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Manifesting the evolution of eigenstates from quantum billiards to singular billiards
in the strongly coupled limit with a truncated basis by using RLC networks
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The coupling interaction between the driving source and the RLC network is explored and characterized as
the effective impedance. The mathematical form of the derived effective impedance is verified to be identical
to the meromorphic function of the singular billiards with a truncated basis. By using the derived impedance
function, the resonant modes of the RLC network can be divided into the open-circuit and short-circuit states
to manifest the evolution of eigenvalues and eigenstates from closed quantum billiards to the singular billiards
with a truncated basis in the strongly coupled limit. The substantial differences of the wave patterns between
the uncoupled and strongly coupled eigenmodes in the two-dimensional wave systems can be clearly revealed
with the RLC network. Finally, the short-circuit resonant states are exploited to confirm that the experimental
Chladni nodal-line patterns in the vibrating plate are the resonant modes subject to the strong coupling between
the oscillation system and the driving source.
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I. INTRODUCTION

The interaction between the resonator and an exciter or
a scatterer is commonly divided into a weak- and a strong-
coupling regime. Starting with Šeba [1], quantum billiards with
a point scatterer have been employed extensively to explore
the coupling strength on the transition between integrable
and chaotic features in quantum systems [2–8]. An analogous
phenomenon in acoustics, the coupling of the string vibrations
to the resonant modes of the supporting cavity, leads to a set of
normal modes that can also be classified as weakly or strongly
coupled depending on the coupling strength and the amount of
damping [9]. Similarly, in cavity quantum electrodynamics the
eigenmodes of the coupled dipole-cavity system are no longer
original cavity modes but mixed light-dipole modes when the
perturbative weak-coupling regime breaks and instead strong
coupling takes place [10].

A simple damped harmonic oscillator is known to be
physically equivalent to a single RLC circuit. Two coupled
harmonic oscillators are a popular model for many physical
systems, including atoms in external fields [11], coupled
quantum dots [12], cavity optomechanics [13], and the stringed
musical instruments [9]. As a result, the two-dimensional (2D)
RLC circuit network is expected to be a promising model to
reveal the coupling interaction between the 2D wave system
and an exciter or a scatterer. With the isomorphism between
the Kirchhoff’s node equation and the discretized Helmholtz
equation, Bulgakov et al. [14] and Bengtsson et al. [15] have
employed the RLC circuit network to emulate the eigenmodes
of quantum billiards with arbitrary shapes by varying the
grounded grids of electrical circuits. Even though the RLC
circuit network is intrinsically a driven oscillating system
instead of a source-free system, the network model has not
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been developed to explore the variation of resonant modes
with the coupling interaction of the driving source.

In this work, an analytical formula for the effective
impedance Zeff(xs,ys ; ω) is derived as a function of the driving
frequency ω and the source location (xs,ys) to characterize the
coupling interaction between the driving source and the RLC
network. The mathematical form of the effective impedance
Zeff(xs,ys ; ω) is explicitly identical to the meromorphic
function of the singular billiard with a truncated basis [3].
This sameness confirms that the RLC circuit network can
be exploited to manifest the eigenvalues and eigenfunctions
of the quantum billiards interacting with the inside scatterer
in the weak- and strong-coupling regimes. With the derived
impedance function, the resonant modes of the RLC network
can be divided into the open-circuit and short-circuit states.
The resonant spectrum of the short-circuit states exactly mimic
the eigenvalues of the singular billiard with a truncated basis
in the strong-coupling regime, whereas the resonant spectrum
of the open-circuit states generally manifest the eigenvalues
of the free billiards. Furthermore, the open-circuit and short-
circuit resonant states can clearly display the significant
differences of the wave patterns between the uncoupled and
strongly coupled eigenmodes in the 2D wave systems. Finally,
the short-circuit resonant states of the RLC network are
employed to verify that the experimental Chladni nodal-line
patterns in the vibrating plate are the resonant modes subject
to the strong coupling between the oscillation system and the
driving source.

II. ŠEBA BILLIARDS AND RLC CIRCUIT NETWORK
WITH A POINT EXCITATION

The original model of the Šeba billiards is a delta potential
placed inside a rectangular domain with the Dirichlet boundary
condition to study the transition between integrability and
chaos in quantum systems. Here we extend the Šeba billiards
to consider a general 2D Helmholtz equation for the domain
� with arbitrary boundary shapes δ� subject to Dirichlet or

1539-3755/2015/92(6)/062906(7) 062906-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.062906


TUAN, LIANG, TUNG, CHIANG, HUANG, AND CHEN PHYSICAL REVIEW E 92, 062906 (2015)

Neumann boundary conditions and a point scatterer in the
interior: (

∂2

∂x2
+ ∂2

∂y2
+ k2

)
�(x,y; k)

= −αδ(x − xs)δ(y − ys)�(x,y; k), (1)

where the parameter α, α ∈ (−∞,∞), is related to the
coupling strength of the point scatterer at (xs,ys) ∈ �, � = 0
on δ� for the case of the Dirichlet boundary condition, and
∂�/∂n = 0 on δ� for the case of the Neumann boundary
condition. Although the zero-range interaction cannot be
rigorously described by using a Dirac δ function in Eq. (1)
for 2D billiard problems, it has been verified [3] that Eq. (1)
together with a truncated basis can be used to evaluate quantum
spectra in 2D billiards with a small but finite-size scatterer.
From physical perspectives, the truncation of the basis not
only is a consequence of the finiteness of the scatterer size but
also practically exists in real systems with the finite potential
barrier of the boundary confinement.

For the wave system without the point scatterer, the
eigenfunctions ψn and eigenvalues λn satisfy the equation(

∂2

∂x2
+ ∂2

∂y2
+ λn

)
ψn(x,y) = 0. (2)

The delta function δ(x − xs)δ(y − ys) and the wave func-
tion �(x,y) in Eq. (1) can be approximately expanded with a
truncated unperturbed basis {ψn} (n = 1,2,3, . . . ,N) as

δ(x − xs)δ(y − ys) =
N∑

n=1

ψ∗
n (xs,ys)ψn(x,y), (3)

�(x,y; k) =
N∑

n=1

cn(k)ψn(x,y). (4)

Substituting Eqs. (2)–(4) into Eq. (1), the coefficient cn(k)
can be solved to result in

�(x,y; k) = −α�(xs,ys)

[
N∑

n=1

ψ∗
n (xs,ys)

k2 − λn

ψn(x,y)

]
. (5)

Equation (5) represents that the eigenfunctions of the wave
system with the point scatterer are the Green’s functions of
the free wave system. Nevertheless, the eigenvalues k2 can be
utterly different from the eigenvalues λn of the free system.
By setting x = xs and y = ys in both sides of Eq. (5), the
determination of the spectrum k2 is given by a transcendental
equation

1 + α 
(xs,ys ; k) = 0, (6)

where


(xs,ys ; k) =
N∑

n=1

|ψn(xs,ys)|2
k2 − λn

. (7)

Here it might be appropriate to call 
(xs,ys ; k) the mero-
morphic function of 2D singular billiards with a truncated
basis. For the limit α → ∞ in the strong-coupling regime,
the eigenvalue spectrum {km} is directly determined by

(xs,ys, k)|k=km

= 0. On the other hand, the eigenvalues k2

for the case α = 0 are λn, which leads to 
(xs,ys ; k) → ∞.

It has been discussed [2,3] that the Hamiltonian with a Dirac
δ function potential in Eq. (1) loses its meaning in the limit
of N → ∞ for a complete basis. Under this circumstance,
the renormalization process from the self-adjoint extension
theory has been used to treat short-range singularities in a
proper manner and the eigenvalues are determined by the
transcendental equation [1–3]

1 + αbξ (xs,ys ; k) = 0, (8)

where

ξ (xs,ys ; k) =
∞∑

n=1

|ψn(xs,ys)|2
(

1

k2 − λn

+ λn

λ2
n + 1

)
. (9)

Here αb is the coupling constant that is formally defined
with the formulation based on functional analysis. Since αb

comes from the renormalization process, it does not have a
direct relation to physical observables. Nevertheless, it has
been fully discussed [3] that αb can be related to the physical
coupling constant α defined in Eq. (1) with a truncated basis.
Next, it is verified that the RLC circuit network can be exploited
to manifest the evolution of eigenstates from closed quantum
billiards to the singular billiards with a truncated basis in the
strongly coupled limit.

Figure 1(a) shows the schematic configuration of the RLC
circuit network [14,15]. Each grid point inside the network
is connected to its surrounding sites with an inductance L
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FIG. 1. (Color online) (a) Schematic configuration of the driven
RLC circuit network. (b) Equivalent short-circuit state. (c) Equivalent
open-circuit state.
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in series with a resistance R and connected to the ground
with a capacitor C. For a small damping, the values of R,
L, and C are chosen to satisfy

√
L/C � R. The indices

(x,y) are used to specify the location of the grid point,
where x and y are the horizontal and vertical positions,
respectively. A sinusoidal driving source with amplitude Vs

and frequency ω is inputted at the grid point specified

(xs,ys) via a source impedance ZS to probe the frequency
response of the RLC network. As shown later, the source
impedance ZS is related to the coupling strength. With
Kirchhoff’s current law, the voltage at the grid point (x,y)
and its surrounding sites satisfies the following difference
equation:

[�(x,y + 1) + �(x,y − 1) + �(x + 1,y) + �(x − 1,y) − 4�(x,y)]

ZL

− �(x,y)

ZC

= [�(xs,ys) − Vs]

ZS

δ(x,xs)δ(y,ys), (10)

where ZL = R + iω L, ZC = 1/iω C, and δ(x,xs) and
δ(y,ys) denote the Kronecker delta for a discrete system.
Without the source term, Eq. (10) can be reduced to the discrete
Helmholtz equation:

[�(x,y + 1) + �(x,y − 1) + �(x + 1,y) + �(x − 1,y)

− 4�(x,y)] −
(

ZL

ZC

)
�(x,y) = 0. (11)

The mathematical form of Eq. (11) is equivalent to the
Schrödinger equation for billiards problems under the five-
point approximation [16]:

[φn(x,y + 1) + φn(x,y − 1) + φn(x + 1,y) + φn(x − 1,y)

− 4φn(x,y)] + εnφn(x,y) = 0, (12)

where φn(x,y) and εn are the eigenvalues and eigenfunctions,
respectively.

In terms of the complete set of normalized eigenfunctions
φn(x,y), the Kronecker delta function is given by

δ(x,xs)δ(y,ys) =
∑

n

φ∗
n(xs,ys)φn(x,y). (13)

With the method of self-consistent eigenfunction expan-
sion, the response voltage function � in Eq. (10) can be
analytically solved by setting

�(x,y; ω) =
∑

n

an(ω)φn(x,y), (14)

where the driving frequency ω is included in the argument
of the response voltage function in Eq. (14) for a clearer
presentation. Substituting Eqs. (12)–(14) into Eq. (10), the
coefficient an(ω) can be derived to express the response voltage
function as

�(x,y; ω) = αp[�(xs,ys ; ω) − Vs]

[∑
n

φ∗
n(xs,ys)φn(x,y)

(ω̃2 − iω̃γ − εn)

]
,

(15)
where ω̃ = ω/ωo, ωo = 1/

√
LC, γ = R

√
C/L, and αp =

ZL/ZS . The explicit form of the response voltage function
�(x,y; ω) can be obtained by setting x = xs and y = ys in
both sides of Eq. (15) to find the self-consistent result for the
response voltage at the excitation position, �(xs,ys ; ω). After
some algebra, �(xs,ys ; ω) can be in terms of a simple voltage
divider equation:

�(xs,ys ; ω) = Zeff(xs,ys ; ω)

Zs + Zeff(xs,ys ; ω)
Vs, (16)

where Zeff(xs,ys ; ω) is the effective impedance of the RLC
network given by

Zeff(xs,ys ; ω) = ZL

[∑
n

|φn(xs,ys)|2
(εn − ω̃2 + iω̃γ )

]
. (17)

In the denominator in the right-hand side of Eq. (16),
the total impedance of the series combination of Zs and
Zeff(xs,ys ; ω) can be defined as

Ztot(xs,ys,αp; ω) = Zs

[
1 + αp

∑
n

|φn(xs,ys)|2
(εn − ω̃2 + iω̃γ )

]
.

(18)
It can be found that the expression for Zeff(xs,ys ; ω)

in Eq. (17) with γ = 0 is identical to that of Eq. (7) for
the singular billiards via the replacement of φn(xs,ys) →
ψn(xs,ys), εn → λn, and ω̃2 → k2. There are two sets of
resonant frequencies that correspond to |Zeff(xs,ys ; ω)| = 0
and |Zeff(xs,ys ; ω)| → ∞, respectively. The resonant frequen-
cies {ωm} for |Zeff(xs,ys ; ωm)| = 0 indicate that the RLC
network behaves as a short-circuit state, as shown in Fig. 1(b),
equivalent to the eigenvalue spectrum {km} of the singular
billiards in the strong-coupling regime. On the other hand,
when the driving frequency ω̃ is equal to any eigenvalue εn and
|φn(xs,ys)| �= 0, the RLC network behaves as an open-circuit
state with |Zeff(xs,ys ; ωoεn)| → ∞, as shown in Fig. 1(c).
In other words, the open-circuit and short-circuit resonant
modes represent the network to be in the uncoupled and
strongly coupled states, respectively. Note that the condition
|φn(xs,ys)| = 0 means the position of the driving source is
just at the nodal point of the eigenmode φn(x,y) of the free
RLC network. Under the circumstance of |φn(xs,ys)| = 0,
the resonant frequencies ωoεn for the open-circuit states
will disappear in the impedance spectrum. To be brief, the
resonant spectrum |Zeff(xs,ys ; ωm)| = 0 can be used to mimic
the eigenvalue spectrum {ωm} of the Šeba billiards and the
resonant spectrum |Zeff(xs,ys ; ωoεn)| → ∞ can manifest the
eigenvalues {εn} of the free billiards as long as |φn(xs,ys)| �= 0.
It is not only physically intriguing but also pedagogically
meaningful that the nearly uncoupled and extremely strongly
coupled eigenstates in the wave systems can be elucidated with
the equivalent open-circuit and short-circuit resonant states of
the RLC network, respectively.
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Substituting Eqs. (16) and (17) into Eq. (15) can lead the
response voltage function to be given by

�(x,y; ω) = VsZL

ZS + Zeff(xs,ys ; ω)

[∑
n

φ∗
n(xs,ys)φn(x,y)

(εn − ω̃2 + iω̃γ )

]
.

(19)
Analogous to Eq. (5) for the singular billiards, the response

voltage functions �(x,y; ω) in Eq. (19) are the Green’s func-
tions of the RLC network system. At the resonant frequencies
{ωm} for the short-circuit states |Zeff(xs,ys ; ωm)| = 0, the
response functions �(x,y; ωm) can be employed to emulate the
eigenfunctions �(x,y; km) of the singular billiards in the limit
α → ∞ of the strong-coupling regime. On the other hand,
at the resonant frequencies {ωoεn} for the open-circuit states
|Zeff(xs,ys ; ωoεn)| → ∞, the response functions �(x,y; ωoεn)
can imitate the eigenfunctions {φn(x,y)} of the free billiards. It
is worthwhile mentioning that only the open-circuit resonant
states of the RLC network have been proposed to emulate the
eigenfunctions of the quantum billiards [14–16], whereas the
short-circuit resonant states have not been exploited to explore
the systems with strong coupling.

III. NUMERICAL RESULTS AND DISCUSSION

A square-shaped RLC network with N × N internal grids is
exploited to manifest the present analysis. The eigenfunctions
and eigenvalues of the square-shaped RLC network can be
exactly solved by employing the theory of linear chain coupled
oscillators as [17]

φn1,n2 (x,y) = 2

N + 1
sin

(
n1π

N + 1
x

)
sin

(
n2π

N + 1
y

)
, (20)

and

εn1,n2 = 4

{
sin2

[
n1π

2(N + 1)

]
+ sin2

[
n2π

2(N + 1)

]}
, (21)

where n1 = 1,2, . . . ,N , n2 = 1,2, . . . ,N , and the location
indices x and y are integers running from 0 to N + 1. Note
that 0 and N + 1 are the lowest and highest indices to denote
the sites at the boundary. Due to the separable property, the
eigenfunctions φn1,n2 (x,y) are specified with two quantum
numbers, n1 and n2. Therefore, the effective impedance in
Eq. (17) for the square RLC network can be explicitly written
as

Zeff(xs,ys ; ω) = ZL

N∑
n2=1

N∑
n1=1

∣∣φn1,n2 (xs,ys)
∣∣2(

εn1,n2 − ω̃2 + iω̃γ
) . (22)

Similarly, the response function �(x,y; ω) for the square
RLC network is given by

�(x,y; ω) = VsZL

ZS + Zeff(xs,ys ; ω)

×
[

N∑
n2=1

N∑
n1=1

φ∗
n1,n2

(xs,ys)φn1,n2 (x,y)(
εn1,n2 − ω̃2 + iω̃γ

)
]
. (23)

The parameters used in the calculation are as follows:
Vs = 10 V, L = 10 mH, C = 10 mF, R = 0.05 m�, ZS =
1 �, and N = 301. Hereafter the values of the parameters
are used throughout this paper unless otherwise specified.

FIG. 2. (Color online) (a) Calculated results of the effective
impedance |Zeff (xs,ys ; ω)| in Eq. (23) as a function of the driving
frequency ω for the case of (xs,ys) = (163,183). (b) Numerical
open-circuit patterns |�(x,y; ω)|2 at the resonance frequencies
ω̃ = εn1,n2 marked by (1)–(7) in (a). (c) Numerical short-circuit
patterns |�(x,y; ω)|2 at the resonance frequencies ω = ωm marked
by (1′)–(7′) in (a).

As discussed earlier, the location of the driving source can
affect the occurrence of the resonant states, depending on
|φn1,n2 (xs,ys)| = 0 or |φn1,n2 (xs,ys)| �= 0. To demonstrate the
influence of the location of the driving source, two different po-
sitions (xs,ys) = (151,151) and (xs,ys) = (163,183) are used
in the simulation, respectively. Note that (xs,ys) = (151,151)
is just at the center of the network; i.e., xs = (N + 1)/2 and
ys = (N + 1)/2.

Figure 2(a) shows the calculated results of the effective
impedance |Zeff(xs,ys ; ω)| in Eq. (22) as a function of the
driving frequency ω for the case of (xs,ys) = (163,183). It
can be seen that the spectrum of the effective impedance
displays numerous sharp peaks and dips that represent the
open-circuit and short-circuit resonant states, respectively.
Figure 2(b) depicts several open-circuit patterns |�(x,y; ω)|2
for the response function at the resonance frequencies ω̃ =
εn1,n2 marked by (1)–(7) in Fig. 2(a). The wave patterns
of the open-circuit states can be seen to exhibit features
symmetrical to those of eigenmodes of the square billiards.
Figure 2(c) shows several short-circuit patterns |�(x,y; ω)|2
for the response function at the resonance frequencies ω = ωm

marked by (1′)–(7′) in Fig. 2(a). The short-circuit states can
be found to reveal the irregular interference patterns that
mainly come from the superposition of several eigenmodes
with eigenvalues εn1,n2 in the neighborhood of the resonance
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FIG. 3. (Color online) (a) Calculated results of the effective
impedance |Zeff (xs,ys ; ω)| in Eq. (23) as a function of the driving
frequency ω for the case of (xs,ys) = (151,151). (b) Numerical
open-circuit patterns |�(x,y; ω)|2 at the resonance frequencies
ω̃ = εn1,n2 marked by (1)–(7) in (a). (c) Numerical short-circuit
patterns |�(x,y; ω)|2 at the resonance frequencies ω = ωm marked
by (1′)–(7′) in (a).

frequencies ω̃ = ωm/ωo. The relative contributions of the
superposed eigenmodes in the short-circuit resonant state can
be precisely computed with Eq. (23).

Figure 3 shows the results for the case of (xs,ys) =
(151,151) with plots similar to those shown in Fig. 2. The
number of the resonance frequencies in Fig. 3(a) can be clearly
seen to be considerably less than that in Fig. 2(a). As shown in
Eq. (22), the missing eigenfrequencies comes from the central
driving source (xs,ys) = (151,151) to lead to |φn1,n2 (xs,ys)| =
0 for any even index of n1 or n2. In contrast, the source position
at (xs,ys) = (163,183) for the results shown in Fig. 2 belongs
to an asymmetric location and the condition |φn1,n2 (xs,ys)| = 0
never occurs for all eigenfunctions of the free system. As
seen from Eq. (17) for the effective impedance, the location
of the source determines the weighting factor |φn1,n2 (xs,ys)|2
for each eigenmode with eigenvalue εn1,n2 and affects the
appearance of the eigenfunctions. Therefore, the selection of
the location of the source is important for using the RLC circuit
network to imitate the eigenfunctions of the billiard system.
Numerous different locations for the source generally need
to be individually employed to excite all the eigenfunctions.
On the other hand, the precision of the imitation for the
eigenfunctions can be essentially enhanced by increasing of
the grid number N.

IV. APPLICATIONS TO CHLADNI RESONANT PATTERNS

The Chladni plate experiment is one of the most historical
and classical 2D resonant wave systems, which acts as a
precursor for various resonance problems. Chladni nodal-line
patterns are formed by the sand particles that stop at the nodes
of the resonant modes on a vibrating plate. Currently, the
Chladni experiment is performed by using an electronically
controlled mechanical oscillator to locally drive the plate with
variable frequency. In the monumental work of acoustics,
Rayleigh proposed the construction of sound figures by the
Helmholtz equation instead of the biharmonic equation [18,19]
to greatly reduce the mathematical complexity. Nevertheless,
since the strong coupling between the oscillation system and
the driving source [20–23] leads to the resonant spectrum
being utterly different from the eigenvalue spectrum of the
homogeneous equation, the eigenfunctions of the Helmholtz
equation cannot directly correspond to the experimental
patterns [20,24]. Here we exploit the short-circuit resonant
states of the RLC network to confirm that the experimental
nodal-line patterns in the vibrating plate are the resonant modes
subject to the strong coupling between the oscillation system
and the driving source.

FIG. 4. (Color online) (a) Calculated results of the effective
impedance as a function of the driving frequency for the excitation
source at the central position of (xs,ys) = (151,151) for the square
RLC network with the Neumann boundary condition. (b) Nodal-line
patterns for the short-circuit resonant states marked by (1′)–(7′) in
(a). (c) Experimental nodal-line patterns obtained in the Chladni
experiment with the same excitation condition and the same mode
orders are shown in (c).
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Since the boundary condition of the vibrating plate is the
Neumann type, the eigenfunctions of the square RLC network
in Eq. (20) are changed as

φn1,n2 (x,y) = 2

N + 1
cos

(
n1π

N + 1
x

)
cos

(
n2π

N + 1
y

)
, (24)

where n1 = 0,1,2, . . . ,N , n2 = 0,1,2, . . . ,N , and the location
indices x and y are integers running from 0 to N + 1. The
parameters used in the calculation are as follows: Vs = 10 V,
L = 10 mH, C = 10 mF, R = 0.05 m�, ZS = 1 �, and
N = 301. Figure 4(a) shows calculated results of the effective
impedance as a function of the driving frequency for the
excitation source at the central position of (xs,ys) = (151,151)
for the square RLC network with the Neumann boundary
condition. Figure 4(b) depicts several nodal-line patterns for
the short-circuit resonant states marked by (1′)–(7′) in Fig. 4(a).
Note that the numerical nodal-line patterns are plotted by the
inverse of the wave patterns, |�(x,y; ωm)|2. The experimental
nodal-line patterns obtained in the Chladni experiment with the
same excitation condition and the same mode orders are shown
in Fig. 4(c) for comparison. The details of the experiment
can be found in Ref. [20]. It can be seen that the nodal-line
patterns of the short-circuit states are in good agreement with

FIG. 5. (Color online) (a) Calculated results of the effective
impedance as a function of the driving frequency for the excita-
tion source at the asymmetric position of (xs,ys) = (163,183) for
the square RLC network with the Neumann boundary condition.
(b) Nodal-line patterns for the short-circuit resonant states marked
by (1′)–(7′) in (a). (c) Experimental nodal-line patterns obtained in
the Chladni experiment with the same excitation condition and the
same mode orders are shown in (c).

FIG. 6. (Color online) (a) Calculated results of the effective
impedance as a function of the driving frequency for the exci-
tation source at the position of (xs,ys) = (92,66) for the quarter-
stadium-shaped RLC network with the Neumann boundary condition.
(b) Nodal-line patterns for the short-circuit resonant states marked by
(1′)–(6′) in (a). (c) Experimental nodal-line patterns obtained in the
Chladni experiment with the same excitation condition and the same
mode orders are shown in (c).

the experimental results of the resonant Chladni modes. In
addition, Fig. 5 depicts the same plots as shown in Fig. 4
for the excitation source at the off-center position of (xs,ys) =
(163,183). The overall nodal-line structures of the short-circuit
states are rather similar to those of the resonant modes in the
Chladni experiment. The good similarity confirms that the
resonant modes related to the Chladni patterns come from the
vibrating plate subject to the strong coupling with the exciter.

To further explore the practicability, the commercial HSPICE

software was exploited to program the RLC circuit networks
with arbitrary shapes. A quarter-stadium-shaped network with
200 × 114 grids along the horizontal and vertical axes was
considered. The parameters of the electric components in the
simulation are the same as those used in the square-shaped
network. Figure 6(a) shows the effective impedance as a
function of the driving frequency for the excitation source
at the position of (xs,ys) = (92,66). Figure 6(b) plots several
nodal-line patterns for the short-circuit resonant states marked
by (1′)–(6′) in Fig. 6(a). For comparison, a quarter-stadium-
shaped plate was fabricated to obtain the experimental nodal-
line Chladni patterns with the same excitation condition.
Figure 6(c) depicts the experimental results with the mode
orders close to those shown in Fig. 6(b). Once again, the
experimental results of the resonant Chladni modes agree very
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well with the nodal-line patterns of the short-circuit states. In
other words, the Chladni resonant patterns can be related to
the eigenfunctions of the singular billiards for regular as well
as chaotic shapes.

V. CONCLUSIONS

In summary, the coupling interaction between the driving
source and the RLC network has been explored by deriving the
effective impedance. The mathematical form of the derived
effective impedance has been verified to be identical to the
meromorphic function of the singular billiards with a truncated
basis. The frequency spectrum of the derived impedance
function clearly displays the open-circuit and short-circuit
resonant states that have been shown to correspond to the
eigenstates of closed quantum billiards and the singular

billiards in the strongly coupled limit, respectively. With the
response voltage function of the RLC network, the significant
difference of the wave patterns between the uncoupled and
strongly coupled eigenmodes in the 2D wave systems has been
clearly demonstrated. Finally, the short-circuit resonant states
are employed to make a comparison with the experimental
Chladni nodal-line patterns in the vibrating plate. The good
agreement confirms that the Chladni patterns are the resonant
modes subject to the strong coupling between the oscillation
system and the driving source.
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