國 立 交 通 大 學 物理研究所

技術報告

高溫超導體 La2-xSrxCuO4 中 Hubbard 模型的適用性

The persistence of Hubbard model in La_{2-x}Sr_xCuO₄

作 者:胡至中 林俊源

中華民國一百零五年一月

高溫超導體 La2-xSrxCuO4 中 Hubbard 模型的適用性

The persistence of Hubbard model in La_{2-x}Sr_xCuO₄

作者:胡至中 Author: Chih-Chung Hu 林俊源 Jiunn-Yuan Lin

> 國 立 交 通 大 學 物 理 研 究 所 技 術 報 告

A Technical Report to Institute of physics College of Science National Chiao Tung University

January 2016

Hsinchu, Taiwan

中華民國一百零五年一月

高溫超導體 La2-xSrxCuO4 中 Hubbard 模型的適用性

作者:胡至中、林俊源

國立交通大學物理研究所

摘要

本報告中利用同步輻射中心偏極化光源進行 O K-edge 和 Cu L-edge X 光近緣吸收光譜(X-ray absorption near edge structure, XANES)實驗,樣品為 脈衝 雷射 蒸鍍 系統(Pulse Laser Deposition System, PLD)所製備的 La₂. $xSr_xCuO_4(0 \le x \le 0.4)$ 薄膜。本實驗探討 La₂. xSr_xCuO_4 薄膜的銅氧平面費米能階 (Fermi level; E_F)附近能帶之光譜權重(spectral weight)。在 La₂. xSr_xCuO_4 系統 中,量測參雜濃度 $0 \le x \le 0.4$ 區域間的樣品以分析其電洞之分佈,同時考慮 軸向載子在 Zhang-Rice singlet 模型中的影響。並延續著我們團隊在 Hubbard model 的研究(Y. J. Chen et al., Phys. Rev. B. **88**, 134525 (2013)),進而再檢視 Peets 等人 (Phys. Rev. Lett. **103**, 087402 (2009)) 中對 Hubbard model 理論預 測的質疑。

在 La_{2-x}Sr_xCuO₄系統參雜濃度 0≤x≤0.4 區域間內,我們考慮了軸向載 子與銅氧面上載子分布的影響,利用兩種方式估計出的銅氧面上的載子濃

i

度與光譜權重關係,與二維之 Hubbard model 理論模型比較,符合著二維 Hubbard model 理論模型的預測。

The persistence of Hubbard model in La_{2-x}Sr_xCuO₄

Author : Chih-Chung Hu 、 Jiunn-Yuan Lin

Institute of physics

National Chiao Tung University

Abstract

In this report, We measured the x-ray absorption spectroscopy (XAS) of La_{2-x}Sr_xCuO₄($0 \le x \le 0.4$) thin films which were fabricated by pulse laser deposition technique. We studied the spectral weight at the Sr doping level $0 \le x \le 0.4$ to examine the applicability of the Hubbard model, and followed our previous study by Y. J. Chen et al., Phys. Rev. B. **88**, 134525 (2013), compared the results to the theoretical trend proposed by D. C. Peets *et al.*, Phys. Rev. Lett. **103**, 087402 (2009).

In doped level $0 \le x \le 0.4$ of $La_{2-x}Sr_xCuO_4$ system, we considered the distribution of the apical holes and the distribution of planar holes on Cu-O plane, compared with the two dimension theoretical Hubbard model. By two different ways considered the planar holes concentration, the experimental results also

showed the applicable for two dimension theoretical Hubbard model.

日錄

中文摘望	要	i
英文摘望	要	iii
目錄		V
表次		vii
圖次		viii
第一章	緒論	1
1.1	實驗動機	1
第二章	材料與理論的簡介	6
2.1	超導體的基本特性及現象	6
	2.1.1 零電阻現象	6
	2.1.2 臨界溫度 T _c	6
	2.1.3 臨界磁場 H _c	6
	2.1.4 邁斯納效應 Meissner effect	7
2.2	鑭鍶銅氧化物之簡介	7
	2.2.1 鑭鍶銅氧的晶體結構	7
	2.2.2 鑭鍶銅氧之費米能階附近電子結構	
	2.2.3 鑭鍶銅氧的傳導機制	
	2.2.4 偽能隙(Pseudogap)	10
	2.2.5 Hubbard model 簡介	
第三章	實驗方法	13
3.1	樣品製備-薄膜製備	13
	3.1.1 靶材製備	13
	3.1.2 薄膜磊晶	15
3.2	特性量測之分析、裝置及原理介紹	
	3.2.1 X-ray 繞射分析	
	3.2.2 電阻率量測介紹	19
	3.2.3 Auger 能譜分析介紹	23
	3.2.4 XANES 之原理簡介	25
	3.2.4 (a) XANES 原理簡介	25
	3.2.4 (b) 自我吸收光譜 (self-absorption) 校正	
	3.2.4 (c) HSGM 裝置簡介	
第四章	實驗結果與討論	
4.1	實驗設計	
4.2	實驗流程	
4.3	樣品內 Sr 參雜定量分析	
4.4	OK-edge XANES 光譜分析	41

4.5 Cu	La-edge XANES 光譜分析	
4.6 銅氧	1.平面載子估計及分析	
4.7 O <i>K</i>	-edge 變溫之 XANES 光譜分析	
第五章 結論.	-	
參考文獻		
•		

表次

表 3-1 La _{2-x} Sr _x CuO4 靶材燒結條件	
表 3-2 晶格匹配比較表	16
表 3-3 La _{2-x} Sr _x CuO4 薄膜製備條件	16
表 4-1 La _{2-x} Sr _x CuO4 系列樣品參雜關係表	

圖次

圖	1-1 為 Zhang-Rice Band 強度隨著載子濃度變化的趨勢圖	3
圖	1-2 為 Wang 等人的 three band Hubbard model 模擬計算圖	4
圖	1-3 Liebsch 的模擬數據模擬 Zhang-Rice band 光譜權重增長的趨勢圖	4
圖	1-4 為陳裕仁學長等人之 YBCO 光譜權重實驗數據	
圖	2-1 鑭銀銅氧之品體結構示音圖	
国副	2-2 铜氧化物費米能階附近雷子結構圖	9
国副	3-1 雪射苏链系统装置圖	>
画圖	3-2 PPMS 其太構造圖	19
国副	3-3 PPMS 朴万斯刘而圖	20
画圖	3-4 卡計圖 应(Calorimeter Puck)	20
画圖	3-5(a)雪阳四野兽测注	$\frac{21}{22}$
画	3-5(h) van der Pauw 雪阳 恋 导测让	$\frac{22}{22}$
凹	5-5(0) Van der Lauw 电位十重风法	
圖	3-6 $f(\frac{R_1}{R_2})$ 對Q的函數圖	23
晑	3-7 歐傑雷子產生原理示意圖	24
国副	3-8 歐傑能謹儀哭示音圖	24
国副	3-9 為 X 光吸收光溢之雪子及榮光產率原理圖	26
国副	3-10 以榮光做為自我吸收校正的概念圖	28
国副	3-11 6m HSGM 米東線米學系統配置圖	30
圖圖	4-1 Lag $Sr.CuO_4$ (x=0、018) 靶材 粉末及 Lag $Sr.CuO_4$ (x=0、018) 薄膛	30 ク
	x-ray 結 好 分 析 圖	32
圖	4-2 La ₂ Sr.CuO ₄ (x=0.13、0.18、0.21、0.3、0.35、0.4) 薄膜雷阳密度	92 图
E	在相圖	33
晑	$2-3$ 1 ap CuO_4 歐傑能 逆訊 號 強 度 縱 深 關 係 圖	36
圖圖	4-4 La ₂ CuO ₄ 中 La、Cu 比例縱深關係圖	36
国	$4-5$ I_{a_1,a_2} Sro I_{a_2} Sro $I_{$	37
圖圖	4-6 Lat 977 Sro 122 CuO4 中 La、Cu 比例縱深關係圖	37
国	4-7 Lao Sr CuQ ₄ /SrTiQo 中 Lao Cu 比例縱深關係圖	38
画圖	4-8 Lao Sr CuO/LaSrAlO, 中 La、Cu 比例縱深關係圖	39
画	$A_{-9} I_{22} Sr_{x} CuO_{4} (y=0, 0.02, 0.13, 0.18, 0.21, 0.03, 0.035, 0.4) $ if \vec{H}	.)) 7
圓	λ 射光雪提垂直 c 軸, OK -edge XANES 四此光述	_ 12
呂	1-10 以 lowest-energy prepeak 為中心取正台 0.25 eV 為積公範 圈 所得	72
巴	Thang-Rice hand 光湴磁舌 Co 對交強連府 v 力佔国	<u>1</u> 2
国	Linang-New Valley 儿宙准里 SO 到 今神辰反 A 人下國	+J 改
回	T-11 此政判判不觉人聊恥判利示沉人 Lilailg-Rice Uallu 伯對尤這催里	J虫 ∧ ∧
	反到 电们 $%$ 准 仮 p 作 回	44

圖	4-12 La _{2-x} Sr _x CuO ₄ (<i>x</i> =0、0.02、0.13、0.18、0.21、0.3、0.35、0.4) 薄膜之
	入射光電場平行 c 軸, O K-edge XANES 吸收光譜
圖	4-13 以軸向氧峰值為中心取正負 0.25 eV 為積分範圍所得軸向 O 光譜
	權重 S90 對參雜濃度 x 之作圖46
圖	4-14 軸向光譜權重 S_{90} 除以平面光譜權重 S_0 對 Sr 參雜濃度 x 之作圖47
圖	4-15 La _{2-x} Sr _x CuO ₄ (x=0、0.02、0.18、0.21、0.3、0.4)薄膜之入射光電場
	垂直 c 軸, Cu Ls-edge XANES 吸收光譜
圖	4-16 以 lowest-energy prepeak 為中心取正負 0.25 eV 為積分範圍所得
	Zhang-Rice band 光譜權重 SO 對使用式 4-1 估算之平面載子濃度 ppl之作
	圖
圖	4-17 釔鋇銅氧系統及鑭鍶銅氧系統之 Zhang-Rice band 相對光譜權重強
	度對以方法一校正出的平面電洞參雜量 ppl 作圖
圖	4-18 以 Cu L ₃ XANES Ligand hole 的光譜權重 S _L 對 Sr 參雜量 x 之作圖
圖	4-19 以 lowest-energy prepeak 為中心取正負 0.25 eV 為積分範圍所得
	Zhang-Rice band 光譜權重 S_0 對使用式 4-2 估算之平面載子濃度 p_{pl} 之作
	圖54
圖	4-20 紀鋇銅氧系統及鑭鍶銅氧系統之 Zhang-Rice band 相對光譜權重強
	度對以方法一校正出的平面電洞參雜量 ppl 作圖
圖	4-21 La _{2-x} Sr _x CuO ₄ , x=0.02 薄膜 T=300 K&8 K O K-edge XANES 光譜實
	驗數據圖
圖	4-22 La _{2-x} Sr _x CuO ₄ , x=0.13 薄膜 T=300 K&8 K O K-edge XANES 光譜實
	驗數據圖
圖	4-23 La _{2-x} Sr _x CuO ₄ , x=0.18 薄膜 T=300 K&8 K O K-edge XANES 光譜實
	驗數據圖

第一章 緒論

1.1 實驗動機

1986年Müller 與 Bednorz 發現 La-Ba-Cu-O銅氧高溫超導系統 [1],這是一種 214 系列的超導體(T_c~35 K),拉開了科學界對高溫超 導體的研究序幕。隨後不久發現的 La-Sr-Cu-O 同樣為 214 系列的高 溫超導體,更是將 T_c拉高接近至 39 K。1987年,華裔科學家朱經武 及吴茂昆等人發現了 T_c高於 90 K 的 Y-Ba-Cu-O 系統[2],這個重大的 突破更是開啟了科學界對高溫超導的研究。高溫超導體有許多別於傳 統超導體的性質,其中尤以微觀物理機制及其正常態和超導態之性質、 費米面之形狀及偽能隙(pseudogap)隨著載子濃度變化之曲線,是為科 學界目前極力探索之方向。

為驗證科學界近幾年在分析高溫超導體的近緣吸收光譜中之疑 問[3],當載子濃度處於 overdoped 區域的高溫超導樣品於 O K-edge XANES 光譜中如預期 upper Hubbard Band 光譜權重逐漸變小,但 Zhang-Rice Band 的光譜權重增長卻不如理論預測,如圖 1-1,圖中虛 線為理論預測,可以觀察到當載子濃度超過 0.21 後, Zhang-Rice Band 光譜權重增長趨勢明顯小於理論值,進而提出 single-band Hubbard

1

model 描述銅氧高溫超導在 overdoped regime 的不適用性。在 2010 年 Wang 等人發表的研究中[4], 透過 three-band Hubbard model 理論模 型的預測也依然無法符合於 Peets 等人的實驗結果[3]。 而 Liebsch 的 理論計算模型提出目前並無充分證明 single-band Hubbard model 在 overdoped regime 中之不適用[5,6]。 實驗結果與理論模型計算數據的 不吻合,引起了我們的好奇心,是 Hubbard model 在銅氧高溫超導體 的 overdoped regime 中不適用嗎? 還是有其他的理論模型可以解釋銅 氧高溫超導體在 overdoped regime 行為?在 2015 年 Brookes 等人研究 亦認為 Zhang-Rice Band 可以存在於廣範圍的參雜濃度範圍中至 metallic nonsuperconducting overdoped regime[7]。

延續我們實驗團隊在銅氧高溫超導體的近緣吸收光譜之研究[8], 如圖 1-4,為了克服 Y-Ba-Cu-O 及 Y-Ca-Ba-Cu-O 系統在載子濃度參 雜的限制,本論文使用了 La_{2-x}Sr_xCuO₄系統作為研究主軸,此系統具 有廣範圍的載子濃度參雜特性,從零參雜(Mott insulator)至重參雜 (overdoped)該系統皆可穩定存在,並補足參雜濃度 x>0.21 的近緣吸 收光譜至參雜濃度 x=0.4,利用參雜不同濃度載子的 La_{2-x}Sr_xCuO₄ 銅 氧高溫超導薄膜,觀察費米能階附近能帶之光譜權重的變化,並討論 在 La-214 系統中銅氧平面之平面載子與光譜權重之關係,與過去文 獻上的實驗結果做比較。 接續著 XANES (X-ray absorption near edge structure)的實驗方法, 透過 XANES 在分析材料空軌域電子組態(電洞)上直接且強而有力的 特性,在 O K-edge 光譜中的幾個特定能量位置,了解在銅氧平面及 軸向氧上的載子分布情形。

本篇論文架構安排如下:第一章為緒論;第二章為將對鑭鍶銅氧 化物此材料作簡介;第三章為實驗方法;第四章為實驗結果與討論; 第五章為結論。

圖 1-1 為 Zhang-Rice Band 強度隨著載子濃度變化的趨勢圖,由圖可知在 p>0.21 後光譜權重增長不如理論預期。[3]

圖 1-2 為 Wang 等人的理論計算[4],在 p > 0.21 後 three-band Hubbard model 模擬計算無法符合 Peets 等人的實驗數據[4]。

圖 1-3 黑色實線為 Liebsch 的模擬數據[5],有較符合樣品光譜權重增長的 趨勢。虛線為 Peets 等人的理論模型[3]。

圖 1-4 紅色空心圓為陳裕仁學長等人之 YBCO 光譜權重實驗數據[8],藍 色三角為 Chen 等人的吸收光譜理論計算數據[9],黑色實線則為 Liebsch 的模擬 數據[5]

第二章 材料與理論的簡介

2.1 超導體的基本特性及現象

2.1.1 零電阻現象

1911 年 Onnes 發現了 Hg 在接近 4.2 K 時,其電阻突然下降至儀 器測不到的最小值,電阻突然下降的變化值超過 10⁴倍,此現象為超 導態的零電阻現象。

2.1.2 臨界溫度 T_c

當溫度不斷下降至物質的電阻突然消失時,該溫度稱作臨界溫度 *T_c*,臨界溫度 *T_c*是物質常數,同一種材料在相同的條件下有嚴格的確定值。

2.1.3 臨界磁場 Hc

假設在一根細長的超導棒上施加一平行磁場,當磁場強度達到 一定值時,超導棒的電阻突然恢復,該磁場定值為物質的臨界磁場 H_c 。當溫度T小於物質的臨界溫度T_c時,不同的溫度T其臨界磁場 H_c 是不同的,但H_c(0)是物質常數。

2.1.4 邁斯納效應 Meissner effect

無論施加於超導體的磁場的先後為如何,超導體內感應磁場強度總是等於零,即使超導體處於外磁場中,也永遠沒有內部磁場。無論 超導材料在 T < T_c或 T > T_c時施加磁場,只要溫度降到 T_c以下超導 材料進入超導態時,兩種情形所得到的結果都是相同的。

2.2 鑭鍶銅氧化物之簡介

本章節將說明鑭鍶銅氧之晶體結構及其傳導機制,以及對 Hubbard model 之簡介。

2.2.1 鑭鍶銅氧的晶體結構

鑭鍶銅氧化物 La_{2-x}Sr_xCuO₄ 的晶格結構具有高度異相性之特徵, 如圖 2-1,其結構為常見的鈣鈦礦結構(perovskite)[10],由 Cu-O 層與 La-O 層相互交疊而成。而由 Cu-O 所形成的平面結構稱之為銅氧面 (CuO₂ plane),也是造成 La_{2-x}Sr_xCuO₄ 具有導電特性的導電層,其傳導 載子為電洞,即所謂之 p-type 超導體;我們仔細觀察 La_{2-x}Sr_xCuO₄ 的 晶體結構可以發現在單位晶格中間的銅氧平面上下方各有一氧原子, 因而構成一八面體(octahedral)結構。

圖 2-1 鑭鍶銅氧之晶體結構示意圖

2.2.2 鑭鍶銅氧之費米能階附近電子結構

銅氧化物中的銅氧平面之費米能階(Fermi level; E_F)附近能帶,主 要是由 O $2p_{\sigma}$ 與 Cu $3d_{x-y}^{2-2}$ 混成所貢獻[11], 如圖 2-2 所示,(a)小圖為 考慮銅氧平面上的 O $2p_{\sigma}$ 與 Cu $3d_{x-y}^{2-2}$ 混成軌域示意圖,如(b)小圖所 示,考慮 one electron tight-binding model 後,其混成能代會分裂成三 個,預測會存在著半滿的傳導帶 AB (anti-bonding),樣品應有良好的 傳導性,若在加入強庫倫作用力 U (one-site Coulomb interaction U)後, 傳導帶 AB 將會分裂成為 UHB (upper Hubbard band)及 LHB (lower Hubbard band),樣品成為 Mott insulator,如(c)小圖所示。在系統中加 入考慮強庫倫作用力 $U >> \Delta_{ct}$ (gap between the highest filled anion-like and the lowest empty cation-like states)後,在 UHB 和 NB 間將存在一 能係,即為典型的 charge transfer insulator,見(d)小圖。最後加入考慮 Cu-O hybridization,導致能帶 B (bounding)分裂成在接近價帶邊緣的 Zhang-Rice singlet (ZRS)以及處於低能量的 Triplet,如小圖(e)。銅氧 超導體在未掺入任何電洞時,樣品內電子將填滿 ZRS 與 LHB,而較 高能量的能帶 UHB 保持為空,此時樣品保持為絕緣特性的絕緣體。 若將電洞逐漸掺入樣品內時,如在 La₂CuO₄ 內掺入元素 Sr 形成 La₂₋ $_xSr_xCuO_4$,則樣品中的能帶 ZRS 會逐漸出現未填滿之軌域,使得樣品 成為 p-type 超導體,如小圖(f)所示。

圖 2-2 銅氧化物費米能階附近電子結構圖。[12]

2.2.3 鑭鍶銅氧的傳導機制

在絕緣的樣品中,銅氧面上的銅離子(Cu²⁺)具有(d⁹)電子軌域,並 與鄰近的銅離子間具有強的反磁性,若當增加銅氧平面的載子(電洞) 的數量,如在 La₂CuO₄ 樣品中以二價的 Sr 原子取代原本三價的 La 原 子,形成 La_{2-x}Sr_xCuO₄ 超導體,樣品內的銅氧面為了維持電荷平衡, 電子離開銅氧面,留下具移動性的電洞(失去電子),開始具導電之 特性。銅氧超導體的電洞在臨界溫度 T_c之下產生了 Cooper pairs,因 此才開始具有超導性[11]。

我們可以將元素 Sr 在 LSCO 視為提供載子的功能,能讓銅氧平 面產生可以移動的載子,隨著元素 Sr 的掺入絕緣樣品成為 La₂₋ _xSr_xCuO₄,使得銅氧平面開始具有導電之特性。

2.2.4 偽能隙(Pseudogap)

偽能隙的發現最早是由低摻雜(underdoped)中的銅氧化物,經由 NMR 的實驗發現銅氧化物在正常態(normal state)中,於某特定溫度 (T*)下之 Fermi level 附近時,可由電荷和自旋在激發光譜上其狀態密 度(Density of state)明顯地變少之現象推測似乎有一個能隙產生,但 是仍可保持金屬之特性,故稱之為「偽能隙」,而從其它實驗中,如 中子繞射、傳輸特性、比熱、自旋磁化率、光導率、穿隧光譜、拉 曼光譜及角分析光電子能譜(ARPES)等,也可量測到偽能隙。由電 阻率與溫度之相圖可判別出偽能隙溫度(T^{*}),其定義為當溫度由高溫 區往低溫區移動,電阻率與溫度之變化趨勢開始呈現非線性之溫度 即為偽能隙溫度(T^{*})。

一般認為超導態的發生,一定要符合兩項要素,一為電子與電子 之間必須要形成庫柏對(Cooper pair),另一要素則是庫柏對中的相位 要一致,當兩者皆符合時才能形成超導態。偽能隙的存在,直到光電 子能譜實驗,才直接被證明出來,因為光電子能譜可量測出對應於電 子對中束縛能的正常態之能隙,如同在低摻雜銅氧化物於 T>T_c時將 具有超導載子。然而這些超導載子的相位於此時並無長程相干性 (long-range coherence),使之無法形成超導,唯有當 T<T_c時,超導載 子的相位能克服熱擾動之影響,且具有長程相干性,此時超導特性才 能發生。

2.2.5 Hubbard model 簡介

Hubbard modle 為描述強關聯系統的模型, 闡述 Mott insulators 中 3d 電子軌域交疊很大, d 軌域的電子相互接近, 故不能再忽略電子和 電子間的庫倫作用力, 所以在 Hamiltonian 算符中考慮了電子和電子 間的庫倫作用力, 其式如下:

$$H = -\sum_{\langle i,j \rangle \sigma} t_{ij} c_{i\sigma}^{+} c_{j\sigma} + U \sum_{i} \hat{n}_{i} \hat{n}_{i}$$
(2-1)

其中, H 為 Hamiltonian 量, 而 $c_{i\sigma}^+ c_{j\sigma}$ 為具有自旋 σ 處在電子態上 Ψ_i 電子的產生(creation operator)與湮滅(annihilation operation)算符, $\langle i, j \rangle$ 表

示對近鄰座位求和, $t_{ij}=1$,當i,j為最近鄰;其它情形為零,另外U 為一對正負自旋電子處於同一座位上的 Coulomb 排斥能(相關能)。 式中前項 - $\sum_{\langle i,j \rangle \sigma} t_{ij} c_{i\sigma}^{+} c_{j\sigma}$ 為單一方向自旋電子佔據某晶格位置中之躍遷 運動;後項 $U \sum_{i} \hat{n}_{i} \hat{n}_{i}$ 則表示電子與電子之間的庫倫交互作用力。

在強耦合情況 U >> |t|, Hubbard model 可以近似成 t-J model:

$$H = -\sum_{\langle i,j \rangle \sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + J_{ij} \sum_{ij} \left(s_i s_i - \frac{1}{4} n_i n_j \right)$$
(2-2)

其中, $J_{ij} = 4 \frac{|t_{ij}|}{U}$ 。另外式中前項 $-\sum_{\langle i,j \rangle \sigma} t_{ij} c_{i\sigma}^{+} c_{j\sigma}$ 為單一方向自旋電子佔據 某 晶 格 位 置 中 之 躍 遷 運 動;後項 $\sum_{ij} \left(s_i s_i - \frac{1}{4} n_i n_j \right)$ 則描述 indirect exchange interaction 中 , 位 於 copper sites 自 旋 S=1/2 電 子 的 antiferromagnetic exchange作用。

高溫超導體為 Mott insulators,與能帶理論預測其為金屬相違背, 其銅氧平面受強關聯作用力而形成一個能隙,此能隙區分造成了 upper Hubbard band 與 lower Hubbard band。當外加電洞進入銅氧平面 後,電洞與銅的自旋相互作用進而在 upper Hubbard band 與 lower Hubbard band 之間形成了 Zhang-Rice band [13],形成 p 型超導體。簡 單來說, Zhang-Rice band 反映著 CuO₂ 二維平面上電動數目的多寡, 而 upper Hubbard band 則代表著 CuO 雨者混成的結果。故利用 Oxygen K edge x-ray absorption spectra 來分析銅氧高溫超導體薄膜的 Zhang-Rice band 光譜權重變化來檢驗 Hubbard model。

第三章 實驗方法

3.1 樣品製備-薄膜製備

在本節將說明 $La_{2-x}Sr_xCuO_4$ ($0 \le x \le 0.4$)系列樣品薄膜之製備過程。

3.1.1 靶材製備

本實驗製作的樣品靶材為 La2-xSrxCuO4 系列,我們採取的方式 為固態反應法進行製備。首先計算出各樣品的 La、Sr、Cu 的莫耳數 比,再由其比例推算出所需混合的粉材 La2O3(純度 99.9%)、 SrCO3(純度 99.9%)、 CuO(純度 99.999%)之重量,經微量天秤秤重 並均勻混合粉材,之後將混合的粉材倒入氧化鋁坩鍋,放入通以高純 氧的管狀爐中,以10℃/min 升溫至 500℃預燒1小時,之後再升溫 至 1000℃做粉燒8 小時,每次粉燒完之後再次磨成均勻粉末,並且 提高10℃再進行粉燒,然後以1℃/min 降溫至室溫,連續粉燒三次 至 1020℃後停止,每次粉燒完的樣品會漸漸變為黑色,體積及重量 都會略為縮小,這是因為碳酸物質揮發的結果。粉燒完成之後,將粉 1℃/min 升溫至 1020℃燒結 24 小時,然後以1℃/min 降溫至室溫完 成燒結,燒結完成後測量其密度,再將其搗碎成粉狀再加壓成塊狀重 複塊材燒結。待完成的靶材其表面無裂痕且密度穩定無大幅度變化, 才停止燒結,得到本實驗用的靶材。

表 3-1 La2-xSrxCuO4 靶材燒結條件

	粉燒 1 st 溫度	粉燒 2 nd 溫度	粉燒 3 rd 溫度	塊材燒結溫度
La _{2-x} Sr _x CuO ₄	1000 °C	1010 °C	1020 °C	1020 °C

3.1.2 薄膜磊晶

本實驗薄膜樣品製備是使用脈衝雷射蒸鍍系統(PLD, Pulse Laser Deposition System)如圖 3-1,成長膜厚約 300 nm 之薄膜樣品。此脈衝 雷射蒸鍍系統所使用之 KrF 準分子雷射(HyperEx400, Lumonics Excimer Laser),雷射光源波長為 248 nm,脈衝能量是 400 mJ/pulse, 經聚焦後估計雷射脈衝能量密度約為 4 J/cm²,脈衝頻率(Repetition rate) 5Hz,脈衝持續時間(duration)約 12 ns。

圖 3-1 雷射蒸鍍系統裝置圖。

鍍膜前基板的材質選用與清潔、鍍膜時基板的溫度、氧壓及雷射 能量、基板與靶材的距離等因素均會影響薄膜的品質。因此進行蒸鍍 薄膜前,必須先找出成長的最佳條件。本實驗所使用之基板為 LaSrAlO₄(001),其基板之選定是由於SrTiO₃(001)與La_{2-x}Sr_xCuO₄間晶 格不匹配,導致T_c無法成長與文獻報導一致且達到La_{2-x}Sr_xCuO₄系列 最高T_c[14],故依成功長出高T_c樣品之文獻[15],選擇晶格匹配程度 更高基板成長,如表 3-2。表 3-3 為可穩定製備出結構好、均勻度佳 的La_{2-x}Sr_xCuO₄(x=0, 0.18, 0.4)薄膜之條件。

	a(Å)	c(Å)	Lattice mismatch for a (%)
$La_{2-x}Sr_xCuO_4$	3.777	13.23	
LaSrAlO ₄	3.762	13.29	0.40
SrTiO ₃	3.837	13.18	-1.56

表 3-2 晶格匹配比較表

表 3-3 薄膜製備條件

	蒸鍍溫度(℃)	氧壓(mTorr)	雷射能量(mJ)	雷射頻率(Hz)
La_2CuO_4	780	300	240	10
$La_{1.82}Sr_{0.18}CuO_4$	790	300	240	10
$La_{1.6}Sr_{0.4}CuO_4$	780	300	240	10

薄膜磊晶實驗步驟如下:

- (a) 基板清潔
- 將基板放入裝有丙酮(acetone)溶液之燒杯中,再以超音波震盪器
 去除油質及表面的殘留物,時間約10分鐘。
- 將基板放入甲醇(methanol)溶液中,利用超音波震盪除去表面殘留 的丙酮,清洗時間約為10分鐘。
- 將基板放入去離子水溶液中,超音波震盪除去表面殘留的甲醇, 時間約為10分鐘,最後用氮氣槍吹乾基板正反面。
- 將乾淨的基板使用高溫銀膠黏貼在加熱器基座上,並在大氣壓力 下加熱烤乾銀膠。
- (b) 鍍膜步驟
- 抽真空及升温:將已烘烤乾並黏有基板之基座放入高真空鍍膜室, 開機械幫浦(Rotary pump)將壓力抽至約 2×10⁻² torr。同時設定基座 升溫速率及持溫溫度。
- 對光及薄膜成長:在加熱至蒸餾溫度時填充氧氣至真空鍍膜室, 使其壓力、雷射功率、雷射頻率如表 3-2。啟動雷射進行對光,使 雷射光打至靶材上,並使基板位置對準火焰所涵蓋位置。之後將 火焰及基座之間遮罩移除開始鍍膜,鍍膜時靶材與基板的距離約
 6 公分左右,確保濺鍍至基板上的原子或分子團的數目極少,可 在緩慢且均匀的過程進行成長。
- 冷卻:鍍膜完成時,關畢雷射及加熱器,關閉抽真空閘,且於真空
 腔內通入氧氣,待基座自然回溫至室溫後取出。

3.2 特性量测之分析、裝置及原理介紹

3.2.1 X-ray 繞射分析

本實驗利用 X-ray 繞射分析檢視樣品之軸向及其晶格常數,來 確定樣品之品質。當 X-ray 入射樣品時,X-ray 的電磁場會引起原子 核外電子震動且電子振動頻率會與入射 X-ray 頻率相同,此時電子振 動再散射出與入射波相同波長的 X-ray,其方向遵守布拉格(Bragg Law):

 $2d\sin\theta = n\lambda$

(3-1)

其中, d 為晶格平面間之距離, θ 為入射光與樣品之間的夾角, λ 為入射光的波長, n 為正整數。

3.2.2 電阻率量测介紹

(a)電阻-溫度量測

本實驗使用電阻-溫度量測系統為 Quantum Design 出廠的 Physical Property Measurement System (PPMS)。此系統能夠精確的控 制溫度且量測樣品之電阻,取得良好的數據品質。

PPMS 基本構造(圖)包含了杜瓦瓶、電腦控制系統、卡計圓座 (Calorimeter Puck),及³He 系統。杜瓦瓶內使用液態氦作為冷媒,經 由電腦系統控制使得測量樣品空間的溫度可為 390K 至 2K,若加 上³He 系統則使溫度向下至 0.35 K。杜瓦瓶內建有超導磁鐵,可在 樣品測量空間外加磁場至9 Tesla。

圖 3-2 PPMS 基本構造圖,(a)電腦控制系統、杜瓦瓶(b)³He系統

圖 3-3 PPMS 杜瓦瓶剖面圖[16]。

卡計圓座包含了樣品平台(sample-mounting platform)、加熱器 (heater)、平台溫度計(platform thermometer)、圓座溫度計(puck thermometer),及導熱線(thermally conducting wires)。樣品平台採用導 熱良好的藍寶石(sapphire)為材質。

圖 3-4 卡計圓座(Calorimeter Puck) (a) Puck 構造示意圖, (b) ³He 系統使用

的比熱與電阻 Puck。[16]

量測樣品時,先以雙面膠將樣品固定在樣品座上,在將樣品上四 個條量測線連接於試片座上四個接點,其外側兩點輸入電流,內側兩 點則用來量電壓。此法為標準的四點量測法,如圖 3-5(a)所示。此外 可利用 van der Pauw 量測法,如圖 3-5(b)所示,此方法再利用 α-step 儀器測量膜厚,即可得電阻率。

D C

圖 3-5(a)電阻四點量測法。

圖 3-5(b) van der Pauw 電阻率量測法。

計算如公式 3-1 式:

$$\rho = \frac{\pi d}{\ell n 2} \times \left(\frac{R_1 + R_2}{2}\right) \times f\left(\frac{R_1}{R_2}\right) \tag{3-1}$$

其中, R_1 為 AB 之間的電阻或 CD 之間的電阻, R_2 為 BC 之間的電阻 或 AD 之間的電阻, d 為膜厚, $f(\frac{R_1}{R_2})$ 為如圖 3-6 所示。

3.2.3 Auger能譜分析介紹

本實驗使用歐傑能譜進行La2-xSrxCuO4薄膜樣品中Sr參雜濃度x 的定量分析。當原子內層電子受激游離,產生一電洞,上層電子會填 補此一電洞以降低原子之位能,此一降低的能量若大於同層或上層能 階某電子的束縛能時,該電子將有機會被游離出原子,該電子為Auger 電子,如圖3-7。Auger能譜利用特定之能量電子經能量分析儀所偵測 之能量值可計算出特定軌域電子之束縛能,依束縛能量能鑑定出特定 之元素。該儀器一面利用Ar離子束以固定速率清除分析樣品表層,在 一面以歐傑電子分析儀分析可得以飛濺時間為橫軸,依電子訊號強度 所得原子含量百分比為縱軸之元素縱深分析,得到樣品內所含之元素 百分比例,並以其比例定量樣品Sr參雜量。

圖 3-7 歐傑電子產生原理示意圖[17]。

圖3-8 歐傑能譜儀器示意圖[17]。

3.2.4 XANES 之原理簡介

本實驗將製備完成的樣品於國家同步輻射研究中心(National Synchrotron Radiation Research Center, NSRRC)中之 6m high energy spherical grating monochromator (6m HSGM)光束線 BL20A [18],進行X光吸收光譜量測。

3.2.4 (a) XANES 原理簡介

吸收光譜是原子吸收光子後,使其原子內電子在不同軌域間躍遷, 當光子能量恰為某一值時,光子會被吸收,使得某一軌域之電子躍遷 至較高且為填滿之空軌域。而 XANES (x-ray absorption near edge structure)則是利用此物理機制所產生的工具,其主要功能為分析材料 空軌域電子組態(電洞),尤以O 的*K*-edge (O 的 1*s* 到 2*p* 空軌域的 吸收),由光譜中的幾個特定能量位置上,可了解能帶載子分佈之情 形。從XANES 光譜分析中可以得到量測兩種數據:全電子產率(Total electron yield)與X光螢光產率(X-ray fluorescence yield),如圖 3-9。

當 X-ray 照射樣品時會激發內部的光電子往樣品表面移動,但 由於電子與電子間的庫倫作用力之牽制,會使較深層電子因阻礙多不 容易跑出樣品表面,而淺層電子因阻礙少容易跑出樣品表面,藉由電 流計檢測其光電流,可知樣品表面的特性,稱之為全電子產率。相對 於全電子產率,X 光螢光產率是用來了解材料整體結構的特性分析,
因為 x-ray 激發樣品內的光電子後會留下空軌域,外層的電子將會佔 據此空軌域後放出光子而產生螢光訊號。螢光是由光子所組成,故螢 光不會受到庫倫作用力之牽制於樣品內,因此可探測較深層之電子結 構,實驗上常利用 X 光螢光產率作為樣品整體結構的特性分析。

圖 3-9 為 X 光吸收光譜之電子及螢光產率原理圖:X 光打入樣品激發內層電子 躍遷至空軌域,外層電子掉至內層電洞因而產生螢光。

3.2.4 (b) 自我吸收光譜 (self-absorption) 校正

當螢光自生成到完全離開樣品過程中仍會被樣品所吸收,稱之為 自我吸收效應,而儀器所記錄的光子強度,受限於自我吸收效應,造 成吸收光譜並不能正確的呈現,其誤差就必須藉由物質的吸收特性進 行校正,此步驟稱為光譜的自我吸收校正(self-absorption correction)。 圖 3-8 為兩種極端自我吸收情形,如圖所示自我吸收之效應會受到入 射角度之影響。假設對樣品的 O 光譜進行自我吸收校正,可得 O 原 子之 1s 軌域吸收截面 μ_{oxy},計算如公式 3-3 式[19]。

$$\mu_{oxy}(E) = \frac{I'(E) \cdot P}{f - I'(E)} \tag{3-3}$$

其中, *E* 為 photon energy, μ_{oxy} 為 absorption cross section of oxygen atoms, μ_{total} 為 absorption cross section of all elements, E_R 為 fluorescence energy ~ 520 eV, *F* 為 factor。

另外,

$$I'(E) = I(E) - I(520) + f \cdot \mu(520)$$

$$I(E) \equiv \frac{I_R(E)}{I_0(E)}$$

$$P = \mu_{other}(E) + \mu_{total}(E_R) \times G$$

$$f = \frac{I_{600} - I_{520}}{\mu_{600} - \mu_{520}}$$

$$\mu(E) = \frac{\mu_{oxy}(E)}{\mu_{total}(E) + \mu_{total}(E_R) \times G}$$

$$G = \frac{\cos\alpha'}{\cos\beta'} (\alpha' = 45 - \alpha \cdot \beta' = 45 - \beta)$$

$$\mu_{total}(E) = \mu_{oxy}(E) + \mu_{other}(E)$$

(b)為入射光以掠角入射,螢光為垂直放出;

(c)為入射以垂直入射,螢光為掠角放出[19]。

為了得到不同位置 O 原子對於載子的貢獻,透過向量方式計算 可以得到不同軸向之光譜。首先,因入射光的偏極化並非百分之百, 我們必需先行修正,如下 3-4 式:

$$I'(\alpha) = I(\alpha) \times \left(p + \frac{1-p}{2}\right) + I_0 \left[1 - \left(p + \frac{1-p}{2}\right)\right]$$
(3-4)

其中各參數定義為:

α :入射光與樣品 c 軸的夾角

- Ι'(α) :實驗測量之螢光產率強度
- I(α) :完全偏極化光線入射應該得到螢光產率強度
- Io :入射角 0 度之 X 光螢光產率強度
- I90 :入射角 90 度之 X 光螢光產率強度
- *p* :the degree of linear polarization

1-p 為入射圓偏振光率,將得到之 I(α)帶入下式:

$$I(\alpha) = I_0 \cos^2 \alpha + I_{90} \sin^2 \alpha \tag{3-5}$$

可以得到 I90 為:

$$I_{90} = \frac{I(\alpha) - I_0 \cos^2 \alpha}{\sin^2 \alpha}$$
(3-6)

190即為入射光電場方向平行樣品 c 軸之 X 光吸收光譜。

3.2.4(c) HSGM 裝置簡介

如圖 3-10 為國家同步輻射研究中心 (National Synchrotron Radiation Research Center, NSRRC) 中之 6 m high energy spherical grating monochromator(6mHSGM) 光束線 BL20A 光學系統設計圖。

圖 3-10 6m HSGM 光束線光學系統配置圖。

第四章 實驗結果與討論

本實驗以改變不同鍶參雜的鑭鍶銅氧薄膜系列進行近緣吸收光 譜(XANES)實驗,探討OK-edge(O的1s到2p空軌域的吸收)和Cu L3-edge(Cu的2p_{3/2}到Cu3d空軌域的吸收)之光譜變化。

探討鑭鍶銅氧薄膜由零參雜(Mott insulator)至重參雜(overdoped regime)在近銅氧平面費米能階(Fermi level; *E_F*)因載子(電洞)濃度變化的能帶光譜權重(Fermi level; *E_F*)趨勢,以吸收光譜驗證高溫超導體與Hubbard 理論模型的可適性。

4.1 實驗設計

本實驗利用La_{2-x}Sr_xCuO₄薄膜,以脈衝雷射蒸鍍系統磊晶成薄膜。 透過改變不同參雜量的靶材,得到多種參雜量的La_{2-x}Sr_xCuO₄薄膜樣 品。以X-ray 繞射分析確認樣品結構確認及電阻率的測量確認樣品的 品質。最後將薄膜樣品送至國家同步中心進行吸收光譜實驗。

4.2 實驗流程

本實驗透過固態反應法燒結不同參雜量之La_{2-x}Sr_xCuO4靶材,透 過 x-ray 繞射分析確認靶材是否純相,接著利用脈衝雷射蒸鍍法濺鍍 不同參雜量之 La_{2-x}Sr_xCuO₄ (x=0、0.02、0.13、0.18、0.21、0.3、0.35、 0.4) 於 LaSrAlO₄(001)基板上, 同樣先透過 x-ray 繞射分析確認薄膜結 構純相,並利用電阻-溫度量測系統與 van der Pauw 電阻率量測法檢 測薄膜的電性傳輸,藉由 T_c 及電阻率對溫度相圖及殘餘電阻判斷製 備薄膜品質的好壞, 如圖 4-1、4-2,以歐傑能譜縱深分析定量樣品內 之 Sr 參雜濃度 x。

圖 4-1 La_{2-x}Sr_xCuO₄ (x=0、0.18) 靶材粉末及 La_{2-x}Sr_xCuO₄ (x=0、0.18) 薄膜

之 x-ray 繞射分析圖。

圖 4-1 是以 2θ x-ray 繞射儀檢驗靶材粉末檢驗樣品結構、薄膜 樣品 x-ray 之繞射圖,由此可驗証靶材樣品結構純相,及薄膜樣品 c 軸垂直膜面,確認樣品的結構正確。

圖 4-2 La_{2-x}Sr_xCuO₄ (x=0.13、0.18、0.21、0.3、0.35、0.4) 薄膜電阻率與溫度相

圖。

經過 20X-ray 繞射儀檢驗確認樣品品質及結構是良好,再經電阻 -溫度的量測與 van der Pauw 電阻率量測法確認樣品電性確認,並以 歐傑能譜縱深分析定量樣品內之 Sr 參雜濃度 x,並將製備完成之樣品 送到同步輻射中心(National Synchrotron Radiation Research Center, NSRRC)進行 XANES (X-ray absorption near edge structure)光譜量測。

4.3 樣品 Sr 參雜定量分析

本實驗透過歐傑能譜縱深分析定量樣品內之 Sr 參雜濃度,在 本章節中將敘述分析 La_{2-x}Sr_xCuO₄ 樣品內 Sr 參雜濃度之定量過程及 數據分析。

在本實驗中進行歐傑縱深分析時,由於 Sr 的歐傑能譜訊號較小, 故利用樣品內 Cu 之莫耳數比例固定及隨 Sr 參雜 La 的莫耳數比例下 降之特性,定量 La 及 Cu 的歐傑能譜訊號進而得到樣品內 Sr 的參雜 濃度。在歐傑能譜縱深分析時,我們先以零參雜(Mott insulator)的樣 品作為標準樣品,得到零參雜(Mott insulator)樣品中 La 及 Cu 的歐傑 能譜訊號作為標準強度與深度的關係,如圖 4-3。為避免樣品表面氧 化的訊號,以深度 50 nm 至 250 nm 平均歐傑能譜訊號換算樣品內 La 及 Cu 的參雜濃度,並令所得零參雜(Mott insulator)樣品中 La 的歐傑 能譜平均訊號為 ILa 及 Cu 的歐傑能譜平均訊號為 ICu, 因為我們由化 學式可以知道零參雜(Mott insulator)樣品中 La 及 Cu 之莫耳數比,如 式 4-1 之關係式。

$$La: Cu = 2:1$$
 (4-1)

並將其歐傑平均強度作為標準強度以換算之莫耳數比與縱深關 係作圖可以得到關係圖,如圖 4-4。接著於同樣條件下量測含有參雜 樣品的歐傑縱深分析圖,得到歐傑能譜訊號作為標準強度與深度的關係,如圖 4-5。同樣以深度 50 nm 至 250 nm 平均歐傑能譜訊號換算樣品內 La 及 Cu 的參雜濃度及深度關係,並令所得參雜樣品中 La 的歐傑能譜平均訊號為 I'La 及 Cu 的歐傑能譜平均訊號為 I'Cu,則我們可以得到其強度與樣品內 La、Cu 含量關係,其關係式,如式 4-2。

$$La = 2 \bullet \frac{I'_{La}}{I_{La}} \quad , \ Cu = \frac{I'_{Cu}}{I_{Cu}} \tag{4-2}$$

又因為我們知道無論樣品內之參雜量如何改變,其樣品內之 Cu 莫耳數比永遠為 1,故其參雜前後的歐傑能譜訊號強度與樣品 La 含 量 y 之莫耳數比關係式可以整理成如下式,

$$y: 1 = 2 \bullet \frac{I'_{La}}{I_{La}} : \frac{I_{Cu}}{I'_{Cu}} , \quad y = \frac{I'_{La}}{I_{La}} \bullet 2 \bullet \frac{I_{Cu}}{I'_{Cu}}$$
 (4-3)

利用上式將得到樣品內歐傑能譜訊號並換算成樣品內莫耳百分 比例與縱深關係作圖,如圖 4-6。最後將得到之樣品內 La 含量 y,利 用式 4-4 換算,可以得到樣品內 Sr 的參雜濃度。

$$x = 2 - y \tag{4-4}$$

利用其上述方式,圖 4-7 至圖 4-8 為各樣品 La 及 Cu 的參雜濃度 及深度歐傑縱深分析關係圖。

圖 4-3 La2CuO4 歐傑能譜訊號強度縱深關係圖。

圖 4-4 La₂CuO₄ 中 La、Cu 比例縱深關係圖。

圖 4-5 La1.877Sr0.123CuO4 歐傑能譜訊號強度縱深關係圖。

圖 4-6 La_{1.877}Sr_{0.123}CuO₄ 中 La、Cu 比例縱深關係圖。

圖 4-7 La_{2-x}Sr_xCuO₄/SrTiO₃ 中 La、Cu 比例縱深關係圖。

圖 4-8 La2-xSrxCuO4/LaSrAlO4 中 La、Cu 比例縱深關係圖。

表 4-1 為將圖 4-7 及圖 4-8 中之樣品整理成各樣品參雜關係表:

樣品	使用基板	使用靶材 Sr 参雜量 x	T _c (K)	相圖對照電洞 參雜量 p	歐傑縱深分析 之 Sr 參雜量 x
LaCuO ₄	SrTiO ₃	0	-	-	0
La _{1.877} Sr _{0.123} CuO ₄	SrTiO ₃	0.12	24.2	0.125	0.123
La _{1.75} Sr _{0.25} CuO ₄	SrTiO ₃	0.25	3	0.26	0.25
La _{1.73} Sr _{0.27} CuO ₄	SrTiO ₃	0.3	-	-	0.27
La _{1.6} Sr _{0.4} CuO ₄	SrTiO ₃	0.4	-	-	0.4
LaCuO ₄	LaSrAlO ₄	0	-	-	0
La _{1.7} Sr _{0.3} CuO ₄	LaSrAlO ₄	0.3	-	-	0.3
La _{1.75} Sr _{0.35} CuO ₄	LaSrAlO ₄	0.35	-	-	0.35
La _{1.6} Sr _{0.4} CuO ₄	LaSrAlO ₄	0.4	_	-	0.4

表 4-1 La2-xSrxCuO4 系列樣品參雜關係表

4.4 O K-edge XANES 光譜分析

銅氧化物超導體在近費米能階能帶主要由 $O2p_{\sigma}$ 與 $Cu 3d_{x^{2},y^{2}}$ 軌域 混成所貢獻,主要三個能帶由高至低分別為 lower Hubbard band (LHB)、 Zhang-Rice band (ZRB)、 upper Hubbard band (UHB),透 過同步輻射近緣吸收光譜,可以觀察到其能帶的變化。圖 4-9 為同步 輻射入射光電場垂直樣品 c 軸, OK-edge XANES 吸收光譜,其光譜 顯示 La_{2-x}Sr_xCuO₄薄膜在 ab 平面的電子結構。光譜能量位置位於 528.5 eV 的峰為是由銅氧面上 O 所貢獻,是為 Zhang-Rice band。 位於 530 eV 的峰,是 O 1s 躍遷到 upper Hubbard band 的吸收[20]。

在La_{2-x}Sr_xCuO₄系列樣品中,利用 Sr 的參雜取代La 的位置,提 供了銅氧面的載子電洞數增加,且不改變費米能階附近電子結構,此 現象最直接的可以從 O K-edge 吸收光譜觀察到。 由圖 4-9 中觀察 La_{2-x}Sr_xCuO₄系列樣品的 O K-edge 光譜,可以發現 Zhang-Rice band 及 upper Hubbard band 光譜權重之間的消漲,隨著樣品中 Sr 參雜增加, Zhang-Rice band 光譜權重逐漸增加,而 upper Hubbard band 光譜權重 則逐漸減少,代表著在銅氧平面上的電洞數逐漸增加。由上述討論得 知,Zhang-Rice band 和 upper Hubbard band 之間極強的關聯性,這現 象與文獻[11,21,22]所提相同。

圖 4-9 La_{2-x}Sr_xCuO₄ (x=0、0.02、0.13、0.18、0.21、0.3、0.35、0.4)薄膜之 入射光電場垂直 c 軸, O K-edge XANES 吸收光譜。

本實驗延續我們團隊在銅氧高溫超導體的近緣吸收光譜之研究 [8],並驗證 Peets 等人所發表的論文[3]中, Zhang-Rice band 在 overdoped regime 中是否有著不符合 Hubbard model 理論所預測的行 為。

由於 Peets 在論文中,使用 lowest-energy prepeak 中央前後取一 能量區間直接做積分取得光譜權重,我們仿照此法在 lowest-energy prepeak 處前後取 0.25 eV 的能量區間做積分求得光譜權重,並將 Chen 等人的理論模型結果[9]在 Sr concentration x = 0.13 處之值做歸一化與 數據結果比較,且同樣將 Liebsch 的理論模擬結果[5]與實驗數據的最 佳化擬合比較,如圖 4-10 所示。可以發現在 $x \leq 0.21$ 時,趨勢並無 太大差異,並在 $x \geq 0.21$ 時,發現 Peets 等人在論文[3]中所宣稱之 權重呈現飽和狀態,光譜權重不符合 Liebsch 及 Chen 等人的理論計 算模型[5,9],可以觀察到在較高載子濃度 x > 0.3 時,光譜的權重逐漸 趨緩。

圖 4-10 以 lowest-energy prepeak 為中心取正負 0.25 eV 為積分範圍所得 Zhang-Rice band 光譜權重 So 對參雜濃度 x 之作圖。黑色實線為 Liebsch 的理論計算 [5], 紅色圓點為 Chen 等人的吸收光譜理論計算數據[9]。

為了比較我們團隊先前使用 YBCO 系統研究數據[8],我們先在 這裡假設 La_{2-x}Sr_xCuO₄ 系列樣品中的電洞參雜量 p 等於樣品內的 Sr 參 雜量 x,即 x = p。並將先前使用 YBCO 系統光譜權重研究數據[8]與 本實驗所得到之光譜權重數據於電洞參雜量 p=0.21處歸一化,作出 相對光譜權重強度對電洞參雜量之關係圖,如圖 4-11。可以觀察到電 洞參雜量於 $0 \le p \le 0.225$ 間,於兩個不同的銅氧高溫超導系統間皆符 合著二維理論理論模型的預測[5,9],但在較高載子濃度 x > 0.3 時,光 譜的權重逐漸趨緩且飽和。

圖 4-11 紀銀銅氧系統及鑭鍶銅氧系統之 Zhang-Rice band 相對光譜權重強度對 電洞參雜濃度 p 作圖。黑色實線為 Liebsch 的理論計算[5],紅色圓點為 Chen 等 人的吸收光譜理論計算數據[9]。

圖 4-12 為同步輻射入射光電場平行樣品 c 軸, O K-edge XANES 吸收光譜,其光譜顯示 La_{2-x}Sr_xCuO4 薄膜在 c 軸的電子結構。光譜能 量位置位於 527.3 eV 的峰為是由軸向上的 O 所貢獻,可以觀察到當 參雜濃度逐漸增加時,其光譜權重亦逐漸增加,表示當參雜濃度愈高 時,其電洞載子有部分轉移至樣品的 c 軸上。同樣我們對此軸向 O 光 譜權重處前後取 0.25 eV 的能量區間做積分求得光譜權重對 Sr 參雜 濃度 x 的關係圖,如圖 4-13 所示。當參雜濃度增加,光譜權重亦逐 漸增加,且可以觀察到光譜權重增加之趨勢接近一線性變化,未因參 雜量的增加而逐漸趨緩。

圖 4-12 La_{2-x}Sr_xCuO₄ (x=0、0.02、0.13、0.18、0.21、0.3、0.35、0.4) 薄膜

之入射光電場平行 c 軸, O K edge XANES 吸收光譜。

圖 4-13 以軸向氧峰值為中心取正負 0.25 eV 為積分範圍所得軸向 O 光譜權 重 S₉₀ 對參雜濃度 x 之作圖。

為了確認平面光譜權重與軸向光譜權重之間的比例關係,我們將 所得的軸向光譜權重 Soo除以平面光譜權重 So 對 Sr 參雜濃度 x 作圖, 如圖 4-14 所示。由圖 4-14 發現,隨著參雜量逐漸增加,軸向上的光 譜權重貢獻有逐漸增加的趨勢,當參雜量 x 高於 0.21 時,光譜相對 比例有突然增長的現象,表示高參雜時,載子有不小的比例轉移至軸 向。暗示著 LSCO 系統中,我們必需考慮參雜對軸向載子的貢獻,透 過校正的方式得到在銅氧平面上的載子濃度,得到平面光譜權重與平 面載子濃度的關係。其估計方法及分析將在 4.5 節中解釋。

圖 4-14 軸向光譜權重 S_{90} 除以平面光譜權重 S_0 對 Sr 參雜濃度 x 之作圖。

4.5 Cu L3 edge XANES 光譜分析

圖 4-15 為 La_{2-x}Sr_xCuO₄ 系列樣品以同步輻射入射光電場垂直樣 品 c 軸之 Cu L₃-edge XANES 光譜。在 Cu L-edge 吸收光譜能量位置 約於 931 eV 之光譜權重,是被公認為銅氧面上+2 價的 Cu, Cu3d⁹躍 遷至 Cu2p3d¹⁰之吸收貢獻[23]。而在 Cu L-edge 吸收光譜能量約位於 932 eV 的光譜權重則被認為是帶+3 價的 Cu, 由 Cu 3d_{x²-y²} 軌域發生 由 Cu 3d⁹L 轉移至 Cu 2p3d¹⁰L 的吸收貢獻,其中 L 代表 ligand 上之 電洞[24],隨著樣品內的電洞載子濃度含量增加而增加。

由過往的文獻中可以知道,電洞載子含量與 ligand holes 數目與 Zhang-Rice band 光譜權重之間有著高度的關聯性[11,21,22],如圖 4-9,隨著樣品內的 Sr 參雜,也就是所謂的電洞載子含量的增加,ligand holes 數目亦隨之增加,與 OK-edge 吸收光譜中的 Zhang-Rice band 光 譜權重增加,有著高度的一致性,暗示著 ligand holes 的數目與 Zhang-Rice band 上載子數目正相關,因此在 Cu L-edge 光譜能量約 932 eV 的權重變化行為,亦能作為 Liebsch 的理論計算模型[5]與我們的實驗 結果是否適用的有力證據。Ligand 為銅和氧混成的軌域,與氧有相關 性,利用 Cu L-edge 吸收光譜可看出銅氧間的電荷轉換的情形,且位 於 Cu L-edge 吸收光譜能量約 932 eV 的光譜權重與 O K-edge 吸收光 譜能夠相互驗證,故由圖 4-15 可以得知樣品在製備完成後,進行 XANES 實驗量測顯示結構依然良好之另一有利證據。

48

圖 4-15 La_{2-x}Sr_xCuO₄ (x=0、0.02、0.18、0.21、0.3、0.4)薄膜之入射光電場垂直 c

軸,CuL3-edge XANES 吸收光譜。

4.6 銅氧平面載子估計及分析

在OK-edge XANES 光譜的分析提到,LSCO 系統樣品隨著參雜 濃度的增加軸向載子的貢獻亦隨著增加,我們必需將此因素考慮並做 出校正,才能得到銅氧平面上載子對光譜權重的關係,進而與二維理 論模型比較。在本論文中利用了兩種不同的估計方法,並與理論模型 比較,在本章節中分析。

第一個方法是利用平面光譜權重及軸向光譜權重之比例,估計出 參雜至 LSCO 系統中的 Sr 參雜量 x 與平面載子濃度 pplanar (ppl)之相對 關係,其估計關係式如下:

$$p_{planar} = x \cdot \frac{S_0}{S_0 + S_{90}} \tag{4-1}$$

圖 4-16 為平面 OK-edge 光譜權重 S₀對利用式(4-1)所計算推估出 的平面載子濃度 p_{pl}作圖,並將 Chen 等人的理論模型結果[9]在 Planar hole concentration p_{pl}=0.125 處之值做歸一化與數據結果比較,且同樣 將 Liebsch 的理論模擬結果[5]與實驗數據的最佳化擬合比較。可以看 出經校正平面載子濃度後的光譜權重關係圖,符合著 Liebsch 及 Chen 等人的二維理論計算模型[5,9]。

圖 4-16 以 lowest-energy prepeak 為中心取正負 0.25 eV 為積分範圍所得 Zhang-Rice band 光譜權重 So 對使用式 4-1 估算之平面載子濃度 ppl之作圖。黑色實線 為 Liebsch 的理論計算[5], 紅色圓點為 Chen 等人的吸收光譜理論計算數據

[9] •

同樣比較我們團隊先前使用 YBCO 系統研究數據[8],我們將經 方法一校正過後的 La_{2-x}Sr_xCuO₄ 系列樣品中的平面電洞參雜量 *p_{pl}*與 YBCO 系統研究數據作圖,並令 YBCO 系統中電洞參雜量 *p*等於平 面電洞參雜量 *p_{pl}*。將先前使用 YBCO 系統光譜權重研究數據[8]與本 實驗所得到之光譜權重數據於平面電洞參雜量 *p_{pl}* = 0.21 處歸一化, 作出相對光譜權重強度對電洞參雜量之關係圖,如圖 4-17。可以觀察 到經過校正後的 LSCO 系統平面電洞參雜量與釔鋇銅氧系統之平面 電洞參雜量於0≦ p_{pl} ≦0.3 間,兩個不同的銅氧高溫超導系統間皆符 合著二維理論理論模型的預測[5,9]。

圖 4-17 紀鋇銅氧系統及鑭鍶銅氧系統之 Zhang-Rice band 相對光譜權重強度對 以方法一校正出的平面電洞參雜量 *ppl* 作圖。黑色實線為 Liebsch 的理論計算 [5],紅色圓點為 Chen 等人的吸收光譜理論計算數據[9]。

第二個估計方法利用 Cu L₃-edge XANES 中 Ligand hole 光譜權重 隨 Sr 參雜逐漸增加的趨勢,且利用 x 光電場平行銅氧平面的 Cu L₃edge XANES 的吸收峰訊號只來自銅氧平面之特性,並參考了文獻所 報導之方法[25,26],估計出平面載子 *p_{pl}與* Sr 參雜量 x 之關係。在文 獻所報導之方法中[25,26],利用了兩個高斯分布曲線擬合出 Cu 二價 光譜權重及 Ligand hole 光譜權重,並以百分比例方式推算平面載子 之濃度與 Sr 參雜量間之關係。在本論文中,我們利用積分 Cu L₃-edge XANES 能量區間 931 eV 至 935.6 eV 得到光譜權重,並將此光譜權 重減去零參雜光譜權重之差值,得到每個樣品 Ligand hole 的光譜權 重 $S_{Ligand}(S_L)$,即 $S_L(p) = \sigma_{Cu}(p) - \sigma_{Cu}(p = 0)$ 。我們並將 Ligand hole 的 光譜權重 S_L 對 Sr 參雜量 x 作圖,可以發現其關係成一近線性關係, 如圖 4-18。

圖 4-18 以 Cu L₃ XANES Ligand hole 的光譜權重 S_L 對 Sr 參雜量 $x \ge$ 作圖。其中 Sr 參雜量 $x = 0.13 \times 0.35$ 為使用內插法推估 Ligand hole 的光譜權重 S_L 所得之

值。

而零參雜的 Cu L_3 XANES 光譜權重 $S_{mott insulator}(S_{MI})$ 則是直接積分 能量區間 927 eV 至 935.6 eV 得到。之後利用估計關係式,得到 Sr 參 雜量 x 與平面載子濃度 $p_{planar}(p_{pl})$ 之相對關係,估計關係式如(4-2):

$$\boldsymbol{p_{pl}} = \boldsymbol{x} \cdot \frac{\boldsymbol{s_L}}{\boldsymbol{s_{Ml}}} \tag{4-2}$$

圖 4-19 為平面 OK-edge 光譜權重 S₀對利用式(4-2)所計算推估出 的平面載子濃度 *ppl*作圖,並將 Chen 等人的理論模型結果[9]在 Planar hole concentration *ppl*=0.125 處之值做歸一化與數據結果比較,且同樣 將 Liebsch 的理論模擬結果[5]與實驗數據的最佳化擬合比較。比較經 校正平面載子濃度後的光譜權重關係圖與 Liebsch 及 Chen 等人的二 維理論計算模型[5,9]關係可以發現,實驗上的數據符合著理論上的計 算模型。

圖 4-19 以 lowest-energy prepeak 為中心取正負 0.25 eV 為積分範圍所得 Zhang-Rice band 光譜權重 So 對使用式 4-2 估算之平面載子濃度 Ppl之作圖。黑色實線 為 Liebsch 的理論計算[5], 紅色圓點為 Chen 等人的吸收光譜理論計算數據

[9] •

同樣比較我們團隊先前使用 YBCO 系統研究數據[8],我們將經 方法二校正過後的 La_{2-x}Sr_xCuO₄ 系列樣品中的平面電洞參雜量 p_{pl} 與 紀鋇銅氧系統研究數據作圖,並令 YBCO 系統中電洞參雜量 p 等於 平面電洞參雜量 p_{pl} 。將先前使用 YBCO 系統光譜權重研究數據[8]與 本實驗所得到之光譜權重數據於平面電洞參雜量 $p_{pl}=0.21$ 處歸一化, 作出相對光譜權重強度對電洞參雜量之關係圖,如圖 4-20。可以觀察 到經過校正後的鑭鍶銅氧系統平面電洞參雜量與釔鋇銅氧系統之平 面電洞參雜量於 $0 \leq p_{pl} \leq 0.3$ 間,兩個不同的銅氧高溫超導系統間皆 符合著二維理論理論模型的預測[5,9]。

圖 4-20 紀銀銅氧系統及鑭鍶銅氧系統之 Zhang-Rice band 相對光譜權重強度對 以方法二校正出的平面電洞參雜量 *ppl* 作圖。黑色實線為 Liebsch 的理論計算 [5],紅色圓點為 Chen 等人的吸收光譜理論計算數據[9]。

4.7 O K-edge 變溫之 XANES 光譜分析

本論文進行了OK-edge 變溫之 XANES 實驗,以檢驗溫度對薄 膜La_{2-x}Sr_xCuO₄樣品的影響,在OK edge 變溫之 XANES 實驗中我們 利用液氦將樣品溫度降至約8K,並將其光譜與室溫OK-edge 光譜比 較。

圖 4-21 至圖 4-23 為不同 Sr 參雜量 La_{2-x}Sr_xCuO₄ 薄膜樣品的 O K-edge 變溫之 XANES 比較圖,經比較室溫及低溫光譜,可以觀察其 光譜不因溫度改變而有太大變化,故本實驗認為溫度並不影響 La₂₋ _xSr_xCuO₄ 樣品內的載子行為。

圖 4-21 La2-xSrxCuO4, x=0.02 薄膜 T=300K&8K O K-edge XANES 光譜實驗數據

圖 4-22 La2-xSrxCuO4, x=0.02 薄膜 T=300K&8K O K-edge XANES 光譜實驗數據

圖。

圖 4-23 La_{2-x}Sr_xCuO₄, x=0.18 薄膜 T=300K&8K O K-edge XANES 光譜實驗

數據圖。

第五章 結論

本實驗延續我們團隊在銅氧高溫超導體的近緣吸收光譜之研究 [8],使用了 La_{2-x}Sr_xCuO₄ 系統作為研究主軸,並涵蓋了零參雜(Mott insulator)至重參雜(overdoped)的實驗數據,同樣檢驗 Peets 等人於 2009 年發表的論文[3]分析高溫超導體的近緣吸收光譜中,載子濃度 於 overdoped 區域以上的高溫超導樣品於 O K-edge XANES 光譜權 重變化,如預期 upper Hubbard Band 光譜權重逐漸變小,但 Zhang-Rice band 的光譜權重增長卻不如理論預測。

我們利用同步輻射偏極化光源解析了 La_{2-x}Sr_xCuO₄ 系統的近緣吸 收光譜,由垂直入射樣品 c 軸及平行入射樣品 c 軸的 O K-edge XANES 光譜發現,對於 La-214 系統必須考量參雜對系統載子分布的關係, 進而討論在銅氧平面上載子與光譜權重關係並驗證二維理論模型的 預測。我們利用兩種不同之估計方式推算出了於 La-214 系統在銅氧 平面上載子,發現 O K-edge XANES 光譜中 Zhang-Rice band 的光譜 權重在重參雜的樣品(x>0.21)發生的光譜權重飽和的現象,但經由兩 種不同之方式定量出於平面載子的濃度與 Zhang-Rice band 的光譜權 重關係圖,符合 Liebsch 及 Chen 等人的二維理論計算模型[5,9],故本 實驗驗證了 Hubbard model 理論模型結果及可適性。

59

參考文獻

- [1] J. G. Bednorz and K. A. Müller, Z. Phy. B 64, 189 (1986)
- [2] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao,Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987)
- [3] D. C. Peets, D. G. Hawthorn, K. M. Shen, Young-June Kim, D. S. Ellis,
 H. Zhang, S. Komiya, Y. Ando, G. A. Sawatzky, R. Liang, D. A. Bonm,
 and W. N. Hardy. Phys. Rev. Lett. 103, 087402 (2009).
- [4] X. Wang, L. de' Medici, and A. J. Millis, Phys. Rev. B 81, 094522 (2010).
- [5] A. Liebsch, Phys. Rev. B **81**, 235133 (2010).
- [6] P. Phillips and M. Jarrell, Phys. Rev. Lett. 105, 199701 (2010).
- [7] N. B. Brookes, G. Ghiringhelli, A.-M. Charvet, A. Fujimori, T. Kakeshita, H. Eisaki, S. Uchida, and T. Mizokawa, Phys. Rev. Lett. 115, 027002 (2015).
- [8] Y.-J. Chen, M. G. Jiang, C. W. Luo, J.-Y. Lin, K. H. Wu, J. M. Lee,
 J. M. Chen, Y. K. Kuo, J. Y. Juang, and Chung Yu Mou, Phys. Rev. B.
 88, 134525 (2013)
- [9] C. C. Chen, M. Sentef, Y. F. Kung, C. J. Jia, R. Thomale, B. Moritz, A.P. Kampf, and T. P. Devereaux, Phys. Rev. B 87, 165144 (2013).
- [10] M. Cyrot and D. Pauna, "Introduction to Superconductivity and High-*T_c* Materials", World Scientific, Singapore, (1992).
- [11] 林沛宏,碩士論文,"銅氧化物超導體 T_c 與銅氧面電洞之研究",

交通大學,(2003)。

- [12] A. Damascelli, Z. Hussain and Zhi-Xun Shen, Rev. Mod. Phys. 75, 473 (2003).
- [13] F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
- [14] H. Sato and M. Natio, Physica C 274, 221 (1997)
- [15] J. Wu, O. Pelleg, G. Logvenov, A. T. Bollinger, Y-J. Sun, G. S. Boebinger, M. Vanević, Z. Radović and I. Božović, Nat. Mater. 12, 877 (2013)
- [16] <u>http://www.qdusa.com/index.html</u>
- [17] 田大昌、黄啟貞,工業材料雜誌 201 期,81,(2003)
- [18] User's Manual of the 6 m-HSGM Beamline at SRRC. May 2014.
- [19] S. Eisebitt, T. Böske, J.–E. Rubensson, and W. Eberhardt, Phys. Rev. B 47, 14013 (1993).
- [20] E. Pellegrin, N. Nücker, J. Fink, S. L. Molodtsov, A. Gutiérrez, E. Navas, O. Strebel, Z. Hu, M. Domke, G. Kaindl, S. Uchida, Y. Nakamura, J. Markl, M. Klauda, G. Saemann-Ischenko, A. Krol, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. B 47, 3354 (1993)
- [21] J. Zaanen and G. A. Sawatzky, Phys. Rev. Lett. 55, 418 (1985).
- [22] H. Eskes and G. A. Sawatzky, Phys. Rev. Lett. 61, 1415 (1988).
- [23] J. Fink, N. Nücker, E. Pellegrin, H. Romberg, M. Alexander, and M. Knupfer, J. Electron Spectrosc. Relat. Phenom. 66, 395 (1994).
- [24] C. T. Chen, L. H. Tjeng, J. Kwo, H. L. Kao, P. Rudolf, F. Sette, and R.M. Fleming, Phys. Rev. Lett. 68, 2543 (1992).
- [25] M. Schneider, R.-S. Unger, R. Mitdank, R. Müller, A. Krapf, S. Rogaschewski, H. Dwelk, C. Janowitz, and R. Manzke, Phys. Rev. B 72, 014504 (2005)
- [26] M. Ronay, A. Santoni, A. G. Schrott, L. J. Terminello, S. P. Row alczyk, and F. J. Himpsel, Solid State Commun. 77, 699 (1991)