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Robust Voice Activity Detection Algorithm Based on Feature of
Frequency Modulation of Harmonics and Its DSP Implementation
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SUMMARY  This paper proposes a voice activity detection (VAD) al-
gorithm based on an energy related feature of the frequency modulation
of harmonics. A multi-resolution spectro-temporal analysis framework,
which was developed to extract texture features of the audio signal from
its Fourier spectrogram, is used to extract frequency modulation features
of the speech signal. The proposed algorithm labels the voice active seg-
ments of the speech signal by comparing the energy related feature of the
frequency modulation of harmonics with a threshold. Then, the proposed
VAD is implemented on one of Texas Instruments (TT) digital signal proces-
sor (DSP) platforms for real-time operation. Simulations conducted on the
DSP platform demonstrate the proposed VAD performs significantly bet-
ter than three standard VADs, ITU-T G.729B, ETSI AMR1 and AMR?2, in
non-stationary noise in terms of the receiver operating characteristic (ROC)
curves and the recognition rates from a practical distributed speech recog-
nition (DSR) system.

key words:  digital signal processor, frequency modulation, spectro-
temporal analysis, voice activity detection

1. Introduction

Speech is the most important bio-signal for human commu-
nication. Nowadays, many speech-related applications are
developed to facilitate our daily lives. Voice activity de-
tection (VAD), which detects speech segments in an audio
stream, is often included in the front-end of speech-related
systems, such as in telecommunication systems [1], [2], ro-
bust automatic speech recognition system [3] and speaker
recognition systems [4], [5]. Therefore, a robust VAD for
any noise condition is greatly needed. However, developing
a VAD against real-world non-stationary noise is still very
challenging for researchers.

Over the past few years, many complicated VAD algo-
rithms were proposed. For instance, one algorithm detected
each speech endpoint using a likelihood ratio test by assum-
ing speech and noise signals are Gaussian distributed in the
discrete Fourier transform (DFT) domain [6]. In addition,
noise estimation and adaptation techniques were considered
to improve its robustness under non-stationary noise envi-
ronments at the cost of high computational loads [7]. An-
other group of VAD algorithms emphasize long-term speech
information, such as considering the spectral divergence be-
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tween speech and non-speech [8], and a novel long-term sig-
nal variability measure [9].

In addition to these engineering approaches, many re-
searchers consider hearing properties in developing VAD
algorithms since the human auditory system is capable of
detecting competing sound streams in very noisy environ-
ments [10]. Speech signals contain rich information in both
spectral and temporal domains with their envelopes varying
timbrally in frequency and rhythmically in time [11]. The
fluctuations of the envelopes across time and frequency axes
are referred to as modulations. The importance of spec-
tral modulation [12] and temporal modulation [13] to speech
perception was well studied. Temporal modulations reflect
dynamic changes of the vocal tract such that they encode
rich linguistic information. Psychoacoustic experiments re-
veal that slow temporal modulations (< 16 Hz) of speech
are highly related to speech intelligibility [13], [14]. In-
spired by these studies, the temporal amplitude modulation
of speech has been embraced in VAD algorithms, such as in
the long-term multiband modulation energy tracking algo-
rithm [15] and in the support vector machine (SVM) based
algorithm with the amplitude modulation spectral (AMS)
features [16]. In addition to using the temporal modula-
tions directly, the temporal amplitude modulation transfer
function (MTF) was also considered in robust VAD algo-
rithms to restore the temporal envelopes of speech seg-
ments in reverberant environments for more accurate de-
tection [17], [18]. Moreover, pitch (fundamental frequency)
and harmonics of a voiced sound are perceptually important
to human hearing [10], [19], [20]. This property leads to the
approach of adopting harmonic-related features in VAD al-
gorithms [3], [21], [22].

Neurophysiological evidence further suggests that neu-
rons of the auditory cortex (Al) respond to joint spectral-
temporal modulations of the input sound [23], [24]. Based
on the neurophysiological recordings, a computational au-
ditory model has been proposed accordingly [25] and used
to derive a noise-robustness representation of speech [26].
On the other hand, psychoacoustic experiments also demon-
strate that the joint spectro-temporal modulations are highly
related to speech intelligibility [27] and speech comprehen-
sion[11]. The concept of using spectro-temporal modu-
lations has since been adopted in many applications, such
as speech intelligibility assessment [28], musical instrument
identification [29], and robust feature extraction for auto-
matic speech [30], [31] and speaker recognition [32].

Inspired by the auditory model, a spectro-temporal
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analysis and synthesis framework has been proposed for the
Fourier spectrogram and used to extend the conventional
Wiener filter to the spectro-temporal modulation domain for
speech enhancement [33]. Furthermore, it has been shown
that the spectro-temporal analysis of the Fourier spectro-
gram can capture prominent acoustic “textures”, such as
pitch, harmonicity, formant, amplitude modulation (AM)
and frequency modulation (FM) [34]. The pitch, harmonic-
ity and formants are spectrum-related features have been
considered in VAD algorithms [3], [21], [22]. The AM en-
codes the long-term variations of the envelope of the acous-
tic signal and was considered as in [15]-[18], [22]. As for
the FM, psychoacoustic studies show FM is an important
cue for recognizing speech in noisy environments for people
with normal hearing [35]. Even hearing-impaired patients
can detect dynamic frequency changes [36] so that encoding
the FM cue in the cochlear implant can help patients in real
listening conditions [37]. To take the advantage of the FM
cue, we propose a robust VAD based on the feature of fre-
quency modulation of harmonics in this paper. To our best
knowledge, the information of frequency modulation of har-
monics has not been considered in any VAD before. The FM
cue specifically associated with voice would be extracted
from outputs of the spectro-temporal analysis process and
used to build a robust VAD.

In today’s modern world, portable devices are every-
where and equipped with many speech-related applications.
Therefore, the proposed algorithm would be very valuable
if it can be implemented in portable devices and function
in real time. Often, complex applications are implemented
on DSP platforms for a quick demonstration of the proto-
type systems [38]-[40]. For the same purpose, we imple-
ment the proposed VAD algorithm on a DSP platform and
evaluate the computational complexity in this paper. The to-
tal processing time of the DSP is also demonstrated. The
rest of the paper is organized as follows. Section 2 first
gives a review of the spectro-temporal analysis process for
the Fourier spectrogram and demonstrates modulation con-
tents of speech and noise signals. Then, the VAD algorithm
based on local energy of frequency modulation of harmon-
ics is proposed. Section 3 shows details of the hardware
implementation on a DSP chip. Simulation results against
real-world recorded noise are demonstrated in Sect. 4. Fi-
nally, Sect. 5 gives the conclusion and discussion.

2. Proposed Method
2.1 Spectro-Temporal Analysis of Fourier Spectrogram

Al neurons were modeled as two-dimensional complex fil-
ters turned to different spectro-temporal parameters [25].
This concept was applied to the Fourier spectrogram as fol-
lows. First, speech can be assumed quasi-stationary and can
be analyzed frame by frame using a short analysis window.
The short-term Fourier transform (STFT) of the speech sig-
nal x(n) can be written as
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where w(n) is the analysis window function; k is the fre-
quency bin index and N is the total number of points in each
frame. For speech processing, the Hamming window with
20—-40 ms duration is typically used [41]. In the proposed
algorithm, the STFT spectrogram X(n, k) is obtained using a
25 ms Hamming window with a 10 ms shift. For any input
magnitude spectrogram |X(n, k)|, the spectro-temporal anal-
ysis stage produces a 4-dimensional multi-resolution output
as follows:

Ci(n,k, w,Q) = 1X(n, )| ik STIR:(n, k; w, ) 2

where S TIR.(n, k; w, Q) is the spectro-temporal impulse re-
sponse of the 2-D modulation filter tuned to w and Q; ,; de-
notes two-dimensional convolution along the time and fre-
quency axes. The sign (£) represents the sweeping direction
of the modulation filters (positive sign refers to the down-
ward direction and negative sign refers to the upward direc-
tion). The rate parameter w (in Hz) reflects how fast the
local envelope of the magnitude spectrogram varies along
the time axis. The scale parameter Q (in ms) reflects how
broad the local envelope of the magnitude spectrogram dis-
tributed along the frequency axis. They are the Fourier do-
mains of the time and the frequency dimensions, respec-
tively. The property that the convolution in the time domain
corresponds to the pointwise multiplication in the Fourier
domain is commonly used for 2-D convolution operations
to reduce the computational cost using the fast Fourier trans-
form (FFT) [42]. Therefore, Eq. (2) can be rewritten as fol-
lows:

C:(n,k, ,Q) = Fop (FaplIX(n, )} - STMF (w0, Q)
3)

where F>p and 7"2’1)1 denote the 2-D Fourier transform and
the inverse 2-D Fourier transform; STMF.(w, Q) denotes
the frequency responses of the 2D spectro-temporal modu-
lation filters. As shown in Fig. 1, the frequency response of a
complex downward/upward modulation filter is confined in
the first/second quadrant of the w — Q space. STMF.(w, Q)
are derived as follows:
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Fig.1 Rate-Scale (w — Q) space.
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STMF (w,Q) =
Hﬁ%(w; 1) ® |Hgcqre(Q; k), 0w <m 0<Q<n
0, otherwise
“4)
STMF_(w,Q) =
H;?gz'é(W; l’l) ® |Hscale(Q; k)l» —m<w< O; 0<Q<m
0, otherwise
)]

where ® is the outer product; n indicates the half sampling
frequency of the sampling process along the time or the fre-
quency axis, respectively. H,qo(w;n) and Hieq.(Q; k) are
the frequency response of the 1-D temporal and spectral
modulation filter, respectively. These bandpass modulation
filters are formulated as sinusoidal modulated gamma distri-
bution functions [25]:

H,ure(w; n) = F{n*e B cos(2mwn)) (6)

Hieate( Qs k) = F (ke 2Bk cos(2mQk)) (7)

where ¥ is the Fourier transform; the bandwidths B, and
Bycale increase with the center frequencies w and Q. The im-
pulse response of each S T M F, which has frequency compo-
nents in only one quadrant, is a 2D analytic signal such that
the corresponding output C.(n,k, w, Q) is full of analytic
signals. The H"" (w; n) denotes the minimum-phase version
of H,ye(w;n), ie., H:”a",’;(w;n) is the minimum phase sys-
tem, which has the same magnitude response as H,q.(w; n).
Figure 2 shows the spectro-temporal analysis of a sample
magnitude spectrogram |X(n, k)| and the corresponding 4-D
output |C.(n, k, w, Q)|. The amplitude of an analytic signal
was defined as the “local energy” of the signal [43], [44]
or can directly represent the local energy [45]. No matter
what viewpoints we choose, it is safe to say that the derived
|Ci(n, k, w, Q)| is highly related to the local energy. In the
following contents, the |C.(n, k, w, Q)| is referred to as the
“local energy”, an abbreviation of “local-energy related fea-
ture”.

2.2 Rate-Scale Representation

The multi-resolution analysis process can capture the under-
lying texture of speech. The left panels of Fig. 3 demonstrate
the Fourier magnitude spectrograms of samples of speech,
white noise, wind noise, and keyboard click noise from top
to bottom respectively. The speech sample and the white
noise were extracted from the TIMIT corpus [46] and the
NOISEX-92 database [47]. The non-stationary wind noise
and the keyboard click noise were recorded in real environ-
ments. Each 4-D |C.(n, k, w, Q)| can be further integrated
along the frequency axis to obtain an averaged rate-scale
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Fig.2  Spectro-temporal analysis of the Fourier spectrogram and the cor-
responding 4-D output; (a) a sample time waveform; (b) its spectrogram;
(c) the 4-D (rate-scale-frequency-time) output.
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Fig.3  The spectrograms and the corresponding rate-scale patterns of (a)
clean speech; (b) white; (c) wind; (d) click noise, respectively.

representation at the particular time frame as follows:
1 &E
Ersr(w.Qim) = = ,Z; IClhjy @, Q)| ®)

where F is the total number of frequency bins. The middle
two panels of Fig. 3 show the corresponding Egs7(w, Q; n;)
at the time frame n; (denoted by the dashed line) in the
rate-scale domain, where the rate (w) is ranged from 1 to
64 Hz, and the scale () is from 0.25 to 16 ms. Note that
the positive-rate/negative-rate panel records the output from
the downward/upward direction modulation filters. Further-
more, the overall rate-scale representation of the whole sig-
nal can be obtained by averaging over both time and fre-
quency axes as follows:
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where L is the total number of frames. The right two panels
of Fig. 3 show the corresponding Egs (w, 2) in the rate-scale
domain.

The prominent peaks of the rate-scale pattern of speech
in the middle two panels of Fig. 3(a) reveal that the envelope
of the sample speech signal is downward moving with a har-
monic spacing of 250 Hz (4 ms), a formant spacing of 2000
Hz (0.5 ms) and a temporal modulation of 4 Hz. As for
the white noise, its magnitude spectrogram varies quickly
in both the time and the frequency domains such that its
rate-scale pattern is strongly activated in the high rate and
high scale regions. The non-stationary wind noise exhibits
strong energy in low frequency bands and its rate-scale pat-
tern scatters especially in the low rate and low scale regions.
It implies the wind noise shares the similar formant struc-
ture as speech but without any harmonic structure. Unlike
the wind noise, the keyboard click noise is an impulse-like
noise such that its rate-scale pattern has dominant peaks in
the very low scale (due to its frequency content spreading
all over the frequency axis) but high rate (due to its transient
characteristic) regions. The right two panels of Fig. 3 can be
obtained by further collapsing the rate-scale-time patterns
over time. From these rate-scale patterns, we can clearly
observe speech and noise distribute differently in the rate-
scale domain due to their different acoustic textures. As
indicated by these rate-scale patterns, the spectro-temporal
modulations resolved by the dashed box region (i.e., har-
monics moving downward or upward along the time axis
at a low rate) can be treated as critical texture features for
speech/non-speech discrimination. This phenomenon pro-
vides one possible explanation for the psychoacoustic ex-
periment results that the FM significantly enhances speech
reception in noise for human listeners [35].

2.3 FM Local Energy Based VAD

We calculated the a priori modulation SNR (SNR™*?) over
speech segments based on the modulation power in the rate-
scale domain as follows:

L, speech .

sngrmod = 19 > logyg Fos (@ i) (10)

Ly = PR (w, Qi my)
where L; is the total number of frames in speech seg-
ments; P‘;";mh and P3* are the modulation power of speech
and noise in each frame, respectively. Similar to Eq. (8),
Prs(w, Q) is defined as + 27, [Cx(n;, kj, w, Q). Fig-
ure 4 shows the S NR™ calculated from 80 noisy speech
signals corrupted by wind noise with 0 dB SNR. Strong re-
sponses appear around scale = 4~8 ms. The rate-scale pro-
files shown in Fig. 3 and Fig. 4 indicate that noise does not
uniformly degrade speech in the rate-scale domain. To re-
duce the computational load of the proposed VAD, only a
pair of spectro-temporal modulation filters, one upward and
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Fig.4  The a priori modulation SNR™? calculated from 80 noisy speech
signals corrupted by wind noise at 0 dB SNR.

one downward filter, are considered in our algorithm. Three
choices of (w,, Q.) € {(= 1 Hz, 8 ms), (+ 2 Hz, 8 ms), (¢
4 Hz, 8 ms)} are compared in our evaluations. The selected
Q. = 8 ms constant-Q bandpass spectral modulation filter
(Q348 = 2) actually covers the scale from 4 to 12 ms. Such
filter can resolve the harmonic spacing (pitch) of most adult
speakers. Since the moving direction of the harmonics is
irrelevant for voice detection, we record the larger local en-
ergy out of the two directions as the frequency modulation
local energy (FME) of harmonics resolved by (w,, Q.) at
the time frame n;.

FME(n; we, Q) =

Max{Egsr(We+, Qc; 1), Egs(We-, Qe 1)} (n
The FME(n;w.,€.) basically depicted the local energy
contour of a valid speech frequency modulation texture of
the speech signal. To simplify notation, FME(n; w., )
is abbreviated to FME(n) in following descriptions. Fig-
ure 5(a) presents a sample speech waveform corrupted by
wind noise at 0 dB SNR. Figure 5(b) is the corresponding
spectrogram. The regular energy contour and our frequency
modulation local energy contours using three sets of param-
eters are depicted in Fig. 5(c) and Fig. 5(d), respectively. In
addition, Fig. 5(e) shows the pure AM local energy (AME)
contours using the three corresponding rate parameters of 1,
2, and 4 Hz. Comparing the non-speech segments (0~2.5
sec and 5.5~8 sec) between Fig. 5(d) and (e), one can easily
observe the proposed FM local energy would be much better
at distinguishing speech from wind noise than the AM local
energy using the approach of thresholding. All the contours
are normalized by their own maximum values for display
purpose. The voice event is directly determined every 10
ms by comparing the FM local energy with a threshold.

In order to derive the threshold, the FME(n) is first
sorted and the resulting sequence is then divided into sec-
tions, each of which contains 25 frames. The section con-
taining the smallest value is assumed a noise-only section
and the mean of this section is denoted as FMEy. The sec-
tion containing the largest value is assumed a noisy section
(with both speech and noise) and the mean of this noisy sec-
tion is denoted as FMEg,y. The threshold vy is then calcu-
lated by

’)/=p(FMES+N—FMEN)+FMEN (12)

where p is a scaling parameter. The VAD decisions were
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made frame by frame. For the n;-th frame, it is labeled as a
speech frame if FME(n;) is larger than the threshold. The
efficacy of the proposed VAD is demonstrated in Fig. 6. Fig-
ure 6(a) shows the waveform of the clean speech sample as

(a) Noisy waveform
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Fig.5 Different frequency modulation local energy contours of a speech
sample corrupted by wind noise at 0 dB SNR. (a) Noisy speech; (b) the
corresponding spectrogram; (c) energy contour; (d) frequency modulation
local energy contours derived using three sets of parameters; (e) amplitude
modulation local energy contours derived using three parameters.
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Fig.6  VAD results from the proposed algorithm for a speech sample cor-
rupted by wind noise at 0 dB SNR. (a) Clean waveform and the reference
VAD labels; (b) the clean spectrogram and the reference VAD labels; (c)
the frequency modulation local energy contour and the threshold; (d) the
noisy spectrogram and the VAD results from the proposed algorithm.
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in Fig.5 and its reference VAD labels extracted from the
TIMIT word transcriptions. Figure 6(b) shows the corre-
sponding spectrogram and the reference VAD labels. Fig-
ure 6(c) depicts the frequency modulation local energy con-
tour of (w., Q) = (= 1 Hz, 8 ms) as in Fig.5(d) and the
threshold calculated by Eq. (12). Figure 6(d) shows the VAD
labels from our proposed algorithm.

3. Hardware Implementation

It has been shown that DSP chip is more reliable than
FPGA [48].  Therefore, for the purpose of prototyp-
ing, we implement the proposed VAD algorithm on the
TMS320C6713 DSP Starter Kit (DSK), a DSP platform pro-
duced by Texas Instruments, for real-time simulation.

The proposed VAD algorithm needs a lot of FFT com-
putations, each of which requires a great amount of data
(depending on the FFT length). From our experience, the
time of transmitting data by CPU is about 4 times longer
than the time of executing the algorithm. Therefore, we
need direct memory access (DMA) modules for transmit-
ting data to reduce the overall processing time. Since the
TMS320C6713 is a floating-point DSP and provides 16 in-
dependent enhanced DMA channels, we implemented the
proposed VAD algorithm on TMS320C6713 DSK for con-
venience.

3.1 Flow Chart

The procedures of the proposed VAD algorithm are summa-
rized in the following list and the corresponding flow chart
is shown in Fig. 7.

1) The input acoustic signal was received sample by sam-
ple from the analog to digital converter (ADC) with
the sampling frequency of 8 kHz. The data was then
buffered for the frame-based FFT operation. In our al-
gorithm, each frame (25 ms) contains 200 samples and
consecutive frames are 80 samples (10 ms) apart.

2) The 512-point radix-2 complex FFT was applied to

’ ADC Input Ff ’ Decision ‘
! !
’ FFT (spectrogram) ‘ ’ Threshold ‘
!
’ FFT (spectral) ‘ ’ IFFT (spectral) ‘
{ !
’ Buffer ‘ ’ IFFT (temporal) ‘
¥
Rate-Scale filter
Check if

speech finish?

FFT (temporal)
4

Fig.7  Flow chart of the proposed VAD algorithm.
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Table1  Complexity per frame (per sample) of the proposed algorithm.
Stage MUL ADD
Fourier Spectrogram 9,730 14,081
Rate-Scale Analysis 17,131 24,377
Rate-Scale Synthesis 31,623 47,435
Threshold and Decision 517 514
Overall 59,001 (295) | 86,407 (432)

convert the time-domain signal to the Fourier spectro-
gram frame by frame.

3) The 512-point radix-2 complex FFT was again applied
to convert each frame of the Fourier spectrogram into
the scale domain. The outcome was called scalogram
and was stored for cross-frame temporal processing
into the rate domain later.

4) Step 1) to 3) was repeated until all samples of the input
speech signal were acquired.

5) The 1024-point radix-4 complex FFT was applied to
the scalogram for cross-frame temporal processing.
Then the outcome multiplied by the frequency re-
sponses of a pair of rate-scale filters. The frequency
responses of the rate-scale filters were pre-stored in the
memory.

6) 2 inverse FFTs (IFFTs) were applied to convert results
in the rate-scale domain back to the time-frequency do-
main.

7) Calculate the threshold based on Eq.(12) and make
VAD decisions frame by frame.

3.2 Complexity and Processing Time

Table 1 provides the computation complexity per frame of
the proposed VAD algorithm in terms of the number of real
multiplications (MULs) and real additions (ADDs). The
complexity of each FFT is equivalent to 2Nlog2N MULs
and 3Nlog2N ADDs, where N is the FFT length. The to-
tal complexity per frame is 59001 MULs and 86407 ADDs.
Since a frame contains 200 samples, the total complexity
per sample is 295 MULs and 432 ADDs. Table 2 shows
the overall processing time of our algorithm for an 8-second
speech signal. The processing cycle was obtained using the
profile clock count provided by TI code composer studio
(CCS) and the processing time was obtained by dividing the
processing cycle with the clock rate of the DSP chip, which
is 225 MHz in our case. Several procedures were adopted
for the implementation on the DSP platform to reduce the
processing time.

1) The radix-4 and radix-2 complex FFT computation was
optimized by following TI’s optimization procedures.

2) The square root function was replaced by a lookup ta-
ble.

3) The bubble sorting method was modified for comput-
ing the threshold.

4) The linear assembly coding was adopted.

Since the Fourier spectrogram of the input signal is
computed during the data acquisition period, its processing
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Table2  Overall CPU processing cycle (processing time) of the proposed
algorithm.
Stage Cycle for executing | Cycle for transmitting
algorithm data
Fourier Spectrogram N/A N/A
Rate-Scale Analysis 11,950,500 (54 ms) 50,886,000 (226 ms)
Rate-Scale Synthesis 31,150,000 (138 ms) | 114,210,000 (508 ms)

Threshold and Decision 2,698,600 (12 ms) N/A

Overall 45,799,100 (204 ms) | 165,096,000 (734 ms)

time is not included in the overall processing time. As noted
in Table 2, the time for transmitting data is 734 ms, which
can be totally diminished by using EDMA. Therefore, the
overall processing time was reduced to about 204 ms plus
overhead of EDMA for an 8-second input speech signal. Fi-
nally, the VAD results of real-time emulations on the DSP
platform were identical to VAD results of MATLAB simu-
lations on the PC.

4. Experiment

We conducted a series of experiments to evaluate the pro-
posed VAD. We used the TIMIT test set corpus, which con-
tains 1680 phonetically continuous sentences spoken by 168
speakers (112 male and 56 female speakers) from eight dif-
ferent American dialect regions, in the first part of our eval-
uations. A 2-second silence was added to the beginning and
the end of each sentence. The overall test materials con-
sisted of about 38% speech and 62% non-speech segments.
In our experiments, noisy signals were generated by adding
white noise, wind noise, and computer keyboard click noise
at four SNR levels (10 dB, 5 dB, 0 dB, and —5 dB). The de-
sired SNR levels were ensured within speech segments [49].

The performance of the proposed VAD was assessed
using the speech hit rate (H1) and the non-speech hit rate
(HO). The speech/non-speech hit rate is defined as the ra-
tio of the number of correctly detected speech/non-speech
frames to the total number of speech/non-speech frames.
Note, a perfect VAD provides 100% H1 and 100% HO. The
proposed FM local energy based VAD was compared with
three standard VADs, the VADs of ITU-T G.729 Annex B
(ITU-T G.729B) [1], ETSI adaptive multi-rate codec option
1 and option 2 (ETSI AMR1 and AMR2)[2], and the AM
local energy based VAD shown in Fig.5(e). The G.729B
was developed for fixed telephone and multimedia commu-
nication systems and the AMR codec was developed for 3G
mobile communication systems. Each noisy speech signal
was normalized to —26 dBov [50] before fed into the three
standard VADs. In our experiments, the threshold for our
proposed VAD was derived by Eq. (12) and the threshold of
the AM local energy based VAD was derived by the same
equation but using AME instead. In addition, the scaling
parameter p was set as from 0.05 to 0.60 with a step of 0.05.
Figure 8 shows the receiver operating characteristic (ROC)
curves of all compared VADs with respect to p for four SNR
levels and three noise types ((a) white noise; (b) wind noise;
and (c) click noise). The ROC curve gives a full description
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Fig.8 ROC curves of the proposed VAD for four SNR levels and three
noise types; (a) white noise; (b) wind noise; (c) computer keyboard click
noise.

of the relationship between H1 and HO. A higher p results in
a higher threshold such that the H1 is decreased and the HO
is increased. The ROC points of three standard VADs are
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Fig.9 One noisy speech sample recorded from outdoors with strong
wind noise and the corresponding spectrogram.

also given in the figures. The ETSI AMR?2 is a very sophis-
ticated VAD, which detects speech based on many factors,
including the energies of 16 frequency subbands, the energy
of background noise, the channel SNR, the frame SNR, and
the long-term SNR [40]. From the simulation results, we can
observe that the AMR2 VAD performs the best among the
three standard VADs in white noise but neither one of them
performs well in non-stationary wind noise and click noise.
Our proposed VAD delivers much higher performance than
the standard VADs in wind noise and click noise and com-
parable performance as AMR2 in white noise. Comparing
the proposed FME based VAD with the AME based VAD,
one can observe that both types of VADs produce compa-
rable results under high SNR (10 dB) conditions. Further-
more, the FME based VAD outperforms the AME based
VAD when SNR decreases. The performance gap becomes
larger and larger with lower and lower SNR. To sum up, the
FME based VAD with parameters (w., Q.)=(x1 Hz, 8 ms)
produces the best results in low SNR conditions.

Next, the proposed VAD was evaluated in a pilot simu-
lation using a practical DSR system. The on-line DSR sys-
tem was developed by Chunghwa Telecom Co. to automat-
ically search the telephone number of a target institute for
mobile-phone users. The database contains around 60000
telephone numbers of companies and government organiza-
tions in northern Taiwan. In our evaluations, we collected
10 8-second recordings in each of the six real environments
through each of the 2G and 3G communication networks.
The test environments include office, street, restaurant, bus,
outdoors with strong wind noise, and outdoors with strong
mobile-phone keypad click noise. Figure 9 shows a sample
of recorded signal from outdoors with strong wind noise and
the corresponding spectrogram. There were 120 test utter-
ances in total for each of the five VADs, including G.729B,
AMRI1, AMR2, CT_VAD (the original VAD used in the
DSR system) and the proposed VAD. The parameters (w,,
Q., p) of the proposed VAD were set as (x1, 8, 0.25). The
corresponding average recognition rates (in %) are given
in Table 3 with the upper bound from man-labeled VAD
results. Clearly, our proposed VAD outperforms all other
VADs in terms of the average recognition rate when used in
the DSR system. For speech signals recorded in a quiet en-
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Table 3  DSR recognition rate (%) for using different VADs of the pro-
posed algorithm.
Method Accuracy (%)
G.729B 44.55
AMRI1 48.18
AMR2 51.82
CT_VAD 47.27
Proposed 64.55
[ Man-labeled | 70.91 |

vironment such as the office, all VADs produce good results.
The main advantage of the proposed VAD is its robustness
against non-stationary noise.

5. Conclusion and Discussion

In this paper, we propose a voice activity detection al-
gorithm in the spectro-temporal modulation analysis and
synthesis framework [34]. Prominent textures of the input
sound can be captured by the spectro-temporal modulation
decomposition. In the proposed algorithm, the local energy
of the specific frequency modulation of moving harmonics
is assessed and compared with a threshold to distinguish
speech from non-speech. Conventional VADs usually con-
sider the overall energy, while the proposed VAD only con-
siders the energy attributed to textures of speech. Although
harmonic-related textures intuitively can only be attributed
to vowels, surrounding consonants can still be covered by
the proposed VAD due to the low-rate filter, which acts as
a long-term integrator. One side effect of using the long-
term integrator is the inevitable inclusion of the short silence
between speech segments as shown by the detection error
around 3.2 seconds in Fig. 6. To avoid this false alarm er-
ror, information of the transients (such as onsets and offsets)
embedded in the high rate region in the modulation domain
needs to be considered. For instance, as shown in Fig. 5(d),
the FM local energy contour resolved by the 4 Hz rate mod-
ulation filter depicts voiced segments (i.e., segments with
harmonic structures) more accurately than the contour re-
solved by the 1 Hz rate modulation filter. This accuracy will
become higher when using a higher rate modulation filter.
However, if we only adopt the high rate information without
including the long-term integrator, the unvoiced sections in
speech segments would be misclassified as non-speech due
to their lack of harmonic structures. Therefore, depending
on applications, the high rate and low rate information need
to be carefully balanced to address the trade-off between the
false alarm errors from short silences and miss errors from
short unvoiced sections. In this study, we assume the cost of
the miss error is much higher than the cost of the false alarm
error such that the high rate information is not considered in
our system.

The ROC curves and recognition rates of the DSR
system demonstrate our VAD significantly outperforms the
three standard VADs under non-stationary noise conditions.
The successful implementation on the DSP platform also
demonstrates the algorithm can be used in many kinds of
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speech applications, especially for batch processing appli-
cations. Because the spectro-temporal modulation analysis
works on the Fourier spectrogram, the proposed VAD can be
easily integrated into conventional speech processing appli-
cations. In this work, we only use a simple decision method
and only consider a pre-selected pair of spectro-temporal
modulation filters to validate the idea of using functional
energy instead of energy to identify speech segments. In the
future, we will develop a more complicated decision rule
and an adaptive mechanism of selecting more effective mod-
ulation filters based on the user’s current background noise
to further improve the performance. Another potential di-
rection is to regularize the proposed VAD similar to the ap-
proach in [51] to build a more robust system for variations
of SNRs and noise conditions . In addition, we will imple-
ment the proposed VAD algorithm on the TMS320C6416
fixed-point DSP.
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