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Abstract

We present a series of theoretical constraints on the potentially viable inflation models that might yield 
a blue spectrum for primordial tensor perturbations. By performing a detailed dynamical analysis we show 
that, while there exists such possibility, the corresponding phase space is strongly bounded. Our result 
implies that, in order to achieve a blue tilt for inflationary tensor perturbations, one may either construct 
a non-canonical inflation model delicately, or study the generation of primordial tensor modes beyond the 
standard scenario of single slow-roll field.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

In recent years, the measurements of the cosmic microwave background (CMB) temperature 
anisotropies verified a nearly scale-invariant power spectrum of the primordial curvature per-
turbation to high precision [1]. This observational fact is highly consistent with the predictions 
from the perturbation theory of inflationary cosmology [2]. Therefore, inflation, which origi-
nally appeared in early 80’s [3] (see also [4]), has become the most prevailing paradigm of 
describing the very early universe. Furthermore, inflationary cosmology also predicts a nearly 
scale-invariant power spectrum of the primordial gravitational waves, of which the magnitude is 
relatively smaller than that of the primordial curvature perturbation [5]. If these primordial tensor 
fluctuations exist, they could lead to the B-mode polarization signals in the CMB [6] and hence 
are expected to be observed in cosmological surveys.

So far there is no observational evidence that indicates existence of the primordial tensor 
fluctuations [7–9]. However, as was pointed out in [10], a suppression of power in the B-mode 
angular power spectrum at large scales might exist, which implies that a spectrum of primordial 
gravitational waves could have a blue tilt. Thus, from the perspective of theoretical interpreta-
tions, it is interesting to investigate whether a power spectrum of primordial gravitational waves 
with a blue tilt can be achieved in the framework of inflationary cosmology.

This question has already drawn the attention of cosmologists in the literature, and a couple of 
different mechanisms were put forward, namely the beyond-slow-roll inflation [11], the matter-
bounce inflation [12], inflation with non-Bunch–Davis vacuum [13], the non-commutative field 
inflation [14], the variable gravity quintessential inflation [15], the string gas cosmology [16], or 
the Hawking radiation during inflation [17]. Therefore, a careful characterization of the power 
spectrum of the primordial B-mode polarization is very important to falsify the paradigms of 
very early universe (see [18] for the characterization of the primordial gravitational waves within 
various very early universe models).

In the present work we make a remark on the potential challenge of regular inflation models to 
generate a blue tilt for the primordial gravitational waves. We restrict ourselves within the stan-
dard general relativity and present a potential resolution to this challenge by proposing to extend 
the parameter space of inflation models by including non-canonical operators. In particular, we 
phenomenologically consider a class of inflation models with the Horndeski operator being in-
volved. Such models were considered in inflationary cosmology for the purpose of circumventing 
the paradigm of Higgs inflation [19], and are dubbed as “G-inflation” [20] (see for example [21]
for generalized analyses and see [22] for a counter-claim from the stability viewpoint). In our 
construction, differing from the application of the Galilean symmetry, inflation is driven by a 
scalar field with a Horndeski operator which could be achieved either by the kinetic term or the 
potential energy. We investigate the dynamics of this cosmological system by performing a de-
tailed phase space analysis. We find that in general the generation of a blue tilt of the primordial 
gravitational waves in a viable inflation model is difficult since the expected trajectories are not 
stable in the phase space. However, a short period of super-inflationary phase might be possible 
and thus would circumvent the above theoretical challenges.

The article is organized as follows. In Section 2, we briefly review the standard picture of pre-
dictions made by regular inflation models on the primordial curvature and tensor perturbations. 
We can see that it is forbidden to produce a power spectrum of the primordial tensor modes with 
a blue tilt in a wide class of inflation models. Then, in Section 3 we present a class of extended 
inflation models by including a parameterized Horndeski operator. By selecting several typical 
inflation potentials, we perform the dynamical analyses in details and derive their attractor solu-
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tions. We show that the inflationary trajectories with a blue tilt do not correspond to these stable 
solutions. We conclude with a discussion in Section 4. Throughout the article we take the sign of 
the metric (+, −, −, −) and define the reduced Planck mass by mPl = 1/

√
8πG.

2. General discussions

In the paradigm of inflationary cosmology, both the primordial curvature perturbation and 
gravitational waves are originated from quantum fluctuations in a nearly exponentially expanding 
universe at high energy scales. During this expansion, the physical wavelengths of the metric 
fluctuations are stretched out of the Hubble radius and then form power spectra as observed 
in the CMB. Such a convenient causal mechanism of generating primordial perturbations can 
determine their power spectra by a series of simple relations.

Particularly, for a general inflation model with a k-essence Lagrangian [23], the power spec-
trum of the curvature perturbation R is determined by four parameters, namely the Hubble rate 
H , the spectral index nR, the slow-roll parameter ε, and the sound speed parameter cs , through 
the following relation

PR = ξH

8π2εcs

(
k

k0

)nR−1

, (1)

with

ξH ≡ H 2
I

m2
Pl

, (2)

where k0 is the pivot scale. The subscript I denotes that the value of the Hubble parameter is 
taken during the inflationary stage. The slow roll parameter ε is defined by

ε ≡ − Ḣ

H 2
, (3)

where dots denote derivatives with respect to t , and thus it is determined by the background 
dynamics of inflation. The sound speed parameter cs characterizes the propagation of primordial 
scalar fluctuations. Theoretically, its value is constrained between 0 and 1 so that the model is 
free from the gradient instability and super-luminal propagation (see however [24] for a different 
viewpoint on super-luminal propagation of a k-essence field). Moreover, the recent non-detection 
of the primordial non-Gaussianity by the Planck data [25] implies that cs cannot be too small. 
The spectral index nR can be derived straightforwardly from its definition through

nR − 1 ≡ d logPR
d logk

= −4ε + 2η − s , (4)

where we have introduced two more slow-roll parameters, namely

η ≡ ε − ε̇

2Hε
, s ≡ ċs

Hcs

. (5)

According to the current CMB observations, the spectral index nR takes a value which is slightly 
less than unity and hence the power spectrum of the primordial curvature perturbation is red-
tilted.

For the primordial tensor fluctuations, the associated relations are even simpler if the gravity 
theory is still general relativity. The corresponding power spectrum takes the form of
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PT = 2

π2
ξH

(
k

k0

)nT

, (6)

and therefore it is easy to see that the amplitude of the primordial tensor fluctuations only depends 
on the inflationary Hubble parameter and the corresponding spectral index nT , where the latter, 
by definition, is given by

nT ≡ d logPT

d logk
= −2ε . (7)

Expressions (6) and (7) are generic to any single field inflation model minimally coupled to 
gravity. Since the Hubble rate H is monotonically decreasing in regular inflation models (Ḣ < 0) 
it is implied that ε > 0, and hence one can conclude that the spectral index of the primordial 
tensor fluctuations nT in these models is always negative. Therefore it is red-tilted too, as it is 
the case of the curvature perturbation.

Although the present observations cannot determine the tilt of nT , we shall notice that if one 
expects a slightly blue power spectrum for the inflationary tensor fluctuations, ε has to be ef-
ficiently negative. This phenomenon implies a violation of weak/null energy condition during 
inflation. In the literature there have been some proposals to give rise to the corresponding en-
ergy condition violation in very early universe, namely super-inflation by the nonlocal gravity 
approach [26], super-inflation in loop quantum cosmology [27], inflation in (super-)renormaliz-
able gravity [28], as well as from a general viewpoint of effective field approach [29].

However, it is not trivial to achieve an inflationary model that can realize ε > 0 in a stable 
way, without any pathologies, in the framework of Einstein gravity.1 In particular, one ought to 
be aware of the following theoretical constraints:

• First of all, the model must be stable against any ghost mode, in order for the perturbation 
theory describing the primordial perturbations generated from vacuum fluctuations to be 
reliable.

• The curvature perturbation must be free of the gradient instability, or at least experience 
this instability within a very short period. In this regard, there is no harmful growth of the 
primordial perturbations that might violate the current observational constraints.

• The spacetime symmetry of the universe should recover the Lorentz symmetry. This indi-
cates that the theory of matter fields has to recover the canonical version, with all higher-
order operators being suppressed at low energy scales.

• After inflation, the universe needs to gracefully exit to the regular thermal expanding phase 
smoothly. Hence it is implied that the weak energy condition has to be recovered at late times 
of the inflationary stage or after.

Keeping these theoretical requirements in mind, it is interesting to look for a viable inflation 
model that generates a power spectrum of the primordial tensor fluctuations with a blue tilt and 
is consistent with latest cosmological observations. This is exactly the goal of the present work.

1 It is known that any single field described by a k-essence type Lagrangian cannot break the null energy condition 
without pathologies: see e.g. the appendix of [30] as well as a comprehensive review [31].
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3. Inflation with a Horndeski operator

The violation of the weak energy condition in a stable way, is of theoretical interest in various 
models of very early universe physics. One plausible mechanism of achieving such a scenario 
is to make use of a ghost condensate field, in which the kinetic term for the inflaton takes a 
non-vanishing expectation value in the infrared regime [32]. However, this type of models often 
suffers from a gradient instability, when the universe exits from the inflationary phase to the 
normal thermal expansion. Another approach to realize the weak energy condition violation is 
to make use of a Galileon-type field (also dubbed as the Horndeski field) [33]. The key feature 
of this type of field is that it contains higher-order derivative terms in the Lagrangian, while the 
equations of motion remain second order and thus do not necessarily lead to the appearance of 
ghost modes. These important features have led to many recent studies of Galileon models which 
yield a period of inflationary phase at early times of the universe [20–22,34].

In this section, we focus on a class of inflation model with a Horndeski operator. We phe-
nomenologically consider a dimensionless scalar field φ with a Lagrangian of the type

L = m2
Pl

2
R + K(φ,X) + G(φ,X)�φ , (8)

in which K is a k-essence type operator and G is a Horndeski operator. They both are functions 
of φ and the kinetic term

X ≡ 1

2
gμν∂μφ∂νφ , (9)

and � ≡ gμν∇μ∇ν is the standard d’Alembertian operator. This type of Lagrangian, with specif-
ically chosen forms of K and G, was adopted to drive the late-time acceleration of the universe 
in [35], and its dynamical analysis was carried out in [36]. Additionally, in [37] it was found that 
if one combines the ghost condensate and Horndeski operators he can obtain a healthy bouncing 
cosmology, with a smooth transition from a contracting universe to standard expanding radiation 
and matter dominated phases (see also [38] for extended studies).

To be specific, we choose the following minimal ansatz:

K(φ,X) = m2
PlX − V (φ) , (10)

G(φ,X) = m2
Plγ (φ)

(
2X

m2
Pl

)p

, (11)

where γ (φ) is a dimensionless function of the inflaton field and p is a coefficient as a free model 
parameter. Note that the expression of K in (10) corresponds to the canonical Lagrangian for the 
inflaton field. Moreover, the Horndeski operator G is expected to stabilize the propagation of the 
curvature perturbation when the inflationary stage with ε < 0 occurs. Its effect is automatically 
suppressed at low energy scales if we choose p to be positive definite or γ (φ) to decay rapidly. 
Consequently, the model under consideration could partly satisfy the theoretical limits pointed 
out at the end of the previous section.

3.1. Background equations of motion

Varying the Lagrangian with respect to the metric, and focusing on a flat Friedmann–
Robertson–Walker (FRW) geometry of the form ds2 = dt2 − a2(t) δij dxidxj , with a(t) the 
scale factor, leads to the Friedmann equations
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H 2 = ρφ

3m2
Pl

, Ḣ = −ρφ + Pφ

2m2
Pl

, (12)

where the energy density and the pressure of the scalar field respectively are written as

ρφ = 1

2
m2

Plφ̇
2
[
1 + 12pγHφ̇

m2
Pl

( φ̇2

m2
Pl

)p−1 − 2γφ

( φ̇2

m2
Pl

)p]+ V (φ) , (13)

Pφ = 1

2
m2

Plφ̇
2
[
1 − 4pγ φ̈

m2
Pl

( φ̇2

m2
Pl

)p−1 − 2γφ

( φ̇2

m2
Pl

)p]− V (φ) . (14)

Moreover, the equation of motion for the scalar field can be derived as

Pφ̈ +Dφ̇ + Vφ = 0 , (15)

where we have introduced

P = m2
Pl

⎡
⎣1 + 12p2γHφ̇

m2
Pl

(
φ̇2

m2
Pl

)p−1

− 2(1 + p)γφ

(
φ̇2

m2
Pl

)p

+ 6p2γ 2( φ̇2

M2
p

)2p

⎤
⎦ , (16)

D = 3Hm2
Pl

⎧⎨
⎩1 + 6γHφ̇

m2
Pl

(
φ̇2

m2
Pl

)p−1

+
[

2(p − 1)γφ − pγ
φ̇

H
− γφφ

φ̇

3H

](
φ̇2

m2
Pl

)p

+
(

2γ γφ

φ̇

H
− 6p2γ 2

)(
φ̇2

m2
Pl

)2p
⎫⎬
⎭ . (17)

Note that, the positivity of the coefficient P can be applied to examine whether the model suffers 
from a ghost or not. On the other hand, the coefficient D is an effective friction term for the 
inflaton field. It is easy to check that the regular Klein–Gordon equation in a FRW background 
can be recovered if one takes γ = 0. Finally, for completeness, in Appendix A we provide the 
cosmological equations for general K(φ, X) and G(φ, X).

In order to analyze the background dynamics it proves convenient to introduce various rolling 
parameters as:

εφ ≡ φ̇2

2H 2
, ηφ ≡ − φ̈

H φ̇
, ξγ ≡ γ̇

Hγ
, ηγ ≡ ξ̇γ

Hξγ

, (18)

which are all dimensionless. Note that the first two parameters εφ and ηφ are mainly associated 
directly with the dynamics of the inflaton field. In traditional inflation models with a canonical 
kinetic term, they coincide with the regular slow-roll parameters ε and η as provided in (3) and 
(5). The last two parameters of (18) ξγ and ηγ respectively describe the first and second order 
variation of the coefficient γ within each Hubble time. In summary, using these parameters one 
can rewrite the energy density and the pressure of the scalar field as

ρφ = V (φ) + m2
PlH

2
[
εφ + γ (6p − ξγ )(2εφ)p+1/2ξ

p
H

]
,

Pφ = −V (φ) + m2
PlH

2
[
εφ + γ (2pηφ − ξγ )(2εφ)p+1/2ξ

p
H

]
, (19)

where ξH has been introduced in (2).
Recalling that the definition of the background slow-roll parameter ε (3), and inserting (19)

into the Friedmann equations (12), we can extract the relation between ε and εφ as
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ε = εφ

[
1 + 2γ (3p − ξγ + pηφ)(2εφ)p−1/2ξ

p
H

]
. (20)

Note that when γ vanishes ε is equal to εφ and hence we reduce to the canonical case where 
ε > 0. However, in the general case the dynamics of γ can realize ε < 0, despite the fact that 
εφ > 0. Hence, the above model can indeed give rise to a blue tilt, as discussed in the previous 
section. In the rest of this work we study such a possibility.

3.2. Cosmological perturbations and ghost avoidance

A general feature of cosmological scenarios which involve higher-order derivatives is that 
they can exhibit ghost instabilities at perturbation level, which can be treated in the context of an 
appropriate field redefinition [39]. Hence, before using (8) for the description of the inflationary 
phase, one needs to perform a detailed perturbation analysis and extract the necessary conditions 
for the avoidance of ghosts and gradient instabilities. Following [40] and applying the ansatzes 
of (10) and (11), we deduce that in a FRW background the condition for ghost absence writes as

Qs ≡ w1
(
4w1w3 + 9w2

2

)
3w2

2

≥ 0 , (21)

where

w1 = w4 = m2
Pl ,

w2 = 2GXXφ̇ + 2m2
PlH = 2m2

Pl

[
H + pγ φ̇

( φ̇2

m2
Pl

)p]
,

w3 = −9m2
PlH

2 + 3X (KX + 2XKXX) + 6X
(
Gφ + XGφX − 6Hφ̇GX − 3XHφ̇GXX

)
= 3

2
m2

Plφ̇
2
[
1 + (p + 1)

( φ̇2

m2
Pl

)p(
γφ − 6pγ

H

φ̇

)]− 9m2
PlH

2 . (22)

Note that the physical meaning of the Qs parameter corresponds to the positivity coefficient of 
the perturbation variable which appears in Eq. (B.2) in Appendix B.

In addition, the condition for the avoidance of gradient instabilities (associated with the scalar 
field propagation speed) reads

c2
s ≡ 3

(
2w2

1w2H − w2
2w4 + 4w1w2ẇ1 − 2w2

1ẇ2
)

w1
(
4w1w3 + 9w2

2

) ≥ 0 . (23)

Note that the above two theoretical constraints can impose the bound of the parameters for infla-
tion models in the literature directly. To be explicit, the condition for ghost absence (21) requires 
that

w3 ≥ −9w2
2

4w1
,

and the condition for the avoidance of gradient instabilities (23) implies

0 ≤ w2 ≤ 2Hw1,

under the assumption of |ẇ2/w2H | � 1. As a result, the parameter space of inflation models 
that attempt to generate a blue spectrum of primordial gravitational waves could be strongly 
constrained by the above two theoretical requirements.
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Furthermore, we would like to provide several examples of explicit inflation models, in or-
der to demonstrate how these theoretical conditions can constrain the validity of these models. 
For instance, for a model of canonical inflation with γ = 0, these two conditions are satis-
fied automatically, since w2 = 2Hw1 exactly, however the spectrum of tensor modes is also 
red tilted; moreover, if we consider an explicit model with p = 1 and γ = γ0e

λγ φ and take 
a positive value for φ̇, then the theoretical constrains yield approximately that γ0 ≤ 0 and 
2γ0λγ eλγ φφ̇2 + m2

Pl > 0. For the latter case, there might exist possible parameter space that 
allows for a blue tilt for tensor modes, however, as will be shown in the following subsection, 
this possibility is unstable under the phase space analysis.

We refer to Appendix B for a specific instruction of the perturbation analysis for the inflation 
model under consideration.

3.3. Dynamical analysis

Let us now apply the powerful method of dynamical analysis [41–43] in order to investigate 
the general features of inflation in the scenario at hand. In order to perform such a stability anal-
ysis we first transform the cosmological equations in their autonomous form X′ = f(X), where 
primes denote derivative with respect to loga, with X a vector constituted by suitable auxiliary 
variables and f(X) the corresponding vector of the autonomous equations. The critical points Xc
of this autonomous system are extracted through the condition X′ = 0. Their stability is exam-
ined by expansion around them as X = Xc + V, with V the vector of the variable perturbations, 
resulting to the perturbation equations of the form V′ = Q · V, with the matrix Q containing all 
the coefficients of these equations. Therefore, the type and properties of a specific critical point 
are determined by the eigenvalues of Q: eigenvalues with positive real parts imply instability, 
eigenvalues with negative real parts imply stability, while eigenvalues with real parts of different 
sign correspond to a saddle point. In this way, one is able to extract qualitative information for 
the global dynamics of the examined scenario, independently of the initial conditions and the 
specific universe evolution.

We are interesting in analyzing the Friedmann equations (12), along with the scalar field 
evolution equation (15). Considering for simplicity the most important case where p = 1, we 
introduce the auxiliary variables

x ≡ φ̇√
6H

, y ≡
√

V (φ)√
3mPlH

, z ≡ γ (φ)Hφ̇

m2
Pl

. (24)

In terms of these variables the first Friedmann equation takes the form

(1 + 12z)x2 + y2 − 2
√

6zx3 γφ

γ
= 1 , (25)

while from the definitions of x and z we acquire H 2 = m2
Plz/ 

(√
6xγ

)
.

In order to proceed the analysis we have to consider ansatzes for the potential V (φ) and the 
Galileon coupling function γ (φ). As a simple model we analyze the exponential potential

V (φ) = V0e
λV φ, (26)

which is widely used in the literature [44,42], along with an exponential coupling function

γ (φ) = γ0e
λγ φ . (27)
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We comment that the specific forms considered above are very representative and can grasp 
common features obtained in other cases too. Firstly, the exponential potential is one of the most 
representative ansatzes used in cosmology. In particular, this exponential potential possesses a 
manifest advantage that it can mimic any arbitrary cosmic evolution with a constant equation of 
state. Additionally, it is well known that an exponential potential can yield an attractor solution. 
Secondly, from the discussion performed below Eq. (23), one can see that one important theoret-
ical bound for γ is its positivity. This can be exactly implemented by taking the form of γ to be 
exponential, and accordingly, its positivity is only determined by the γ0 parameter without any 
sign change. As will be shown in the following dynamical analysis, the evolution of the inflaton 
field under this specific form can allow for fixed points in the trajectories of the inflaton field.

In this case, (12) and (15) are transformed to the autonomous form:

x′ =
{

2
[
1 + 4z

(
3 + 9x2z − √

6xλγ

)][
−x2 + 2zx2

(√
6xλγ − 6

)
− y2

]}−1

×
{

6xy2(1 + 6z) + √
6λV y4 + √

6λV x2y2(1 + 6z)

+ 24
√

6λγ x4z
[
1 + 3(3 + y2)z

]
+ 24

√
6λγ x6z2

(
6 + 54z + λ2

γ

)
− 12x3z

[
3 + 18z + y2

(
3 + 18z + λγ λV + λ2

γ

)]
− 12x5z

[
3 + λ2

γ + 6z(9 + 36z + 5λ2
γ )
]
− 864λ2

γ x7z3
}

, (28)

y′ = mPlxy
{

2
[
1 + 4z

(
3 + 9x2z − √

6xλγ

)][
−x2 + 2zx2

(√
6xλγ − 6

)
− y2

]}−1

×
{

432λV λγ x5z3 − √
6λV y2(1 + 18z) + 36x3zλγ (λV + 12zλV − 6zλγ )

− √
6x2

{[
1 + 12z

(
2 + 12z + 3zy2

)]
λV − 36λγ z(1 + 8z)

}
− 12

√
6x4z2λV

(
3 + 36z + 4λ2

γ

)
− 6x

[
1 + 4z

(
6 + 27z − y2λV λγ

)]}
, (29)

z′ = z
{

2x
[
1 + 4z(3 + 9x2z − √

6xλγ )
]}−1

×
{

6x
{
−1 − 6z − x

[
x + 36xz2

(
2 − √

6λγ x + λ2
γ x2

)
+ z

(√
6y2λV + 18x − 6

√
6λγ x2 − 2λ2

γ x
)]}

− √
6λV y2

}
. (30)

Additionally, in terms of the auxiliary variables, the energy density and pressure of the scalar 
field can be rewritten as follows:

ρφ = 3m2
PlH

2
{
y2 + x2

[
1 − 2z

(√
6xλγ − 6

)]}
, (31)

Pφ = 3m2
PlH

2

4z
(

9x2z − √
6λγ x + 3

)
+ 1

×
{

24λ2
γ x4z2 − 6

√
6(1 + 4z)zλγ x3 + [12z(3z + 2) + 1]x2

+ 2
√

6y2xz(2λγ + λV ) − y2(12z + 1)
}

, (32)

and hence the equation of state of the scalar field takes the form
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wφ = 24λ2
γ x4z2 − 6

√
6(1 + 4z)zλγ x3 + [12z(3z + 2) + 1]x2 − y2(12z + 1) + 2

√
6y2xz(2λγ + λV ){

y2 + x2
[
1 − 2z

(√
6xλγ − 6

)]}[
4z

(
9zx2 − √

6λγ x + 3
)

+ 1
] .

(33)

Note that knowing wφ we can straightforwardly calculate the deceleration parameter as q ≡
−1 − Ḣ /H 2 = 1/2 + 3wφ/2. Finally, we can express the two instability-related quantities Qs

and c2
s given in (21) and (23) in terms of the auxiliary variables as

Qs =
3x2

[
4z

(
9zx2 − √

6λγ x + 3
)

+ 1
]

(
6zx2 − 1

)2
, (34)

c2
s =

{
x
[
4z

(
9zx2 − √

6λγ x + 3
)

+ 1
]2
}−1 {

12z2x3
(

2λ2
γ + 12z + 5

)
− 24

√
6z3λγ x4

− 432z4x5 − 4
√

6(1 + 8z)zλγ x2 + x + 4xz
[
3z

(
5 − 3y2

)
+ 2

]
− 2

√
6y2zλV

}
.

(35)

The real and physically meaningful critical points (namely those that correspond to an expanding 
universe, i.e. with H > 0) of the autonomous system (28)–(30) are obtained by setting the left 
hand sides of these equations to zero, and are presented in Table 1 along with their existence 
conditions. For each of these critical points we calculate the 3 × 3 matrix Q of the perturbation 
equations as we described above, and we extract its eigenvalues which are given in Table 1 too. 
Hence, we use them in order to deduce the stability properties. Furthermore, since we have the 
coordinates of the critical points of the autonomous system at hand, we can use them to calculate 
the corresponding wφ and q from (33), as well as Qs and c2

s from (34) and (35) respectively, and 
we present them in Table 2. Finally, using the obvious relation ε = q + 1, in the last column of 
Table 2 we present ε of the corresponding critical points.

Let us now discuss the physical behavior of the above dynamical analysis. Since in this work 
we investigate inflation realization, first of all we are interested in those critical points where the 
expansion of the universe is accelerating, especially those with q ≈ −1. Amongst them, we are 
interested in those points that are saddle or unstable, which means that if the universe starts from 
them, i.e. from inflation, the dynamics will naturally lead the universe away from them, viz. it 
will offer a natural exit from inflation [41,45].

As we can see from Tables 1 and 2, point E exhibits these features, and thus it corresponds 
to the inflationary solution we are looking for. Note that the physical quantities depend only on 
the potential exponent λV . In particular, the smaller λV is, the closer we are to de Sitter phase. 
Finally, note that both c2

s and Qs are positive there, which means that this inflationary solution is 
free of ghosts and potential instabilities. However, in this solution we obtain wφ = −1 + λ2

V /3, 
which is always larger than −1, and thus correspondingly ε is always positive definite along the 
stably inflationary trajectory (note that ε ≥ 0 in all the obtained points). Therefore, nT is not 
allowed to be positive in the model under consideration.

In order to see this behavior more transparently, we evolve the autonomous system (28)–(30)
numerically for the choice λV = 1 and λγ = 2 and we present the resulting phase space behavior 
in Fig. 1. For convenience, we project the phase space trajectories on the xP –yP plane of the 
Poincaré variables xP = x/

√
1 + x2 + y2 and yP = y/

√
1 + x2 + y2. As we can observe, the 

realization of inflation is described by the saddle point E, and the departure of the system from 
it after a finite time corresponds to the exit from inflation.
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eir corresponding eigenvalues and their stability con-
±(λγ ) ≡ λ2

γ ± λγ

√
λ2
γ − 6 > 3, as well as C± ≡

Stability

λV unstable for λV > −√
6, λγ >

√
6

saddle point otherwise

3
2 λV unstable for λV <

√
6, λγ < −√

6
saddle point otherwise

+
unstable for λγ >

√
6, λV > −λγ

saddle point otherwise

−
unstable for λγ < −√

6, λV < −λγ

saddle point otherwise

), stable node for −√
3 < λV < 0, λγ < −λV

stable node for 0 < λV <
√

3, λγ > −λV

saddle point otherwise

stable node
Table 1
Real and physically meaningful critical points of the autonomous system (28)–(30), their existence conditions, th

ditions, in the case of exponential potential (26) and exponential coupling function (27). We have defined α

3 
[
±√

2λγ

(
α− − 3

)−1/2 + α+ − 4
]
/4 and D± ≡ 3 

[
±√

2λγ

(
α+ − 3

)−1/2 + α− − 4
]
/4.

Points xc yc zc Exist for Eigenvalues

A +1 0 0 always 3,
√

6λγ − 6, 3 +
√

3

2

B −1 0 0 always 3, −√
6λγ − 6, 3 −

√

C
λγ +

√
λγ

2 − 6
√

6
0

α− − 3

18
λ2
γ ≥ 6 C−, C+,

(λγ + λV )α

2λg

D
λγ −

√
λγ

2 − 6
√

6
0

α+ − 3

18
λ2
γ ≥ 6 D−, D+,

(λγ + λV )α

2λg

λ2
V

− 3, −λV (λγ + λV

E − λV√
6

√
1 − λV

2

6
0 0 < λ2

V
≤ 6

λ2
V

− 6

2

F 0 1 0 λV = 0 −3, −3, −3
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Table 2
Real and physically meaningful critical points of the autonomous system (28)–(30), and the corresponding values of the 
scalar field equation of state wφ , the deceleration parameter q and the instability-related parameters c2

s and Qs , which 
must be non-negative for a scenario free of ghosts and gradient instabilities, and the slow-roll parameter ε.

Points wφ q c2
S

QS ε

A 1 2 1 3 3
B 1 2 1 3 3

C −1 + α+
3

−1 + α+
2

0 arbitrary
α+
2

D −1 + α−
3

−1 + α−
2

0 arbitrary
α−
2

E −1 + λ2
V

3
−1 + λ2

V

2
1

λ2
V

2

λ2
V

2
F −1 −1 1 0 0

Fig. 1. Projection on the xP –yP plane of the phase space behavior of the model (10), with V (φ) = V0eλV φ and γ (φ) =
γ0eλγ φ , for p = 1, λV = 1 and λγ = −2. The region inside the inner semi-circle (seen as semi-ellipse in the figure 
scale), marked by the thick dashed–dotted line, is the physical part of the phase space. In this projection point E is 
saddle, F is an attractor, A and B are unstable, and the origin M is a saddle. The inflationary realization is described by 
point E.

4. Conclusions

In the present article we have studied in detail the theoretical challenge of single field inflation 
models to generate a blue tilt for the primordial gravitational waves. Considering a generalized 
single field inflation model with a Horndeski operator minimally coupled to Einstein gravity, we 
have performed a detailed phase space analysis and have shown explicitly that the only inflation-
ary solution without any pathologies yields a positive definite value of the slow-roll parameter ε. 
Therefore, up to leading order, the spectral index of the primordial tensor perturbations, which 
takes the form of −2ε under the consistency relation, is always red tilted.

There might be directions to circumvent the theoretical difficulty pointed out in the present 
study, however this would require to extend into more complicated situations. For instance, one 
could try to go beyond the single slow-roll field. For instance, relation (7) can be altered by taking 
into account possible contributions that are higher-order in slow-roll [11], by including particle 
production effects [46], or by considering inflation models driven by some non-conventional 
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matter such as in elastic inflation [47] and solid inflation [48]. However, the analyses of these 
possible complicated scenarios under the theoretical constraints imposed in Section 2, need to 
be performed in detail in future projects, before accepting them as successful candidates for the 
description of Nature.

We end the present paper by clarifying our motivation. In this paper we pointed out a theo-
retically severe problem. That is, given a possible detection of a blue spectrum for primordial 
tensor fluctuations, single field inflation models under our current knowledge can hardly provide 
a reasonable interpretation. To demonstrate this theoretical difficulty, we have performed the dy-
namical system analysis in detail based on a class of G-inflation model of which the form is 
pretty generic. This issue might be circumvented by more complicated choices of the functions 
K and G, but more problems associated with other instabilities/inconsistencies would appear, 
such as observational constraints of primordial non-Gaussianities. We argue that, if the difficulty 
of realizing a blue tensor spectrum could eventually become a no-go theorem, then such a possi-
ble detection may spoil the picture of single field inflationary cosmology completely; otherwise, 
a more delicate model building is required. This is the goal of our following-up project.
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Appendix A. Background dynamics

In this appendix we provide the general forms of the equations of motion in the model under 
consideration. Varying the Lagrangian (8) with respect to the metric, one can obtain the Fried-
mann equations that determine the dynamics of the background universe as

H 2 = ρφ

3m2
Pl

, Ḣ = −ρφ + Pφ

2m2
Pl

, (A.1)

where in the general case the energy density and pressure write as

ρφ = 2XKX − K + 6GXHφ̇X − 2XGφ , (A.2)

Pφ = K − 2X
(
Gφ + GXφ̈

)
, (A.3)

respectively. In addition, varying (8) with respect to the scalar field yields the generalized Klein–
Gordon equation
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KX

(
φ̈ + 3Hφ̇

)+ 2KXXXφ̈ + 2KφXX − Kφ − 2
(
Gφ − GφXX

) (
φ̈ + 3Hφ̇

)
− 4GφXXφ̈ − 2GφφX + 6GX

[
(HX)· + 3H 2X

]
+ 6GXXHXẊ = 0 , (A.4)

which is a second order differential equation and hence it is free of extra degrees of freedom. Now 
we can insert specific operators K and G, for example (10) and (11), into the above equations, 
and derive out straightforwardly the detailed equations of motion.

Appendix B. Perturbation dynamics

In this appendix we present the detailed expression of the quadratic action that characterizes 
the dynamics of the cosmological perturbations at linear order. For the curvature perturbation, 
the quadratic action is given by

S2 =
∫

dtd3x
a

2
z2
[
Ṙ2 − c2

s

a2
(∇R)2

]
, (B.1)

where z2 and c2
s are given by

z2 = 4a2m4
Plφ̇

2(
2m2

PlH − φ̇3GX

)2

[
KX + φ̇2KXX + 6Hφ̇GX

+ 3φ̇4G2
X

2m2
Pl

+ 3Hφ̇3GXX − 2Gφ − φ̇2GφX

]
, (B.2)

c2
s = KX + 4Hφ̇GX − φ̇4G2

X/
(
2m2

Pl

)− 2Gφ + φ̇2GφX + (
2GX + φ̇2GXX

)
φ̈

KX + φ̇2KXX + 6Hφ̇GX + 3φ̇4G2
X/

(
2m2

Pl

)+ 3Hφ̇3GXX − 2Gφ − φ̇2GφX

,

(B.3)

where the expression of z2 is related to Eq. (21) via z2 = 2a2Qs .
Under the specific K(φ, X) and G(φ, X) ansatzes of (10) and (11), as well as the slow-roll 

approximation, the above coefficients can be significantly simplified to leading order as

z2 ≈ 2a2m2
Plεφ

1 + 12p2γ (2εφ)p−1/2ξ
p
H[

1 − pγ (2εφ)p+1/2ξ
p
H

]2
, (B.4)

c2
s ≈ 1 + 8pγ (2εφ)p−1/2ξ

p
H

1 + 12p2γ (2εφ)p−1/2ξ
p
H

. (B.5)

We mention that z2 is required to be positively definite in order for the model to be free of any 
ghost mode. During inflation, c2

s is also required to be positive and therefore the propagation of 
the primordial perturbations do not suffer from a gradient instability.
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