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Abstract Group technology must group similar parts into fam-
ilies. In classifying parts based on their global shapes, the sim-
ilarity of parts has to be manually measured by performing pair
comparison. The cost of exhaustively performing pair compari-
son is quite high when the number of parts to be grouped is large.
This paper proposes interval intersection, a novel similarity in-
ference method that effectively infers the pair-comparison data
from a set of known data. Justified by empirical experiments, the
proposed method outperforms the previous methods when 31%
or more of data is known.

Keywords Comparison · Group technology · Pair · Set intersec-
tion · Similarity inference

1 Introduction

Group technology (GT) is a technique for enhancing design/

manufacturing productivity by grouping similar workpieces into
families [1]. Much GT research has been done on the auto-
matic classification of workpieces, which use local features such
as holes, steps, and slots as the criteria for justifying similar
ity [2–5]. Yet, similarity in local features does not ensure simi-
larity in global shape. These local feature-based GT systems are
therefore limited in applications.

Recent GT research aims to develop automatic workpiece
classification systems based on the similarity of global shapes [6–
10]. These global-shape-based systems are particularly well-
suited to the application of retrieving similar designs. Yet, au-
tomatically characterizing the global shapes of workpieces in
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a computational form needs an algorithm, which may not reflect
users’ recognition model. The effectiveness of such characteriza-
tion should therefore be justified by user’s judgments.

Hsu et al. proposed a full-data benchmarking method for jus-
tifying the effectiveness of a global-shape-based GT system [11].
A set of sample workpieces is selected from the general popula-
tion of workpieces. Then, subjects exhaustively make pair com-
parisons of the sample workpieces based on their global shape
similarity. The full pair-comparison data is used as a benchmark
for measuring the effectiveness of an automatic workpiece clas-
sification system.

Yet, establishing the full pair comparison data is a time-
consuming and labor-intensive task. Suppose the number of sam-
ple workpieces is n, and the number of exhaustive pair compar-
ison is n(n −1)/2. That is, 100 sample workpieces would need
about 5,000 pair comparisons. To reduce the number of pair com-
parison, some research aims to use partial experiment data to
infer the full pair-comparison data. For example, of the 5000
pair-comparison data, some studies can use a part of them, say
2000, to infer the remaining 3000 data.

Some similarity inference methods have been developed in
the literature [12, 13]. These methods include: (1) the Hamming
distance method [13, 14]; (2) the max-min method [12, 15]; (3)
the interval average method [12]; and (4) the weighing interval
average method [13]. However, these four methods are not accu-
rate enough in inferring the unknown data.

This paper presents a more accurate, similarity inference
method, called the interval intersection method. Our experiments
show that the interval intersection method outperforms the pre-
vious four similarity inference methods in most cases. Thus, the
accuracy in inferring the similarity data has been improved.

The remainder of this paper is organized as follows: Sec-
tion 2 formulates the similarity inference problem and explains
how the full pair-comparison data is obtained; Section 3 presents
the interval intersection method; Section 4 introduces the pre-
vious four inference methods; Section 5 defines three metrics
for comparing the effectiveness of the inference methods, and
gives their comparison results; and Section 6 offers concluding
remarks.
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2 Problem formulation and experiment data
collection

The problem of similarity inference can be illustrated in the
format of a matrix. In Eq. 1, a matrix S = [sij ] (1 ≤ i, j ≤ n) rep-
resents the full pair-comparison data of n sample workpieces,
where sij ∈ [0, 1] denotes the similarity between two objects, i
and j . The higher the value of sij , the more similar are the two
workpieces. Notice sii = 1 and sij = sji for 1 ≤ i, j ≤ n; here,
matrix S is symmetric and each of its diagonal elements is 1.
Suppose a portion of the matrix elements (sij for 1 ≤ i ≤ m; i ≤
j ≤ n) is known, the problem of interest is to develop methods to
infer the other elements (sij for m +1 ≤ i ≤ n; i ≤ j ≤ n). Refer-
ring to Eq. 1, the known data is outlined by the trapezoid and the
data to be inferred is outlined by the triangle. The inferred matrix
is represented by Ŝ = [ŝij ], where ŝij = sij (1 ≤ i ≤ m; i ≤ j ≤ n)

and ŝij(m +1 ≤ i ≤ n; i ≤ j ≤ n) is the inferred data.

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 s12 · · · · s1n

· · · · · ·
1 · · · smn

1 · · ·
· · ·

· ·
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Fig. 1. The 36 sample workpieces used for pair comparison

The full similarity pair comparison data of n sample work-
pieces are collected by the procedure proposed by Hsu et
al. [11], which is explained by the example with 36 sample
workpieces shown in Fig. 1. The procedure asks 30 subjects
(users of the GT system in an aircraft manufacturing com-
pany) to make an exhaustive pair comparison. Each subject
then has to do 630 (i.e. 36 × 35/2) pair comparisons. Each
pair comparison is represented in one of the five fuzzy lin-
guistic terms as follows: very high similarity, high similarity,
medium similarity, low similarity, very low similarity [16].
Each linguistic term is modeled by a fuzzy number. For each
pair comparison, a fuzzy operation is applied to aggregate
the 30 fuzzy numbers into one fuzzy number [17]. The ag-
gregated fuzzy number is subsequently converted to a crisp
value by a defuzzification process [17]. The 36 × 36 matrix S
for the sample workpieces can thus be obtained as shown in
Table 1.

3 Proposed similarity inference methods

The proposed similarity inference method, the interval intersec-
tion method, is presented in this section. The problem of interest
is described as follows: suppose spq is not known, while spi and
sqi are known for some i. Herein, the set including such i is
denoted by T . The proposed similarity inference method is to
determine ŝpq.
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Table 1. Complete experimental data
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3.1 The goal of the algorithm

The goal of the proposed inference method is to estimate spq

through another workpiece k ∈ T . Let ŝpq(k) denote the estima-
tion of spq through workpiece k. The upper bound and the lower
bound of ŝpq(k) are respectively represented by ŝU

pq(k) and ŝL
pq(k).

The proposed inference method involves a two-step sequence:
(1) for each object k ∈ T , the bounding interval [ŝL

pq(k), ŝU
pq(k)]

is first computed (Fig. 2); and (2) ŝpq is then determined by
aggregating the bounding interval [ŝL

pq(k), ŝU
pq(k)] for all k ∈ T

(Fig. 3).
The goal of estimating [ŝL

pq(k), ŝU
pq(k)] is modeling the infor-

mation contents of the global shape of a workpiece by a set. For
a workpiece p, the information content of its global shape is rep-
resented by the set X p, where the area of the set is Area(X p) = 1.
The similarity between two workpieces p and q is the intersec-
tion of two sets, that is, spq = Area(X p ∩ Xq).

3.2 Deriving the bounding interval of ŝpq(k)

The proposed inference method first computes the bounding in-
terval of ŝpq(k); that is, [ŝL

pq(k), ŝU
pq(k)].

The lower bound of ŝpq(k) would appear if (X p ∩ Xq) is made
as small as possible. We thus can infer that (X p ∩ Xq) should be
a subset of its relevant sets; that is, (X p ∩ Xq) ⊂ (X p ∩ Xk) and
(X p ∩ Xq) ⊂ (Xq ∩ Xk). This further implies that ŝL

pq(k) = spk +
skq −1 for X p ∩ Xq �= Φ, as shown in Fig. 4a, and ŝL

pq(k) = 0 for
X p ∩ Xq = Φ, as shown in Fig. 4b. The case in Fig. 4a implies
that spk + skq ≥ 1, and that in Fig. 4b implies that spk + skq < 1.
By integrating the two cases, ŝL

pq(k) can be computed as follows.

ŝL
pq(k) = Max(spk + skq −1, 0) . (2)

Fig. 2. Inference of spq through
spk and skq , where symbol �
represents a similarity inference
method

Fig. 3. spq is inferred by aggre-
gating multiple spq(k), where AGG
represents a method of aggrega-
tion

Fig. 4. Modeling lower bound of ŝpq(k)

Fig. 5. Modeling upper bound of ŝpq(k)

The upper bound of ŝpq(k) would appear if (X p ∩ Xq) is made
as large as possible. We can thus infer that(X p ∩ Xq) is not a sub-
set of its two relevant sets; that is, (X p ∩ Xq) �⊂ (X p ∩ Xk), and
(X p ∩ Xq) �⊂ (Xq ∩ Xk). This further implies that ŝU

pq(k) = sqk +
(1− spq) when spk ≥ skq , as shown in Fig. 5a, and ŝU

pq(k) = spk +
(1− skq), when spq < sqk as shown in Fig. 5b. By integrating the
two cases in Fig. 5, ŝU

pq(k)can be computed as follows:

ŝU
pq(k) = 1−|spk − skq| . (3)

3.3 Aggregation of bounding intervals

For each object k ∈ T , there exists a bounding interval [ŝL
pq(k),

ŝU
pq(k)] for ŝpq(k). Let [ŝL

pq, ŝU
pq] denote the bounding interval of

ŝpq, which can be computed by the following aggregation pro-
cedure (where the individual bounding intervals are aggregated
by the set intersection operation):

[ŝL
pq, ŝU

pq] = ∩
k∈T

[ŝL
pq(k), ŝU

pq(k)] = [Max
k∈T

ŝL
pq(k), Min

k∈T
ŝU

pq(k)] .

ŝpq is subsequently estimated as follows:

ŝpq = ŝU
pq + ŝL

pq

2
if ŝL

pq ≤ ŝU
pq (i.e., [ŝL

pq, ŝU
pq] �= Φ)

ŝpq = 0 if ŝL
pq > ŝU

pq (i.e., [ŝL
pq, ŝU

pq] = Φ) .

3.4 Example

The following example is used to illustrate the inference method.
The example includes five sample workpieces: the first two rows
(m = 2) of the S matrix, the known data, is denoted by S2; and
the last three rows of the S matrix, the unknown data, are to be
inferred.

S2 =
[

1 0.4 0.3 0.4 0.2
1 0.7 0.7 0.3

]
.
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According to the above inference method, ŝL
34(1) =

Max (0.3 + 0.4 − 1, 0) = 0 and ŝU
34(1) = 1 − |0.3 − 0.4| = 0.9.

Therefore, [ŝL
34(1)

, ŝU
34(1)

] = [0, 0.9]. Likewise, [ŝL
34(2)

, ŝU
34(2)

] =
[Max (0.7 + 0.7 − 1, 0), 1 − |0.7 − 0.7|] = [0.4, 1]. Then,
[ŝL

34, ŝU
34] = [0.4, 0.9] and ŝ34 = 0.4+0.9

2 = 0.65.
Accordingly, the symmetric matrix Ŝ can be estimated by the

interval intersection method as follows:

Ŝ =

⎡
⎢⎢⎢⎢⎣

1 0.4 0.3 0.4 0.2
1 0.7 0.7 0.3

1 0.65 0.3
1 0.3

1

⎤
⎥⎥⎥⎥⎦

.

4 Previous inference methods

4.1 The Hamming distance method

The formulas for estimating ŝpq by the Hamming distance
method [13, 14] are described below:

ŝpq(k) = 1−|spk − sqk|

ŝpq =
∑
k∈T

ŝpq(k)

h
,

where h denotes the total number
of objects in set T .

Taking the example in Sect. 3.4, we can infer that ŝ34(1) = 1−
|0.3−0.4| = 0.9, ŝ34(2) = 1−|0.7−0.7| = 1.0, and ŝ34 = (1.0+
0.9)/2 = 0.95. By the Hamming distance method, matrix S is
computed as follows:

Ŝ =

⎡
⎢⎢⎢⎢⎣

1 0.4 0.3 0.4 0.2
1 0.7 0.7 0.3

1 0.95 0.75
1 0.7

1

⎤
⎥⎥⎥⎥⎦

.

4.2 The max-min inference method

The max-min similarity inference method [12, 15] is introduced
below:

ŝpq(k) = Min (spk, skq)

ŝpq = Max
k∈T

(ŝpq(k)) .

Taking the example in Sect. 3.4, we can infer that ŝ34(1) =
min (0.3, 0.4) = 0.3, ŝ34(2) = min (0.7, 0.7) = 0.7, and ŝ34 =
max (0.3, 0.7) = 0.7. By the max-min method, matrix S is com-
puted as follows:

Ŝ =

⎡
⎢⎢⎢⎢⎣

1 0.4 0.3 0.4 0.2
1 0.7 0.7 0.3

1 0.7 0.3
1 0.3

1

⎤
⎥⎥⎥⎥⎦

.

4.3 The interval average method

The interval average method [13] is introduced below:

ŝpq(k) = ŝL
pq(k) + ŝU

pq(k)

2

ŝpq =
∑
k∈T

ŝpq(k)

h
.

where h is the total number of objects in set T .
Taking the example in Sect. 3.4, we can infer that ŝ34(1) =

(0+ 0.9)/2 = 0.45, ŝ34(2) = (0.4+ 1) = 0.7, and ŝ34 = (0.45+
0.7)/2 = 0.575. By the interval average method, the matrix S is
computed as follows:

Ŝ =

⎡
⎢⎢⎢⎢⎣

1 0.4 0.3 0.4 0.2
1 0.7 0.7 0.3

1 0.575 0.375
1 0.35

1

⎤
⎥⎥⎥⎥⎦

.

4.4 The weighting interval average method

The weighting interval average method [13] is introduced below:

ŝpq(k) = ŝL
pq(k) + ŝU

pq(k)

2

ŝpq =
∑
k∈T

ŝpq(k) ×[1− (ŝU
pq(k) − ŝL

pq(k))]
∑
k∈T

[1− (ŝU
pq(k) − ŝL

pq(k))]
.

Taking the example in Sect. 3.4, we can infer that ŝ34(1) =
(0 + 0.9)/2 = 0.45, ŝ34(2) = (0.4 + 1) = 0.7, and ŝ34 =
0.45×0.1+0.7×0.4

0.1+0.4 = 0.65. By the weighted interval average
method, the matrix S is computed as follows:

Ŝ =

⎡
⎢⎢⎢⎢⎣

1 0.4 0.3 0.4 0.2
1 0.7 0.7 0.3

1 0.65 0.33
1 0.33

1

⎤
⎥⎥⎥⎥⎦

.

5 Metrics and comparison

As mentioned above, the data to be inferred in matrix S in-
volves sij for m +1 ≤ i ≤ n; i ≤ j ≤ n. Define R = {(i, j) | m +
1 ≤ i ≤ n; i ≤ j ≤ n}. Then, spq is an element to be inferred
∀(p, q) ∈ R. For these matrix elements to be inferred, we would
prefer that ŝij is as close to sij as possible. The following sections
define three metrics to compare the effectiveness or accuracy of
the above five inference methods.
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5.1 Metrics

(A) Mean absolute deviation

The first metric, mean absolute deviation (MAD), is defined
below:

MAD =

∑
(p,q)∈R

|spq − ŝpq|

r
(4)

where r denotes the total number of elements in set R.

(B) Root mean square

The second metric, root mean square (RMS), is defined below:

RMS =
√√√√1

r

∑
(p,q)∈R

(spq − ŝ pq)2 (5)

where r denotes the total number of elements in set R.

(C) Percentage of small deviation range

Let A and B be two sets defined as follows:

A = {ŝpq | |spq − ŝpq| ≤ 0.1}

B = {ŝpq | |spq − ŝpq| > 0.1}

The third metric, PSD (percentage of small deviation) in-
dicates the percentage of “good” inference, and is defined as
follows:

PSD = N(A)

N(A)+ N(B)
(6)

where N(A) denotes the number of elements in set A, N(B) de-
notes the number of elements in set B.

Of the three metrics, the MAD and RMS measure the degree
of accuracy for a similarity inference method. The smaller the
two metrics, the higher the accuracy of estimation. The metric
PSD measures the percentage of “good inference”. The higher
the PSD, the higher is the accuracy of estimation.

5.2 Comparison

The 36 workpieces shown in Fig. 1 are taken to compare the
effectiveness of the five similarity inference methods. The full
pair comparison data, the 36×36 symmetric matrix S, is shown
in Table 1. As stated, a portion of the matrix elements sij for
1 ≤ i ≤ m; i ≤ j ≤ n is known, and the other elements sij for m +
1 ≤ i ≤ n; i ≤ j ≤ n is to be inferred. Table 2 shows the percent-
age of known data for different m values.

Table 3 depicts the MAD, Table 4 shows the RMS, and
Table 5 describes the PSD for the five similarity inference
methods. The proposed interval intersection method outperforms
the other four methods in the three metrics when 31% or more
data is known. Notice that when only 6% data is known, the pro-

Table 2. Percentage of known data in similarity inference

Value of m m = 36 m = 28 m = 24 m = 16 m = 12 m = 6 m = 1

% of
known data 100% 95% 90% 70% 56% 31% 6%

Table 3. MAD of the five inference methods

% of Interval Hamming Max-min Interval Weighting
known intersection distance method average interval
data method method method average

method

95% 0.052 0.505 0.116 0.105 0.084
90% 0.061 0.530 0.111 0.130 0.105
70% 0.056 0.505 0.099 0.119 0.092
56% 0.075 0.510 0.095 0.122 0.103
31% 0.089 0.504 0.102 0.126 0.107
6% 0.149 0.525 0.122 0.149 0.149

Table 4. RMS of the five inference methods

% of Interval Hamming Max-min Interval Weighting
known intersection distance method average interval
data method method method average

method

95% 0.069 0.513 0.137 0.125 0.100
90% 0.081 0.541 0.129 0.149 0.122
70% 0.073 0.516 0.117 0.138 0.110
56% 0.098 0.521 0.116 0.141 0.122
31% 0.111 0.519 0.127 0.147 0.127
6% 0.173 0.553 0.161 0.173 0.173

Table 5. PSD of the five inference methods

% of Interval Hamming Max-min Interval Weighting
known intersection distance method average interval
data method method method average

method

95% 82.1% 0% 53.6% 60.7% 60.7%
90% 78.8% 0% 45.5% 42.4% 48.48%
70% 86.3% 0% 53.2% 43.7% 57.9%
56% 74.6% 0% 55.8% 39.1% 50.7%
31% 62.1% 0.2% 54.9% 38.9% 50.1%
6% 32.6% 0.7% 49.6% 32.6% 32.6%

posed method is inferior to the max-min method. Yet, in such
a scenario (where only 6% data known), the inferred results are
not so “good”. Table 5 shows that only 49.6% of the data in-
ferred by the max-min method is “good”. The table also shows
that when 56% of data is known, 74.6% of inferred data (by the
interval intersection method) is “good”.

To ensure a reasonably accurate inference about pair com-
parison, according to the experiment, the known data had better
be more than 56% or more. The proposed interval intersection
method is the best choice for such an inference.
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6 Conclusions

Building the pair comparison similarity matrix for a group of ob-
jects is helpful to some applications such as group technology.
However, manually performing pair comparisons is quite time-
consuming and labor-intensive.

This paper proposes interval intersection, a similarity infer-
ence method that can be used to infer the unknown data from
a set of known data. According to three metrics, MAD, RMS
and PSD, the proposed method is compared with the previous
four methods in literature. Experiments show that the proposed
method outperforms the other four when 31% or more data is
known. The proposed method is inferior to the max-min method
when only 6% data is known. Yet, when only 6% data is known,
only about 50% of inferred data is “good”. To ensure a rea-
sonably accurate inference, the proposed interval intersection
method is the best choice to date.
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