a single investment amount into the fund at
the initial of the contract. Let m be the units invested in the fund at the initial time.

Without any losses of generality, m is fixed to one. For an insured with age x, let



Chiao Da Management Review Vol. 29 No. 1, 2009 81

the mortality of the #-th period be denoted by ge+n; for t = 1, 2,..., N. The
mortality distribution could be extracted from a mortality table. Typically the
guarantee asset value of the variable life insurance may be set to a function of
time (f) and the market value of the fund at the purchase date (Sp). For simplicity,
we suppose that the guarantee asset value is a constant, denoted by G (typically G
is a percentage of Sp), in this study. That is, f{S;, )= Max (S, &). In other words,
with the specification for the guarantees function, the benefit of this contract
would be max(S;, ) at the end of the ¢-th period if the insured dies during the #~th
period or max(Sy, G) at the end of the N-th period if the insured survives to the
maturity date. However, f{.S;, 1) could be set to a more complex form. For example,
a guaranteed return is given by f(S,)=S,_ max(1+(S,—S,)/S, ,1+x),
where £ is the guaranteed return.

3. The Pricing Model

3.1 The Review of the CPA for Variable Life Insurance

Basically the CPA is derived by combining no-arbitrage argument and
traditional large number principle from insurance. The contingent payoff at each
time can be fairly priced with no-arbitrage argument as described in the precious
section. The CPA is justified with the law of large number since insurers typically
hold a portfolio of large number of contracts. The CPA usually assumes that the
death process is stochastically independent of the reference fund. Hence the
pricing problem can be resolved by specifying the payoff of Max (S, G) times the
probability of mortality at time ¢. It is implied that the insurer is risk-neutral with
respect to mortality in the CPA. Here we only concern about the core work for
actuarial valuation, so any problem about expenses or other transaction cost is
ignored. Based on the assumptions, the fair net premium can be derived with the
CPA through first calculating the market values of all payolis according to (3) and
then taking account of the expectation on the mortality. Therefore with the
financial set-up in the previous section, the fair price of the variable life insurance

PCPA

with guarantees, denoted by , can be written as
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P g B2 [(14) " max( ., G)) + wpe B2 [(1+7) ™ max(Sy , G)l, (4)

t=1
where Q is defined in (2), r119x = (3= go) (1= gx+1) ...(1= Grsr2) Grirs, 1S the
probability that the insured dies within the #-th period, and xpx = (1 — ¢x) (1 —
ge+1) ---(1 —gx+n-1) 18 the probability that the insured is still alive at the end of the
N-th period.

3.2 The Establishment of the Underlying Process for Variable Life
Insurance

In order to establish an underlying process that can include all probabilities,
the price process of the reference fund and the death process of an insured are
considered jointly. By integrating the two binomial processes, the new underlying
discrete process is created as shown in Figure 1. All states occurring possibly have
been considered in the new underlying process since the stochastic processes for
both mortality and reference fund price have been specified already. Whether the
asset price process and the death process are mutually independent or not, Figure
1 actually covers all possible outcomes. So the independence assumption between
market risk and mortality risk cannot be required.

The special feature for this model setting is to regard the life insurance
portfolio as tradable assets such as the viatical settlements and the accelerated
death benefits (ADBs). Under taking the term insurance into account, there thus
are three basis assets in the market structure. The pure endowment policy is
excluded because it may just be duplicated with a portfolio consisting of both the
risk-free asset and the term insurance. It is also assumed that the market price of
term insurance for a coverage period is determined by the traditional actuarial
method, i.e., the principle of equivalence. This assumption implies that the net
premium of term insurance portfolio under the principle of equivalence is
regarded as a fair price accepted commonly by participants in the insurance
market. In fact, to trade ordinary term insurance in the secondary markets is not
illegal, e.g., the senior life policies settlement. Nevertheless, the liquidity of life
insurance contracts actually cannot be as good as general financial securities. For

this reason, we assume that investors will require a risk premium to compensate
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for bearing more liquidity risk from the life insurance contracts. So a premium
loading factor, denoted by A, will exist for each trading period, which can be

determined by the secondary life insurance market.

Figure 1
The Underlying Process Describing Jointly Market and Mortality Risks
for the Variable Life Insurance Contract

=1ty - I=Hh =6 1=
(Ar SZI)
(D, 522)
A, S,
( 11) (A, S23)
(D, S24)
DS
(D, Siz) 4 559
(4. S0)
D, §
(4, Sis) %20
{4, 5x)
(D, 510 (D, S2)

As illustrated in Figure 1, there are four possible states, namely alive-up (4,
uS..1), dead-up (D, uS..;), alive-down (4, dS.;) and dead-down (D, dS.;), in the
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next period conditional on the state, (4, S,;). Thus our pricing model would be
incomplete market since it involves four states but only three basis assets in each
trading period. Based on the properties of an incomplete market, the risk-neutral
probability measure would not be unique and the no-arbitrage price of a derivative
asset would be an interval (see, e.g., Pliska 1997). The general form of the

no-arbitrage price bounds will be calculated in the following subsection.
3.3 The Calculation of the No-Arbitrage Price Bounds

Before considering the multi-period meodel, the two-period model could be
established firstly as an example with simpler calculation. We can refer the
stochastic process of the two-period model to the first two periods in Figure 1.
Each period in the process involves four states and three basis assets. For example,
just consider the upper part of the second period in the two-period model. The all
payoffs in every state for the three basis assets are exhibited in the Figure 2.
Based on the no-arbitrage condition, the conditional risk-neutral probability
measure, g2 = (g21, 22, 423, §24), corresponding to the probability from (4, S11) to
(4, 521), (D, 522), (4, S23), and (D, Sz4) respectively, will satisfy the following
equation system:

( (L) (& ga1 + u goot d gas+ d qua) =1,
g2/ gxri(1HA)+ ga4/ gueri(1+4) =1, (5)

go1 + gt gt g =1,

g1, 922, G23, G24.=0

The above first two equations are set respectively according to the risk-neutral
property of the fund and the term insurance. The solution of the risk-neutral

probability measure for the second period can be expressed as
92=[g - gen(1+) Faa, gen(1+R) -02,1- g -0, 2],
where max(0, gz+1(1+X)- q) < a2 < min(l-gq, g+1(1+X)) and ¢ is defined in

equation (1). By the same arguments, one can verify that another conditional
measure of the second period from (4, S13) to (4, Sas), (D, S2), (4, S27), and (D,
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S2s), is the same as g2, and the risk-neutral probability measure of the first period,

q1=(qu1, 912, 913, g14), 1S
g1 = [q - gx(1+0) + o, gx(14A)- g, 1- g - au, o],

where max(0, g.(1+1) - g) < oy < min(1-q, g.{1+1)). The risk-neutral probability
measure, denoted by ), can be obtained through making up of g1 and g
Therefore, no-arbitrage price of the variable life insurance with guarantees for the
two-period model may be derived as

P, = E% (ZZ; (1+ 7)™ max(S,, G)) (6)
t=1,

It is obvious that Q, would not be unique and P, could serve as bounds.
According to (6), the lower bound of P, can be calculated under the
corresponding  risk-neutral  probability measure @ , by  sefting
a, =min(l-q,q.(1+ 1)) and «,=min(l-gq,q,,,(1+A)), whereas the upper
bound of P; can be obtained by setting o =max(0,q,(1+1)-¢g) and
a, =max(0,q,,,0+4)—-q). For example,
ifg (1+4)<qg,q.,(1+A)<q,q.(1+1)<1-q, ¢q,,(1+A)<1—-g, the lower
and upper bounds could be derived by setting a, =q,., ,(1+A) and a, =0 for
t = 1,2 respectively, i.c.,

Figure 2
The Pavoffs in Four States for the Three Basis Assets
“ (1+7)° 0
u (1+7)° Y1+ A)gen
1 1 1 .
d (1+1)°
H(1+ 2)g,
d (1+P‘)A ( )q 1

Reference Fund Risk-free Asset Term Insurance
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B =1+ 1) 2 g% +9(1- )G +[1- g~ ¢, (1+ DG} + 1+ 7)1+ g, G
and
PY = (1+ 1) {[1- g (1 + D)(gu* + G- gG) + (1= )G} + 1+ ) > (1+ A)q,u

Extending the result to thé mﬁlﬁ-period case, the form of the ndéérbitragé pricé
bounds for the N—peri.od model would be obtained in the same recursive solution.
The conditional risk-neutral probability measure of the #-th peridd, q:= (qn, 9, 95,
gu), which is independent of the states of previous period, could be written as

:=(q - Gere-1(1HA) + @, Gt (1HA) — 0t 1- g — 0, @) (7}
with
max(O, qx+;.](1+?b) - Q) << min(l-q, gx+i-1 (1+?\.)), (8)

for 1= t =N. Then, the risk-neutral probability measure of the N-period model,
denoted by O, can be obtained by combining all g, for 1< ¢# =N. The
no-arbitrage price of the insurance contract could be expressed by

P=EY (i (1+7)™ max(S,,G)) (9)

t=1
Similarly, the lower and upper bounds of P, denoted by P and PY, may be
obtained with respect to the risk-neutral probability measures, Q" by setting o, =
min(1- ¢, gx1(1+1)) and o, = max(0, ger1(1+1) - q) respectively, for I < ¢ EN.
Separately, according to (9), the no-arbitrage price bound of the contract would be
influenced by both mortality and loading factor. This result implies that the range
of fair price will be larger for an elder insured than for a younger one. On the
other hand, high loading factor then would amplify the range between the

no-arbitrage price bounds.
3.4 The CPA as A Special Case

The CPA can be reviewed in the proposed valuation framework with the
option pricing thinking. It is shown that the price obtained by the CPA is a
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no-arbitrage one with respect to the specific risk-neutral probability measure 9,
which is one of the risk-neutral probability measure Q* defined with o; = (1-
q)gx+e-1, for 1= ¢ =N. It is obvious that max(0, gesr/(1+1) - @) < (1- @)Grrea <
min(1-q, gr+1(1+2)) is held and thus the relationship satisfies (8). The price
formula of the CPA in (4) could be derived with the risk-neutral probability
measure Q“ and presented as follows: '

P S geB2 [(147) " max( i, G)] + wps B2 [(147) ™ max(Sy , )]

=1

= g¥ (i {1+ 7)™ max(S,, G))

t=t
This means that the price obtained by the CPA (PCPA) is one of the no-arbitrage
prices under the new underlying process setting. Because P lies within the
no-arbitrage price bounds, i.e., P <P <P the properties of their relationship
become an interesting issue. Thus, numerical analysis is conducted for this
purpose in the next section.

Under the market structure specified in this study, we also can utilize the
optimal portfolio pricing approach (see Ch 9, Luenberger 1997) to get a set of
risk-neutral probability measure and determine the fair price for the insurance
contract. However we need additionally to define a utility function and specify the
optimal portfolio choice criterion for policyholders. As mentioned in the text,
policyholders (or investors) have three basis assets to form the portfolio. The.
optimal portfolio pricing approach is based on the assumption that policyholders
would make decision for allocating optimally their money among the alternatives.
Similar to the discussion in Subsection 3.3, the multiple-period problem has the
same solution as the sequence of one-period problem. Thus, N-period problem
could also be reduced to one-period problem here. Denote the corresponding real
probabilities for the four possible states of the #-th period conditional on the
previous state, (4, S:.;) as shown in Figure 1, including alive-up (4, #S:;), dead-up
(D, uS,.;), alive-down (4, dS.;) and dead-down (D, dS.p), p/*, p?*, p}“and
p 2 respectively for ¢ =1, 2,..., N. We take the first period (f =1) as an illustrative
example. A portfolio of these basis assets is represented by a 3-dimentional vector
B = (B1, B2, PB3). The initial price of each asset is denoted by &, for 1 = 1~3.
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Suppose that a policyholder has an initial wealth wy. The future wealth would be
governed by corresponding random variable. A utility function U provides a
procedure for ranking random wealth levels. If wy is the random wealth at the end
of the first period, we write w;> 0 to indicate that the variable is never less than
zero and it is strictly positive with some positive probability. The random payoffs
for the three asset are represented by o, i = 1~3. For simplicity, we ignore the
liquidity problem about the insurance contract and let A = 0. The investor wishes
‘to form a portfolio to maximize the expected utility of the future wealth, i.e., w).

Thus the policyholder’s problem is:

3 3
max E[U(w,)], subject to Zﬂidi =w,,w, > O,Z Bk, <w,.

i=1 i-1

The problem therefore becomes:

3 3
max E[U(Q_ B.d,)], subject tow, >1,> Bk, =w,.
i=1 i=1
By introducing a Lagrange multiplier 7 for the constraint, the necessary
conditions are found by differentiating the Lagrangian:

L=E[UQ B~y QX Bki=w)

with respect to each f. Using w; =Z‘;l B.d, for the payoff of the optimal
portfolio, this gives E[U'(w;)d,]= . for i = 1~3. Since the risk-free asset (i = 1)
has the total return of (1+#)", it follows that if k; = 1, then dj = (1+#)". Thus, we

obtainy = E[U’(w)}(1+r)" . Substituting this value for y would yield

__ EU'w)d}]
C At EU))

Therefore the risk-neutral probabilities of the first period, §, =(4,,,912,%13%14) »
could be derived as

PlAuU;l(W:) plAdUl'Z_(W;) PlDqu’z.(W:) P:DdUlrnt(W;)
EUGW)] ™ EU'(w)] ° E[U'(w)] EU (W)~

?fl"—‘(
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With the same argument, the risk-neutral probabilities for the #-th period,
g, = @uﬁmisa%) , may be written by

pqur'l(W:) P:dU:z(W:) pP"U::,,(W:) p:DdU:tz(W:)
EU'w)] " E[U'(w)] ~ EU' W)~ EU W)

By doing so, a set of risk-neutral probability measure that depends on consumer’s

g, = ( )

utility function could be derived as well.

Now the CPA is revisited in views of the optimal portfolio pricing approach.
According to the ration theory (see Chl6, Luenberger 1997), the relationship
GoG.a!Gnd = p ™ pP I pP p, for t =1, 2,..., N, would be held if each trading
period A is enough small. Under the condition where the two types of risks are
independent each other, it follows §,3.,/4,G, = p“p’*/ 7 p/® =1such that
4,94 = 4.9, As a result, the independence with respect to real probabilities is
equivalent to the independence with respect to the risk-neutral probabilities. With
this condition, the risk-neutral probabilities g, =(G,,4,,7..9,,) derived from
the optimal portfolio pricing approach would be equal to (7) with o, = (1- §)gx+w1,
for 1= ¢+ = N. Consequently, it can be verified that the optimal portfolio pricing
approach could achieve the same result as the CPA does under certain conditions.
So this pricing approach also could serve as another applicable valuation method
for the variable life insurance using the created underlying stochastic process of
this paper. | '

4. Numerical Results

In this section, the results of some numerical experiments for the
comparison between the proposed pricing approach and the CPA are illustrated. It
is attempted to understand how the no-arbitrage price bounds of the insurance
contract is affected by some financial parameters. Since our numerical analysis is
aimed to catch some comparative properties between the aforementioned two
approaches, the real mortality is ignored here. Instead, we consider different
patterns of the mortality distribution in which different mortality growth rates
could be presented. For simplicity, we set 7= 1, n =12 (N = 12) and S, =100,000.
This setting won’t get any losses of generality. Note that the choice for # implies a
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monthly change in the unit price of the reference fund. Several numerical
experiments are made with respect to five parameters, i.e., the volatility
coefficient (o), the interest rate (»), the guarantee value (G), the pattern of
mortality distribution and the loading factor for liquidity risk premiums (A). The
results are reported in table 1 through table 4.

Table 1
Insurance Premiums Versus the Volatility Coefficient ¢
o 10% 20% 30% 40% 50%
Upper bound PY 100041 101223 103366 106372 109454
Conventional approach P<™ 100039 101193 103316 106314 109392
Lower bound P* 100036 101158 103264 106255 109331
No-arbitrage interval PU- P* 5 65 102 117 123
(PY- PP PY- PY 0.400 0.462 0.490 0.496 0.504
Table 2
Insurance Premiums Versus the Interest Rate r
6 2% 4% 6% 8% 10%
Upper bound PY 104256 103786 103366 102989 102652
Conventional approach P~ 104189 103729 103316 102947 102617
Lower bound P* 104124 103670 103264 102901 102576
No-arbitrage interval PY- p* 132 116 102 88 76
0.491 0.490 0.477 0.461

(P Py PY- PY 0.508
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Table 3
Insurance Premiums Versus the Guarantee Value G (Percentage of Sy)
G 75% 80% 85% 90% 95%
Upper bound PY 101555 102381 103366 105037 106742
Conventional approach P<™ 101510 102329 103316 104997 106737
Lower bound P 101463 102275 103264 104954 106729
No-arbitrage interval P- P- 92 106 102 83 13
(PY- PPy PY- PY 0.489 0.491 0.490 0.482 0.385
Table 4
Insurance Premiums Versus the Pattern of Mortality Distribution
Growth rate of mortality -10% -5% 0% 5% 10%
Upper bound PY 103400 103385 103366 103343 103314
Conventional approach P 103358 103339 103316 103289 103256
Lower bound P 103314 103291 103264 103231 103193
No-arbitrage interval PY- P 86 94 102 112 121
(PY- PYi PY- Py 0.488 0.489 0.490 0.482 0.479
Table 5
Insurance Premiums Versus the Loading factor A
A 0% 5% 10% 15% 20%
Upper bound PV 103366 103366 103366 103366 103366
Conventional approach P 103316 103316 103316 103316 103316
Lower bound P* 103264 103257 103253 103248 103243
No-arbitrage interval PU- P* 102 109 113 118 123

(PY- PEPy) PY- PYy 0.490 0.459 0.442 0.424 0.407
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First, the no-arbitrage price bound and P are calculated when the

volatility coefficient (o) varies between 10% and 50% with a step of 10%. We fix
r=6%, =0 and K = 85% of S;. A simple pattern of mortality distribution is
given, where g+, is fixed to 0.1 % for 1 = ¢ =N. The results of this numerical
experiment are presented in Table 1. It is obvious that all the premiums obtained,
including the upper bound price PY, the lower bound price P* and the P,
increase with the volatility coefficient (c). This result agrees with the general
properties of option pricing theory. Moreover, we notice that the no-arbitrage
price interval, PY - P*, and the ratio, (PU - PCPA)/ (PU - PL) increase with ¢. In
other words, the no-arbitrage interval becomes larger and P55 becomes relatively
closer to P" as ¢ becomes larger. Then, as presented in table 2, the premiums are
derived when the interest rate (r), varies between 2% and 10% with a step of 2%
based on the conditions of o = 30%, A = 0, K = 85% of Spand the same mortality
distribution. According to the results in Table 2, all the premiums decrease with
the interest rate (»). Besides, both of no-arbitrage price interval and the ratio, (PY-
P A)/(PU - P"), decrease with ». Furthermore, setting ¢ = 30%, » = 6%, A = 0 and
the same mortality distribution, the premiums are calculated when the guarantee
value (G) varies between 75% and 95% of Sp with a step of 5%, as presented in
Table 3. We notice that all the premiums increase with the guarantee value (G).
This obviously meets the prediction of option pricing theory. Moreover, it is also
observed that the larger the guaranteed value, the narrower the no-arbitrage price
mterval (except in the situations of lower guaranteed values).

In addition, different patterns of mortality distribution are taken into
account as well. Fixing ¢ =30%, r = 6%, A = 0 and G = 85%, the premiums are
calculated according to different growth rates of mortality, including -10%, -5%,
0%, 5%, and 10%. For example, the mortality growth rate of 5 % implies the
relationship, g xi¢ /g x+.; = 1+5%. The results are presented in Table 4. It is found
that all the premiums decrease with the growth rate of mortality. However, the
no-arbitrage interval increases with the growth rate of mortality. Finally, we test
the effect of the loading factor A on the no-arbitrage bounds. Using the same
setting, i.e., ¢ =30%, r = 6%, K = 85% and zero growth rate of mortality, the
premiums are obtained for various loading factors (A) with 0 < A< 8%. As
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exhibited in Table 5, it is obvious that the no-arbitrage bound increases with the
loading factor. This result implies high liquidity of life insurance contracts in
secondary insurance market can decrease possible range of the no-arbitrage price.
In summary, according to the numerical results, all premiums of the
variable life insurance policy increase with ¢ and G, but decrease with » and the
growth rate of mortality. And the no-arbitrage price interval increases with o, A
and the growth rate of mortality, but decrease with » and G. Additionally, almost
values of the ratio, (P - P“™)/(PY - P"), would be between 0.4 and 0.6. This

implies that P

usually falls in the middle area of the no-arbitrage intervals.
Accordingly, from the viewpoint of pure market-value based, the reasonable
prices of the contracts couldn’t be determined only by the traditional criterion
while P could serve as a benchmark for pricing in practice. That is, the
reasonable prices could depend on market situations and thus insurance

companies could keep more cushions in making the pricing strategy.

5. Conclusive Remarks

In this article, life insurance contracts are seen as tradable portfolio assets
since secondary life insurance markets allow consumers to cash out life insurance
holding prior to death. Considering this characteristic of secondary life insurance
markets, we propose alternative valuation methods for variable life insurance
under a pure option pricing framework. Two proposed approaches, ie.,
no-arbitrage pricing method and optimal portfolio pricing method, could lead to
the results that coincide with the price determined by the conventional valuation
principle. Actually the price obtained by the conventional principle would be
verified to be a special case of our pricing framework. The result indicates that
fair prices of the insurance contract may not be limited to those determined by the
conventional pricing approach. It then implies that, from the market-value based
perspective, insurers need to specify a more sophisticated pricing practice since
they have more flexibility in pricing such insurance product. The optimal pricing
policy may depend on market situations and consumer’s utility function. The

numerical analysis results show the properties of no-arbitrage price of the
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insurance contract as well. A different insight into properties of the conventional
pricing approach has been explored. Although this research is restricted to the
single-premium case, the pricing model we propose could be extended to the
annual-premium case for advanced applications. The valuation approach explored
in this paper may be applied further to solve the analogous pricing problems

related to other insurance contracts types.
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