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We study a one-dimensional Cellular Neural Network with an output function which is nonflat
at infinity. Spatial chaotic regions are completely characterized. Moreover, each of their exact
corresponding entropy is obtained via the method of transition matrices. We also study the
bifurcation phenomenon of mosaic patterns with bifurcation parameters z and β. Here z is a
source (or bias) term and β is the interaction weight between the neighboring cells. In particular,
we find that by injecting the source term, i.e. z �= 0, a lot of new chaotic patterns emerge with
a smaller interaction weight β. However, as β increases to a certain range, most of previously
observed chaotic patterns disappear, while other new chaotic patterns emerge.

Keywords : Cellular neural networks; mosaic patterns; transition matrix; spatial entropy;
bifurcation.

1. Introduction

Of concern is one-dimensional Cellular Neural
Networks (CNNs) of the form

dxi

dt
= −xi + z + αf(xi−1) + af(xi)

+ βf(xi+1), i ∈ Z. (1a)

Here xi denote the state of a cell Ci and f(x) is a
piecewise-linear output function defined by

f(x) =




rx + 1 − r, if x ≥ 1,
x, if |x| ≤ 1,

rx − 1 + r, if x ≤ −1,
(1b)

where r is a positive constant. The quantity z is
called a source term or a bias term. The numbers
α, a and β are arranged in a vector form [α, a, β],
which is called a space-invariant A-template

A = [α, a, β]. (2)

A is called symmetric (resp. antisymmetric) if α = β
(resp. α = −β).

CNNs were first proposed by Chua and Yang
[1988a, 1988b]. Their main applications are in image
processing and pattern recognition [Chua, 1998].
For additional background information, applica-
tions, and theory, see [Special Issue, 1995; Thiran,
1997; Chua, 1998] among others.

A basic and important class of solutions of
(1) is the stable stationary solutions. Specifically, a
stationary solution x = (xi)i∈Z of (1) satisfies the
following equation

f(xi) =
1
a
{xi − z − αf(xi−1) − βf(xi+1)}, i ∈ Z.

(3)

Let x = (xi)i∈Z be a solution of (3). The asso-
ciated output y = (yi)i∈Z = (f(x))i∈Z is called a
pattern. The following two types of stationary solu-
tions are of particular interest.
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Definition 1.1. A solution x = (xi)i∈Z is called a
mosaic solution if |xi| > 1 for all i ∈ Z. Its asso-
ciated pattern y = (yi)i∈Z = (f(x))i∈Z is called a
mosaic pattern. If |xi| �= 1 for all i ∈ Z and there
are i, j ∈ Z such that |xi| < 1 and |xj | > 1, then
x = (xi)i∈Z and y = (f(x))i∈Z are called, respec-
tively, a defect solution and a defect pattern.

To define the stability of the stationary solu-
tion, we consider the following linearized stability.
Let ξ = (ξi)i∈Z ∈ �2, the linearized operator L(x) of
(1) at a stationary solution x = (xi)i∈Z is given by

(L(x)ξ)i = −ξi + αf ′(xi−1)ξi−1 + af ′(xi)ξi

+ βf ′(xi+1)ξi+1. (4)

Definition 1.2. Let x = (xi)i∈Z be a solution of
(3) with |x| �= 1 for all i ∈ Z. The stationary solu-
tion x is called (linearized) stable if all eigenvalues
of L(x) have negative real parts. The solution is
called unstable if there is an eigenvalue λ of L(x)
such that λ has a positive real part.

It is well-known, see e.g. [Juang & Lin, 2000;
Hsu, 2000], that for

1
|a| + |α| + |β| > r ≥ 0, (5)

where r, a, α and β are defined as in (1), −L(x)
is a self-adjoint and positive operator. Therefore, if
r is sufficiently small, all mosaic solutions of (1)
are stable. For r = 0, the complexity of stable
stationary solutions of (1) with respect to all the
parameters has been completely characterized when
the template A is symmetric or antisymmetric (see
[Thiran et al., 1995; Juang & Lin, 2000]). For r > 0,
sufficiently small, a map approach was introduced
to study the complexity of stable stationary solu-
tions of (1) with limited success (see e.g. [Hsu,
2000; Chang & Juang, 2004]). Specifically, only the
parameters region that would yield Smale horse-
shoe, hence, the spatial entropy of ln 2, is located in
those papers. That is to say, only regions that yield
the full shift with two symbols are found. For r = 0
[Juang & Lin, 2000], the parameter regions corre-
sponding to the positive entropy less than ln 2 can
also be found. Those are the regions that yield the
subshift of finite types (see e.g. [Robinson, 1995]).
It would be reasonable to expect that for r �= 0, one
can find such regions as well.

The purpose of this paper is to find parameter
regions yielding the subshift of finite types when
the template A is symmetric. Our approach here

makes use of the techniques originated in [Juang &
Lin, 2000] and, later, generalized by [Chu & Shih,
2004]. The paper is organized as follows. In Sec. 2,
we introduce the notion of (local) basic mosaic pat-
terns. We then identify all these basic mosaic pat-
terns. Moreover, the solvability conditions for the
existence of such patterns are also given. Section 3
is devoted to the global mosaic patterns for the sym-
metric template A and z = 0. Specifically, we find
parameters regions whose corresponding positive
spatial entropy is less than ln 2. The exact entropy
of those regions are obtained via the method of the
transition matrix. The effect on the pattern for-
mation with the presence of the bias term z and
with the intensity of the interaction weight β is
recorded in Sec. 4. In particular, with the injec-
tion of a source term z (�= 0), a lot of new pat-
terns, which correspond to certain subshifts of finite
types, emerge with a smaller interaction weight β.
However, as β increases to a certain range, most
of the previously observed chaotic patterns disap-
pear, while other new patterns with positive entropy
emerge.

2. Basic Mosaic Solutions and Patterns

As in the map approach case, we seek to find the set
of solutions of (3) that is uniformly bounded. This is
also the essence of the paper in [Chu & Shih, 2004].
Specifically, we consider the set of solutions (xi)i∈Z

for which

|xi| < 1 + δ for all i ∈ Z, (6a)

or equivalently,

|f(xi)| < 1 + rδ for all i ∈ Z, (6b)

where δ > 0 is a constant.
To study (3), we first define the following

concepts.

Definition 2.1. Given any i ∈ Z, let xi−1 and xi+1

be any real numbers for which |xj | < 1 + δ, j = i−1,
i + 1. If there is a unique xi satisfying (3), then
[xi−1, xi, xi+1] is called a basic solution of (3).
Its corresponding output [f(xi−1), f(xi), f(xi+1)]
is called a basic pattern of (3). If, in addition,
|xj | > 1, j = i − 1, i, i + 1, then [xi−1, xi, xi+1]
(resp. [f(xi−1), f(xi), f(xi+1)]) is called a basic
mosaic solution (resp. pattern) of (3). Note that
the template A is space-invariant. Therefore, a
basic solution pattern is independent of the spatial
variable i.
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Notation 2.1. For any mosaic pattern {yi}i∈Z, we
shall denote by + (resp. −) if yi = f(xi) > 1 (resp.
yi = f(xi) < −1). There are only eight types of
basic mosaic patterns. We list as below.

[+ + +]δ, [− −−]δ, [+ + −]δ, [− + +]δ,

[+ −−]δ, [− − +]δ, [− + −]δ and [+ − +]δ. (7)

Notation 2.2. The parameters regions that would
yield the eight basic mosaic patterns are, respec-
tively, denoted by Γ+

2 , Γ−
−2, Γ+

0 , Γ+
0 , Γ−

0 , Γ−
0 , Γ+

−2

and Γ−
2 .

Remark 2.1. Since the template A under consider-
ation is symmetric, the parameter regions generat-
ing [++−]δ and [−++]δ are exactly the same (see
Propositions 2.3 and 4.1). Thus, we make no dis-
tinction for the region that would yield those two
types of mosaic patterns. Likewise, the same is true
for [+ −−]δ and [−− +]δ.

We next study the range of parameters a,
α, β, z and r for which the existence of each
of eight basic mosaic patterns is guaranteed. For
simplification, we first consider 0 < r < 1/2,
z = 0 and α = β. We need the following useful
proposition.

Proposition 2.1. Let A = (a1, 0), B = (b1, 0),
C = (1, 1), D = (1 + δ, 1 + rδ), C ′ = (−1,−1) and
D′ = (−1 − δ,−1 − rδ). Suppose −1 < a1 < b1 < 1
and 0 < r < 1/2. Let E ∈ AB be arbitrarily
given. The necessary and sufficient condition for
any straight line l passing through E with the slope
mE and intercepting the open line segment CD
(resp. C ′D′) is that the slope mE satisfies the fol-
lowing inequalities.

mBD < mE < mAC (8a)

(resp. mAD′ < mE < mBC′). (8b)

Here mEF means the slope of the line through E
and F .

Proof. From Fig. 1, we see clearly that l ∩ open
segment CD �= ∅ if and only if

mED < mE < mEC . (9)

Note that we need 0 < r < 1/2 to ensure (9)
holds. The slopes mED and mEC are increasing in
E as long as E is in between A and B. Thus if mE

satisfies (8a), then the intersection of l and open

A

C

B

D

X

Y

C
D

`
`

E
O

Fig. 1.

segment CD is nonempty. On the other hand, if
mE ≥ mEC , we see immediately that the line pass-
ing through E with such slope mE either intersects
CD at C or does not intersect CD at all, a con-
tradiction. Similarly, if mE ≤ mED, we draw the
same conclusion. The proof for second assertion of
the proposition is similar. �

In the following, we describe the parameters
regions, Γ+

2 and Γ−
−2, which are the same if 0 <

r < 1/2, α = β and z = 0.

Proposition 2.2. Let

0 < r <
1
2
, z = 0 and

− 1
2(1 + rδ)

< α = β <
1

2(1 + rδ)
. (10)

Then the basic mosaic patterns [+ + +]δ and
[−−−]δ exist provided that (11) or (12) holds. Here
(11) and (12) are given in the following.

a + 2β > 1, (11a)

(1 + rδ)a + 2(1 + rδ)β < 1 + δ, (11b)

β > 0, (11c)

and

a + 2β(1 + rδ) > 1, (12a)

(1 + rδ)a + 2β < 1 + δ, (12b)

β < 0. (12c)

Proof. We illustrate only the case that β > 0, let
xi+1 and xi−1 be any numbers in between 1 and
1 + δ, then 2β < β(f(xi−1) + f(xi+1)) =: p < 2β
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(1 + rδ) and Eq. (3) reduces to

f(xi) =
1
a
[xi − p]. (13)

Set A = (2β, 0), B = (2β(1+ rδ), 0) and E = (p, 0).
It then follows from Proposition 2.1 that

if (11) holds, then (13) has a unique solution
xi with 1 < xi < 1 + δ. (14)

Similarly, if xi−1 and xi+1 are any numbers in
between −1− δ and −1, then 2β(1 + rδ) < p < 2β.
Set A = (2β(1 + rδ), 0) and B = (2β, 0), we also
conclude that if (11) holds, than (13) has a unique
solution xi with −1− δ < xi < −1. Since (14) holds
for any 1 < xi−1, xi+1 < 1 + δ or −1 − δ < xi−1,
xi+1 < −1, we conclude that [xi−1, xi, xi+1] is
indeed a local solution. �

From Proposition 2.2, we see that for fixed r,
0 < r < 1/2, and δ > 0,

Γ+
2 = Γ−

−2 =
{

(a, β) : (11) or (12) holds and |β|

<
1

2(1 + rδ)

}
=: Γ2.

We next study the parameters regions Γ+
0

and Γ−
0 .

Proposition 2.3. Suppose (10) holds, then the basic
mosaic patterns [+ + −]δ, [− + +]δ, [+ − −]δ and
[−−+]δ exist provided that (15) or (16) holds. Here
(15) and (16) are given as the following:

(1 + rδ)a + rδβ < 1 + δ, (15a)
a − rδβ > 1, (15b)

β > 0, (15c)

and

(1 + rδ)a − rδβ < 1 + δ, (16a)
a + rδβ > 1, (16b)

β < 0. (16c)

The parameter regions Γ−
2 and Γ+

−2 are given in
the following.

Proposition 2.4. Suppose (10) holds, then the basic
mosaic patterns [+ − +]δ and [− + −]δ exist pro-
vided that (17 ) or (18 ) holds. Here (17 ) and (18)

are given in the following:

a − 2(1 + rδ)β > 1, (17a)

(1 + rδ)a − 2β < 1 + δ, (17b)

β > 0, (17c)

and

a − 2β > 1, (18a)

(1 + rδ)a − 2(1 + rδ)β < 1 + δ, (18b)

β < 0. (18c)

The proof of Propositions 2.3 and 2.4 are
similar to that of Proposition 2.2, and is thus
omitted.

Clearly, we have that for fixed r, 0 < r < 1/2,
and δ > 0,

Γ+
0 = Γ−

0 =
{

(a, β) : (15) or (16) holds and

|β| <
1

2(1 + rδ)

}
=: Γ0,

and

Γ−
2 = Γ+

−2 =
{

(a, β) : (17) or (18) holds and

|β| <
1

2(1 + rδ)

}
=: Γ−2.

3. Global Patterns and
Their Entropy

To construct the global solutions/patterns from
the local solutions/patterns, we need the following
notation and proposition.

Notation 3.1. Set Γ
′
i = R2 − Γi, i = 2, 0, −2. Let

Γ(i1,i2,i3) = R1 ∩ R2 ∩ R3, where ij = 0 or 1, j =

1, 2, 3, and Rj =
{

Γ−2j+4, if ij = 1 ,

Γ
′
−2j+4, if ij = 0 .

For instance,

Γ(1,0,1) = Γ2 ∩ Γ
′
0 ∩ Γ−2. The set of basic mosaic

patterns whose corresponding parameters are in
Γ(i1,i2,i3) is denoted by B(i1,i2,i3).

For fixed r and δ, we put Γi, i = 2, 0, −2, on
the a − β plane as in Fig. 2. Let

∧
=

{
(a, β) : |β| <

1
2(1 + rδ)

}
.
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β
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1+δ

rδ
1+δ
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-1
2

2(1+rδ)

-(1+δ)

-(1+δ)

-1

1

1

2r

r

2r

2(1+rδ)

Q

Fig. 2. P = (1, 0), Q = ((1 + δ)/(1 + rδ), 0), U = ((2 +
δ)/(2 + rδ), (1 − r)/r(2 + rδ)).

Note that

Γ(1,1,1) = Γ2 ∩ Γ0 ∩ Γ−2

= Quadrilateral PRQR′ ∩
∧

�= φ,

Γ(1,1,0) = Γ2 ∩ Γ0 ∩ Γ′−2

= Triangular PSR ∪ Triangular QT ′R′ ∩∧
�= φ,

Γ(0,1,1) = Γ′
2 ∩ Γ0 ∩ Γ−2

= Triangular QTR ∪ Triangular PS′R′ ∩∧
�= φ,

and

Γ(1,0,1) = Γ2 ∩ Γ′
0 ∩ Γ−2 = φ.

Proposition 3.1. Suppose (10) holds, and that
(a, β) ∈ Γ(i1,i2,i3), ij = 0 or 1, j = 1, 2, 3. If
[xi−1, xi, xi+1] := xL is a local mosaic solution
of (3) for some i, then xL can be extended to be
a global solution xG = (xj)j∈Z , where xk = xk, k =
i − 1, i, i + 1, and for all i �= j, [xj−1, xj , xj+1]
are any local solutions of (3) in B(i1,i2,i3).

Proof. We only illustrate the case that (a, β) ∈
Γ(1,0,0), since the others are similar. In this case
either 1 < xk < 1 + δ or −1 − δ < xk < −1
for all k = i − 1, i, i + 1. Now suppose the for-
mer holds, then we assign xi+3 to be any number in
between 1 and 1+δ. Since (a, β) ∈ Γ(1,0,0), xi+2 can
be uniquely determined and its value lies between
1 and 1 + δ. By proceeding similarly, we get to a
global solution xG as claimed. �

From here on, by a mosaic pattern, we mean
that the pattern consists of only + or − sign. That
is to say we make distinction on only the signs of
f(xi). Using Proposition 3.1, we see immediately
that if (a, β) ∈ Γ(1,0,0), then the only mosaic pat-
terns are of the following two types

........ + + + + + + + + + + + +..........

........ −−−−−−−−−−−−..........

Similarly, if (a, β) ∈ Γ(0,1,0) (resp. Γ(0,0,1)), then
the mosaic pattern produced is unique up to the
translation.

........ + + −− + + −− + + −−.........
(resp., ........ + − + − + − + − + − + −.........)

Theorem 3.1. Suppose (10) holds. Then the follow-
ing are true.

(i) If (a, β) ∈ Γ(1,1,1), then any mosaic pattern
(∗i)i∈Z, ∗i = + or −, is a pattern for (3).

(ii) If (a, β) ∈ Γ(1,1,0), then any mosaic pattern
(∗i)i∈Z, ∗i = + or −, satisfying the rules that
any + is adjacent to at least one +, any − is
adjacent to at least one −, is a pattern for (3).

(iii) If (a, β) ∈ Γ(0,1,1), then any mosaic pattern
(∗)i∈Z, ∗ = + or −, satisfying the rules that
any + is adjacent to at least one −, any − is
adjacent to at least one +, is a pattern for (3).

Proof. We illustrate only (ii). The other cases are
similar. If (a, β) ∈ Γ(1,1,0), then its corresponding
basic mosaic patterns are

[+ + +]δ, [− −−]δ, [+ + −]δ, [− + +]δ, [+ −−]δ,

[− − +]δ =: B(1,1,0). (19)

In view of (19) and Proposition 3.1, we
see, immediately, that the assertion in (ii) holds
true. �

We next study the complexity of the patterns
for given choices of parameters.
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Definition 3.1. Let µΓ = {(∗i)i∈Z : ∗i = + or −}
be a set of stable mosaic patterns of (3) for given
choices of parameters in Γ. The spatial entropy
h(µΓ) is defined as the limit

h(µΓ) = lim
n→∞

ln �(µn
Γ)

n
. (20)

Here �(µn
Γ) = the cardinality of the set µn

Γ =
{(∗i)ni=1 : ∗i = + or −, (∗i)i∈Z ∈ µΓ}

Note that µΓ is a translation invariant set
and the limit in (20) is well-defined (see e.g. [Chow
et al., 1996]).

Definition 3.2. We say the system (1) or (3)
exhibits spatial chaos for given choices of param-
eters in Γ, in case that spatial entropy h(µΓ) is pos-
itive. We say that the system (1) or (3) exhibits
pattern formation for given choices of parameters
in Γ in case the spatial entropy h(µΓ) is zero.

We next recall a well-known result (see e.g.
[Robinson, 1995]).

Theorem 3.2. Suppose there is a one-to-one and
onto correspondence between the set µΓ and the
sequence space ΣA. Here A is a matrix of dimension
n × n whose elements are 0 and 1, and that ΣA =
{(si) : (A)si,si+1 = 1 for all i}. Then h(µΓ) =
ln λ, where λ is the maximal eigenvalue of A.

Theorem 3.3. Suppose (10) holds. If (a, β) ∈
Γ(i1,i2,i3), ij ∈ {0, 1}, j = 1, 2, 3, then system
(1) exhibits spatial chaos if and only if i2 = 1
and i1 + i3 ≥ 1. Moreover, h(µΓ(1,1,1)

) = ln 2
and h(µΓ(1,1,0)

) = h(µΓ(0,1,1)
) = ln(1 +

√
5)/2.

Consequently, Γ(1,1,1), Γ(1,1,0) and Γ(0,1,1) are the
only chaotic parameter regions.

Proof. We first show that the mosaic patterns pro-
duced from Γ(1,1,1), Γ(1,1,0) and Γ(0,1,1) are all stable.
Note that the stability condition (5) reduces to

|a| + 2|β| <
1
r
. (21)

If 0 < r < 1/2, then Q, see Fig. 2, is to the left of
the a-intercept of the line a + 2β = 1/r. Moreover,
a direct computation could yield that the point U ,
see Fig. 2, lies on the line a + 2β = 1/r. Similarly,
the point U ′ lies on the line a−2β = 1/r. Thus, the
mosaic patterns under consideration are all stable.
We illustrate only the cases that (a, β) ∈ Γ(1,1,0),
and (a, β) ∈ Γ(0,1,1). We assign four symbols + +,
+−, −+ and −− to be 1, 2, 3 and 4, respectively.

We define il and ir, respectively, to be the left (resp.
right) side of the symbol corresponding to i. For
instance, let 2 = + −, then 2l = + and 2r = −.
We construct a 4 × 4 transition matrix A = (ai,j)
as follows.

Set ai,j =




1, if ir = jl and [il, ir, jr] is a basic
mosaic pattern in B(1,1,0),

0, otherwise.
(22)

Thus the transition matrix with the choice of
parameters in Γ(1,1,0) is


1 1 0 0
0 0 0 1
1 0 0 0
0 0 1 1


 =: A(1,1,0).

Now, the set of µΓ(1,1,0)
has a one-to-

one and onto correspondence with the sequence
space ΣA(1,1,0)

. Here ΣA(1,1,0)
= {(si) : si ∈

{1, 2, 3, 4}, (A(1,1,0))si,si+1 = 1 for all i}. Clearly,
the characteristic polynomial for A(1,1,0) is λ4 −
2λ3 + λ2 − 1 = 0 or equivalently (λ2 − λ + 1)(λ2 −
λ − 1) = 0. It then follows from Theorem 3.2 that
h(µΓ(1,1,0)

) = ln(1 +
√

5)/2. If (a, β) ∈ Γ(0,1,1), we
will define the corresponding transition matrix
A(1,1,0) as 


0 1 0 0
0 0 1 1
1 1 0 0
0 0 1 0


 =: A(0,1,1),

the characteristic polynomial of A(0,1,1) is (λ2 +
λ + 1)(λ2 − λ − 1) = 0. Thus h(µΓ(0,1,1)

) = ln(1 +√
5)/2. �

4. The Effect of the Source Term
on Patterns

In this section, we first consider the effect of the
source term z on patterns. With the presence of the
source term z �= 0, the regions Γ+

2 and Γ−
−2 are no

longer identical. Same can be said of the two pairs
of regions Γ+

0 and Γ−
0 , and Γ−

2 and Γ+
−2. Therefore,

some new patterns emerge as z moves away from
zero.

Proposition 4.1. Suppose

−1 + 2|β|(1 + rδ)

< z < 1 − 2|β|(1 + rδ) and 0 < r <
1
2
. (23)

Then the Table 1 holds true.
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Table 1.

Notation Parameters’ Regions Corresponding Patterns

a + z > 1 − 2β, (1 + rδ)a + z < 1 + δ − 2(1 + rδ)β, β > 0.

Γ+
2 or [+ + +]δ

a + z > 1 − 2(1 + rδ)β, (1 + rδ)a + z < 1 + δ − 2β, β < 0

Γ−
−2 replacing z by −z in the equations right above. [−−−]δ ,

a + z > 1 + rδβ, (1 + rδ)a + z < 1 + δ − rδβ, β > 0.

Γ+
0 or [+ + −]δ, [− + +]δ

a + z > 1 − rδβ, (1 + rδ)a + z < 1 + δ + rδβ, β < 0

Γ−
0 replacing z by −z in the equations right above. [+ −−]δ, [−− +]δ

a + z > 1 + 2(1 + rδ)β, (1 + rδ)a + z < 1 + δ + 2β, β > 0.

Γ+
−2 or [− + −]δ

a + z > 1 + 2β, (1 + rδ)a + z < 1 + δ + 2(1 + rδ)β, β < 0

Γ−
2 replacing z by −z in the equations right above. [+ − +]δ

The first two inequalities imply that |β| <
1/(2(1 + rδ)) =: β4.

For fixed 0 < r < 1/2 and δ > 0 to draw param-
eter regions in z − a space, we need the following
notations.

Notation 4.1. Denote by z = 1 − 2β(1 + rδ),
a + z = 1 − 2β, (1 + rδ)a + z = 1 + δ − 2(1 + rδ)β,
a + z = 1 + rδβ, (1 + rδ)a + z = 1 + δ − rδβ,
a+z = 1+2(1+rδ)β and (1+rδ)a+z = 1+δ+2β
by l0, l1, l4, l2, l5, l3 and l6, respectively. Replacing
z and −z in those equations above, we shall denote
the corresponding equations by r0, r1, r4, r2, r5, r3

and r6, respectively.

Notation 4.2. (i) We shall denote the intersec-
tion of the lines li and rj , i, j = 1, 2, . . . , 6 by
Ai,j . (ii) We shall denote by the quadrilateral
Ai,jAi,kAl,kAl,j = (li, rk, ll, rj) = (i, k, l, j). Here
the a-coordinate of Ai,j is greater than those of
Ai,k, Al,k and Al,j. Note that such tuple is well-
defined.

Let 0 < r < 1/2 and δ > 0 be fixed and
0 < β < (1 − r)δ/2(1 + rδ)(2 + rδ) =: β1. Putting

a

z
0

12

4 5 66

1

5 4

3 3

r r

r

r

r l 1

ll

l

l

r
2

lr 00

Fig. 3. Orange region: (5, 4, 4, 5), green region: (4, 3, 3, 4)
and yellow region: (3, 2, 2, 3).

ri and li, i = 0, 1, 2, . . . , 6, on z − a plane, we have
the Fig. 3.

Notation 4.3. Set Λ1 = Γ+
2 , Λ2 = Γ−

−2, Λ3 = Γ+
0 ,

Λ4 = Γ−
0 , Λ5 = Γ+

−2, Λ6 = Γ−
2 , and for ij , j =

1, 2, . . . , 6,∈ {0, 1}, we define Γ(i1,i2,i3,i4,i5,i6) =⋂6
j=1 Rj ∩

∧
z, where

Rj =

{
Λj , if ij = 1,

R2 − Λj, if ij = 0,
and Λz = {(α, β) : |z| < 1 − 2β(1 + rδ)},
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With z �= 0 and a small β > 0, we see, in the fol-
lowing, that a lot more chaotic parameters regions
emerge. The case for β < 0 is similar and is, thus,
omitted.

Theorem 4.1. Assume that (23) holds and r is suf-
ficiently small. Then the following hold:

(i) Suppose 0 < β < min{2(1 − r)δ/(2 + rδ)
(4 + 5rδ), 2/(6 + 5rδ)} =: min{β0, β̂0} and
0 < δ < 2/(1−2r). Then all parameter regions
in Table 2 are nonempty and all assertions in
Table 2 hold true.

(ii) Suppose min{β0, β̂0} < β < β1 and 0 <
δ < 2/1 − 2r. Then the last two parameter
regions Γ(0,1,0,1,1,1) and Γ(1,0,1,0,1,1) in Table 2
are empty, and all other regions are nonempty.

(iii) Suppose 0 < β < min{β0, β̂0} and 2/(1 −
2r) < δ. Then the last two parameter regions
Γ(0,1,1,1,1,0) and Γ(1,0,1,1,0,1) in Table 2 are
empty, and all other regions are nonempty.

(iv) Suppose min{β0, β̂0} < β < β4 and 2/(1 −
2r) < δ. Then the last four parameter
regions Γ(0,1,0,1,1,1), Γ(1,0,1,0,1,1), Γ(0,1,1,1,1,0)

and Γ(1,0,1,1,0,1) in Table 2 are empty, and all
other regions are nonempty.

Table 2.

Parameters Exact Location
Region in Fig. 3 Basic Mosaic Patterns Contained Spatial Entropy

Γ(1,1,1,1,1,1) (4, 3, 3, 4) ∩ V
z [+ + +]δ , [−−−]δ, [+ + −]δ , ln 2

[− + +]δ , [+ −−]δ, [−− +]δ ,
[− + −]δ , [+ − +]δ.

Γ(0,1,1,1,1,1) (5, 3, 4, 4) ∩ V
z [−−−]δ , [+ + −]δ, [− + +]δ , ln λ1

[+ −−]δ , [−− +]δ,
[− + −]δ , [+ − +]δ.

Γ(1,0,1,1,1,1) (4, 4, 3, 5) ∩ V
z [+ + +]δ , [+ + −]δ, [− + +]δ , ln λ1

[+ −−]δ , [−− +]δ,
[− + −]δ , [+ − +]δ.

Γ(1,1,1,1,0,1) (3, 3, 2, 4) ∩ V
z [+ + +]δ , [−−−]δ, [+ + −]δ , ln λ2

[− + +]δ , [+ −−]δ,
[−− +]δ , [+ − +δ].

Γ(1,1,1,1,1,0) (4, 2, 3, 3) ∩ V
z [+ + +]δ , [−−−]δ, [+ + −]δ , ln λ2

[− + +]δ , [+ −−]δ,
[−− +]δ , [− + −]δ.

Γ(0,0,1,1,1,1) (5, 4, 4, 5) ∩ V
z [+ + −]δ , [− + +]δ, [+ −−]δ , ln

1 +
√

5

2
[−− +]δ , [− + −]δ, [+ − +]δ .

Γ(1,1,1,1,0,0) (3, 2, 2, 3) ∩ V
z [+ + +]δ , [−−−]δ, [+ + −]δ , ln

1 +
√

5

2
[− + +]δ , [+ −−]δ, [−− +]δ .

Γ(0,1,1,1,1,0) (5, 2, 4, 3) ∩ V
z [−−−]δ , [+ + −]δ, [− + +]δ , ln

1 +
√

5

2
[+ −−]δ , [−− +]δ, [− + −]δ .

Γ(1,0,1,1,0,1) (3, 4, 2, 5) ∩ V
z [+ + +]δ , [+ + −]δ, [− + +]δ , ln

1 +
√

5

2
[+ −−]δ , [−− +]δ, [+ − +]δ .

Γ(0,1,0,1,1,1) (6, 3, 5, 4) ∩ V
z [−−−]δ , [+ −−]δ, [−− +]δ , ln

1 +
√

5

2
[− + −]δ , [+ − +]δ.

Γ(1,0,1,0,1,1) (4, 5, 3, 6) ∩ V
z [+ + +]δ , [+ + −]δ, [− + +]δ , ln

1 +
√

5

2
[− + −]δ , [+ − +]δ.

Here λ1 and λ2 are the maximal roots of (λ3 − λ2 − λ − 1) = 0

and (λ3 − 2λ2 + λ − 1) = 0, respectively.
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Proof. We illustrate only (i). To see the nonempti-
ness of the parameter regions in Table 2, we first
check that the z-coordinates of both A4,3 and A5,4

are smaller than z = 1 − 2β(1 + rδ). A direction
computation would yield so provided that 0 < δ <
2/(1 − 2r) and 0 < β < β̂0. We then need to ver-
ify that the intersection A of r3 and r4 lies above
l5. We see, via direct computations, that only if
0 < β < β0, then A lies above l5. Note also that if
r is sufficiently small, the stability condition (5) is
satisfied. The verification of the other assertions in
the theorem is then similar to the above and those
in Theorem 3.1, and is thus omitted. �

Remark 4.1. (i) If 0 < δ < 2/(1 − 2r) and 0 < r <
1/2, then β4 > β1.

(ii) Note that 2 > λ1 > λ2 > (1 +
√

5)/2. Thus,
Table 2 is arranged in the following way: the higher
the row of parameters region the more complex are
its corresponding patterns.

(iii) It is clear that the chaotic patterns produced
from the regions Γ(1,1,1,1,1,1) and Γ(1,1,1) are the
same. Similarly, the pairs Γ(0,0,1,1,1,1), Γ(0,1,1) and
Γ(1,1,1,1,0,0), Γ(1,1,0) generate the exact patterns.
Thus, with the presence of the bias term z �= 0, some
new chaotic patterns would emerge. Specifically,
the patterns whose parameter regions are from
Γ(0,1,1,1,1,1), Γ(1,0,1,1,1,1), Γ(1,1,1,1,0,1), Γ(1,1,1,1,1,0),

a

z
0

r

l1234

56 r

r r r r l

l

l

l

l
1 2 4

6

3

5

l
0

r
0

Fig. 4. Orange region: (5, 3, 3, 5) and yellow region: (4, 2,
2, 4).

Γ(0,1,1,1,1,0), Γ(1,0,1,1,0,1), Γ(0,1,0,1,1,1), and Γ(1,0,1,0,1,1)

are new and chaotic.

(iv) Note that in Fig. 3, we have 0 < β < β1.
Such condition is to ensure that the β-intercept
of l3 is smaller than that of l4. We also remark
that β1 is the β coordinate of R in Fig. 2. There-
fore when β (< β1) is fixed, we see in Fig. 2 that
the line β = β passes through Γ(1,1,0), Γ(1,1,1) and
Γ(0,1,1), which corresponds to the line z = 0 in
Fig. 3 going through Γ(1,1,1,1,0,0), Γ(1,1,1,1,1,1) and
Γ(0,0,1,1,1,1).

Table 3.

Parameters Exact Location
Region in Figure 4 Basic Mosaic Patterns Contained Spatial Entropy

Γ(0,0,1,1,1,1) (5, 3, 3, 5) ∩ V
z [+ + −]δ , [− + +]δ, [+ −−]δ , ln

1 +
√

5

2
[− − +]δ , [− + −]δ, [+ − +]δ .

Γ(1,1,1,1,0,0) (4, 2, 2, 4) ∩ V
z [+ + +]δ , [−−−]δ, [+ + −]δ , ln

1 +
√

5

2
[− + +]δ , [+ −−]δ, [−− +]δ .

Γ(0,1,1,1,0,0) (3, 2, 4, 4) ∩ V
z [− −−]δ , [+ + −]δ, [− + +]δ , ln λ3

[+ −−]δ, [−− +]δ .

Γ(1,0,1,1,0,0) (4, 4, 2, 3) ∩ V
z [+ + +]δ , [+ + −]δ, [− + +]δ , ln λ3

[+ −−]δ, [−− +δ].

Γ(0,0,1,1,0,1) (3, 3, 4, 5) ∩ V
z [+ + −]δ , [− + +]δ, [+ −−]δ , ln λ4

[−− +]δ, [+ − +]δ .

Γ(0,0,1,1,1,0) (5, 4, 3, 3) ∩ V
z [+ + −]δ , [− + +]δ, [+ −−]δ , ln λ4

[−− +]δ, [− + −]δ .

Here λ3 and λ4 are the maximal roots of λ4 − λ3 − 1 = 0

and λ4 − λ − 1 = 0, respectively. Clearly,
1 +

√
5

2
> λ3 > λ4 > 1.
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Fig. 5.

(v) In the case that (1 − r)δ/(2 + rδ)(2 +
3rδ) < β < β0, (6, 3, 5, 4) reduces to a triangu-
lar A5,4A5,3A. Here A is the intersection of lines r3

and r4. Likewise, (4, 5, 3, 6) reduces to a triangular
too.

(vi) In the case that β0 < β < β1, (5, 2, 4, 3) and
(3, 4, 2, 5) both reduce to a triangular. Moreover,
(6, 3, 5, 4) and (4, 5, 3, 6) disappear.

For β1 < β < min{(1 − r)δ/(1 + rδ)(2 + rδ),
(1 − r)δ/(2(1 + rδ)2 + rδ), β4} =: min{β2, β3, β4},
we have Fig. 4 and Table 3.

Theorem 4.2. Let (23) hold, 0 < δ < 2/(1−2r) and
r be sufficiently small. In the case that β1 < β <
min{β2, β3, β4}, the parameters regions in Table 3
are nonempty, and all assertions in Table 3 hold
true.
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Remark 4.2. (i) If β1 < β < min{β2, β3, β4}, then
the a-intercept of l3 is greater than that of l4. We
also note that β2 and β3 are the β-coordinates
of S and T , respectively. So when β1 < β <
min{β2, β3, β4}, we see from Fig. 2 that Γ(1,1,1) dis-
appears. Thus, not surprisingly, most regions in
Fig. 3 are destroyed; however, there are some new
chaotic parameter regions as opposed to the case
that 0 < β < β1 appear. Specifically, the parameter
regions with indexes containing three zeros newly
emerge.

(ii) For β > min{β2, β3, β4}, most chaotic regions
are destroyed and yield no new chaotic regions. We
thus skip the discussion of the case.

We conclude the paper with the following
remarks.

(i) The antisymmetric template for (1) can be
similarly done. Moreover, the generalization
of the work to two-dimensional CNNs with
output function (1) and with the symmetric
and antisymmetric templates is also straight-
forward.

(ii) It is of considerable interest to study the defect
patterns for (1).

(iii) Figure 5 is a collection of a computer simula-
tion with sets of parameters chosen from the
parameter regions in Tables 2 and 3. Specif-
ically, we set r = 0.25 and δ = 2 for all
cases. The first eleven cases in Fig. 5 corre-
spond to the first eleven parameters regions in
Table 2. The last four cases in Fig. 5 corre-
spond to the last four parameters regions in
Table 3. Each collection in Fig. 5 contains two
arrays of colors. The first array is the initial
outputs. The second array represents the final
outputs. If the state xj of a cell Cj is such
that |xj | < 1, then we color it green. If the
state xj of a cell Cj is less than −1 (greater
than 1, respectively), then we color it blue
(red, respectively). Moreover, the final outputs
in each of the collection consist of all basic
mosaic patterns allowed in their corresponding

parameter region. For instance, the final out-
puts in (1) consist of all eight basic mosaic
patterns. Likewise, in (6) — Γ(0,0,1,1,1,1) and
(12) — Γ(0,1,1,1,0,0), their corresponding out-
puts contain six and five basic mosaic patterns
listed in Tables 2 and 3, respectively.
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