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PAPER

Biometric Identification Using JPEG2000 Compressed ECG
Signals∗

Hung-Tsai WU†, Yi-Ting WU††, Nonmembers, and Wen-Whei CHANG†a), Member

SUMMARY In wireless telecardiology applications, electrocardiogram
(ECG) signals are often represented in compressed format for efficient
transmission and storage purposes. Incorporation of compressed ECG
based biometric enables faster person identification as it by-passes the full
decompression. This study presents a new method to combine ECG bio-
metrics with data compression within a common JPEG2000 framework.
To this end, an ECG signal is considered as an image and the JPEG2000
standard is applied for data compression. Features relating to ECG mor-
phology and heartbeat intervals are computed directly from the compressed
ECG. Different classification approaches are used for person identification.
Experiments on standard ECG databases demonstrate the validity of the
proposed system for biometric identification with high accuracies on both
healthy and diseased subjects.
key words: ECG biometric, person identification, JPEG2000

1. Introduction

The demand for improved security for person identification
has been growing rapidly, and among the potential alterna-
tives is employing innovative biometric traits. Biometric
identification is reliant on pattern recognition approaches by
extracting physiological or behavioral traits of human body
and matching them with an enrollment database. Various
biometrics have been proposed for use in person identifica-
tion, such as voice, face, and fingerprint [1]. However, these
biometrics either cannot provide reliable performance or not
robust enough against falsification. Recent studies have sug-
gested the possibility of using electrocardiogram (ECG) as
a new biometric modality for person identification [2]–[9].
ECG signal is a recording of the electrical activity of the hu-
man heart, which is individual-specific in the sense of ampli-
tude and time durations of the fiducial points. Furthermore,
ECG signal can deliver the proof of subject’s being alive as
extra information which other biometrics cannot deliver as
easily. It is believed that ECG biometric would be particu-
larly effective in health care applications, as the signal can
be used for diagnosis of cardiac diseases and also be used
to identify subjects before granting them medical services.
Recently, ECG biometric recognition has been successfully
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commercialized as products in mobile applications such as
health care and online payment. For example, Nymi wrist-
band [10] is a wearable biometric authentication device that
recognizes unique ECG patterns and interfaces directly with
mobile devices as a replacement for passwords. In 2015,
Linear Dimensions also announced a family of biometric au-
thentication devices including ECG Biolock and ECG opti-
cal wireless mouse [11]. Both devices offer proven security
and will authenticate users by learning their unique biomet-
ric signature in ECG waveform pattern. Prior works on ECG
biometrics can be categorized based on the number of ECG
channels used, the method for feature extraction, and type
of classifier adopted. Of these, ECG as a biometric based
on a single channel is the most studied [3]–[9]. Based on
the features that are extracted from ECG signals, we can
further classify ECG biometrics as either fiducial points de-
pendent [2]–[5] or independent [6]–[9]. Fiducial-based ap-
proaches rely on local features linked to the peak and time
durations of the P-QRS-T waves. On the other hand, non-
fiducial approaches extract statistical features based on the
overall morphology of ECG waveform.

In wireless telecardiology scenarios, compressed ECG
packets are often preferred for efficient transmission and
storage purposes. Most ECG compression methods adopt
one-dimensional (1-D) representation for ECG signals and
focus on the utilization of the intra-beat correlation between
adjacent samples [12]. To better exploit both intra-beat and
inter-beat correlations, 2-D compression algorithms have
been proposed by converting ECG signals into data arrays
and then applying vector quantization [13] or the JPEG2000
image coding standard [14]. Irrespective of the underlying
method used for data compression, compressed ECG im-
poses a new challenge for person identification as most ex-
isting algorithms have implicitly considered that biometric
features are extracted from raw ECG signals [2]–[9]. Full
decompression is then required to convert compressed data
into ECG signals prior to feature extraction. This step is
undesirable in health care systems, as the hospital may have
thousands of enrolled patients and decompression of all their
ECG packets is an enormous amount of work. Thus, there
has been a new focus on biometric techniques which di-
rectly read the compressed ECG to obtain unique features
with good discrimination power. Apart from its advan-
tage of by-passing the full decompression, reduced template
size also enables faster biometric matching compared to
the non-compressed domain approaches. In 2011, Sufi and
Khalil [15] proposed a clustering method for compressed-
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domain ECG biometric using specially designed compres-
sion algorithms. The method starts with the detection of car-
diac abnormality and only the normal compressed ECG data
are used for person identification. It is expected that consid-
ering the ECG as images and then applying the JPEG2000
will lead to better results. As the discrete wavelet transform
(DWT) is an embedded part of the JPEG2000, and DWT it-
self is one of the best features for ECG biometrics [8], [9],
working in DWT domain remains to be the most promising
area for compressed ECG based biometric.

Another problem which requires further investigation
is to test the feasibility of ECG biometrics with diseased
patients in irregular cardiac conditions. Previous works
have shown that ECG biometric problem for healthy per-
sons can be satisfyingly solved with high recognition ac-
curacies, but a much lower accuracy may be achieved for
cardiovascular disease (CVD) patients. This is mainly be-
cause that CVD may cause irrecoverable damage to the heart
and incurs different forms of distorted ECG morphologies.
Recently, there have been initial studies of ECG biomet-
rics for diseased patients with ECG irregularities. Chiu et
al. [9] proposed a DWT-based algorithm and reported over-
all accuracies of 100% and 81% on 35 normal subjects and
10 arrhythmia patients, respectively. Agrafioti and Hatzi-
nakos [16] obtained 96.42% recognition rate using autocor-
relation method when tested on 26 healthy subjects from
two databases and 30 patients with atrial premature contrac-
tion and premature ventricular contraction. Another recent
study [17] indicated that a normalization and interpolation
algorithm can achieve 100% and 90.11% in accuracies on
52 healthy subjects and 91 CVD patients, respectively. The
main purpose of this study is to extract features in a way
that the intra-subject variability is minimized and the inter-
subject variability is maximized.

The rest of this paper is organized as follows. Sec-
tion 2 describes the ECG fundamentals and presents a pre-
processor which converts ECG signals to 2-D images. Also
included is a short overview of the JPEG2000 encoding al-
gorithm. Details of the algorithms for the proposed ECG
biometric system are provided in Sect. 3. Section 4 presents
the experimental results on standard ECG databases for both
healthy and diseased subjects. Finally, Sect. 5 gives our con-
clusions.

2. 2-D ECG Data Compression

2-D ECG data compression algorithms are designed to ex-
ploit both intra-beat and inter-beat correlations of ECG sig-
nals. To begin, we apply a preprocessor which can be
viewed as a cascade of two stages. In the first stage, the
QRS complex in each heartbeat is firstly detected for seg-
menting and aligning 1-D ECG signals to 2-D images and
in the second stage, the constructed ECG images are com-
pressed by the JPEG2000 [18]. Figure 1 shows the block
diagram of the 2-D ECG compression scheme described in
[14].

Fig. 1 Block diagram of the 2-D ECG compression scheme [14].

Fig. 2 Typical ECG waveform in time-domain.

2.1 Signal Preprocessing

ECG itself is 1-D in the time-domain, but can be viewed
as a 2-D signal in terms of its implicit periodicity. Typical
ECG waveform of a heartbeat consists of a P wave, a QRS
complex, and a T wave [19]. The P wave corresponds to the
depolarization of the right and left atria, whereas the T wave
occurs due to ventricular repolarization. The QRS complex
is produced when the ventricles depolarize and squeeze the
blood from the right ventricle to the aorta. The QRS com-
plex is the most characteristic wave in an ECG waveform
and hence, its peak can be used to identify each heartbeat.
As shown in Fig. 2, ECG signals tend to exhibit consid-
erable similarity between adjacent heartbeats, along with
short-term correlation between adjacent samples. Thus, by
dividing ECG signals into segments with lengths equal to
the heartbeats, there should be a large correlation between
individual segments.

2-D ECG compression algorithms generally starts with
a preprocessor which converts 1-D ECG signals into 2-D
images. To begin, ECG signals are band-pass filtered to re-
move various noises such as baseline wander and power-
line interference. Afterwards we apply the Biomedical Sig-
nal Processing Toolbox [20] to detect the R peak of each
QRS complex. Accordingly, ECG signals are divided into
heartbeat segments and each segment is stored as one row
of a 2-D data array. Having constructed the data array as
such, the intra-beat correlation is in the horizontal direction
of the array and the inter-beat correlation is in the vertical
direction. Since the heartbeat segments may have different
lengths, each row of the data array is period normalized to a
fixed length of Np = 200 samples via cubic spline interpola-
tion. This choice was based on the observation that the aver-
age heartbeat length is about 0.8 second, which corresponds
to 200 samples for a sampling frequency of 250 Hz. Note
that the original heartbeat lengths were represented with 9
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Fig. 3 ECG image for a healthy subject.

bits and transmitted as side information. Finally, we pro-
ceed to construct ECG images of dimension Nc × 200 by
gathering together Nc rows of the data array and normaliz-
ing the amplitude of each component to an integer ranging
from 0 to 255. To illustrate this, an example of an ECG im-
age with Nc = 200 is shown in Fig. 3. The constructed gray
scale ECG images are then ready to be further compressed
by the JPEG2000 coding standard.

2.2 JPEG2000 Encoding Algorithm

The JPEG2000 coding standard supports lossy and lossless
compression of grayscale and color imagery. Although the
standard was originally developed for still image compres-
sion [18], its applicability for ECG compression has been
proposed in [14]. Apart from its advanced features in scala-
bility and flexibility, the wavelet-based JPEG2000 also sup-
ports region of interest coding so that different parts of an
image can be coded with different fidelity. As shown in
Fig. 4, the JPEG2000 encoding process consists of several
operations: preprocessing, 2-D DWT, quantization, entropy
coding and bit-stream organization. It begins with a pre-
processor which divides the source image into disjoint rect-
angular regions called tiles. For each tile, the DC level of
image samples is shifted to zero and color space transform
is performed to de-correlate the color information. The 2-D
DWT can be viewed as applying a 1-D DWT decomposi-
tion along the lines then the columns to generate an approxi-
mation subband and three detail subbands oriented horizon-
tally, vertically and diagonally. With respect to the lifting
realization of 1-D DWT [21], prediction and update steps
are performed on the input signal to obtain the detail and the
approximation signals. A multiresolution representation of
the input image over J decomposition levels is obtained by
recursively repeating these steps to the resulting approxima-
tion coefficients.

With J-level wavelet decomposition, the image will
have a total of 3J + 1 subbands, as shown in Fig. 5. To sim-
plify the notation, the subbands S j are numbered from 1 to
3J + 1, with 1 and 3J + 1 corresponding to the top-left and
bottom-right subbands, respectively. Let S j = {s j(m, n), 1 ≤
m ≤ Mj, 1 ≤ n ≤ Nj} represent the j-th subband whose
row and column dimensions are denoted by Mj and Nj with

Fig. 4 Fundamental building blocks of JPEG2000 encoder [18].

Fig. 5 The subband structure for a 3-level, 2-D wavelet decomposition.

j ∈ {1, 2, . . . , 3J + 1}. For each coefficient s j(m, n) located
at position (m, n), a mid-tread uniform quantizer is applied
to obtain an index v j(m, n) as follows:

v j(m, n) = sign[s j(m, n)] ·
⌊ |s j(m, n)|
Δ j

⌋
, (1)

where Δ j denotes the quantizer step size for the j-th sub-
band. A different quantizer is employed for the coefficients
of each subband and therefore, a bit allocation among the
subbands is carried out in order to meet a targeted coding
rate ρ. The last step in JPEG2000 encoding consists in en-
tropy coding of the quantizer indexes with two tier encoders.
The tier-1 encoder employs a context modeling to cluster the
bits of quantizer indexes into groups with similar statistics
in order to improve the efficiency of the arithmetic coder. In
the tier-2 encoder, the output of the arithmetic coder is col-
lected into packets and a bit-stream is generated according
to a predefined syntax.

3. The Proposed ECG Biometric System

Person identification is essentially a pattern recognition
problem consisted of two stages: feature extraction and
classification. Under the JPEG2000 framework, the per-
son identification problem is analogous to a content-based
image retrieval (CBIR) problem. Concerning compressed-
domain biometric techniques, the JPEG2000 code-stream is
subject to partial decoding and then features relating to ECG
morphology are computed directly from the de-quantized
wavelet coefficients. In the classification stage, the query
ECG of an unknown subject will be compared with the en-
rollment database to find a match. The block diagram of the
proposed ECG biometric system is shown in Fig. 6.
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Fig. 6 The proposed ECG biometric system.

3.1 Feature Extraction in DWT Domain

Feature extraction is the first step in applying ECG biomet-
rics to person identification and one that conditions all the
subsequent steps of system implementation. For large image
databases, color, shape and texture features are considered
the most important content descriptors in CBIR problems.
Due to the grayscale nature of ECG images, we only fo-
cus on the texture features that characterize smooth, coarse-
ness and regularity of the specific image. One effective tool
for texture analysis is the DWT as it provides good time
and frequency localization ability. Its multi-resolution na-
ture also allows the decomposition of an ECG image into
different scales, each of which represents particular coarse-
ness of the signal. Furthermore, DWT coefficients can
be obtained without involving a full decompression of the
JPEG2000 code-stream. This is a favorable property as
the inverse DWT and subsequent decoding processes could
impose intensive computational burden. Different texture
features such as energy, significance map, and modelling
of wavelet coefficients at the output of wavelet filter-banks
have been successfully applied to CBIR [22]–[24]. In gen-
eral, any measures that provide some degree of class sep-
aration should be included in the feature set. However, as
more features are added, there is a trade-off between clas-
sification performance and computational complexity. In
this work, three different feature sets derived from the com-
pressed ECG, denoted by FS1, FS2, and FS3, are presented
and investigated.

We began by using the subband energies as a first step
towards an efficient characterization of texture in ECG im-
ages. It has been suggested [22], [23] that the texture content
of images can be represented by the distribution of energy
along the frequency axis over scale and orientation. For each
subband, the de-quantized wavelet coefficients ŝ j(m, n) are
computed as follows:

ŝ j(m, n) = {v j(m, n) + δ · sign[v j(m, n)]} · Δ j, (2)

where δ ∈ [0, 1) is a user defined bias parameter. Although
the value of δ is not normatively specified in the standard, it
is likely that many decoders will use the value of one half.
Then, the energy of subband j is defined as

E j =
1

MjNj

Mj∑
m=1

N j∑
n=1

ŝ2
j (m, n). (3)

The resulting subband energy-based features are used as a

morphological descriptor of ECG signals. Another feature
of interest is the average time elapse between two successive
R peaks, referred to as the RRav. Certain ectopic heartbeats,
such as premature ventricular contraction and atrial prema-
ture beats, are related with premature heartbeats that provide
shorter RR-intervals than other types of ECG signals. Thus,
changes in the RR-interval plays an important role in char-
acterizing the dynamics information around the heartbeats.
Notice that the RRav can be calculated from the heartbeat
lengths which are transmitted as side information along with
the JPEG2000 code-stream. With J-level wavelet decompo-
sition, a total of (3J+2) features are used to form a biometric
identification vector (BIV) of the subject. The BIV used for
the FS1 will be denoted as b(1) = {E1, E2, . . . , E3J+1,RRav}.

The second feature set FS2 is obtained by applying
principal component analysis (PCA) [25] on wavelet coef-
ficients from the lowpass subband S 1. The validity of using
S 1 is supported by the fact that the lowpass subband rep-
resents the basic figure of an image, which features a high
similarity among the ECGs of the same person. In order to
achieve dimension reduction, PCA finds projection vectors
in the directions of highest variability such that the projected
samples retain the most information about the original data
samples. To begin, consider a training dataset consisting of
ECG images of dimension Nc × 200. Let M1 and N1 denote
the row and column dimensions of the lowpass subband S 1

after the wavelet decomposition, respectively. Before apply-
ing the PCA, M1 rows of the subband S 1 are concatenated
to form a wavelet coefficient vector of length M1 × N1, i.e.,
u = {ŝ1(1, 1), ŝ1(1, 2), . . . , ŝ1(M1,N1)}. Then, the mean vec-
tor ū and the covariance matrix Σu are computed using the
training dataset. Following the eigen-decomposition, we ob-
tain an eigenvalue matrix D and its corresponding eigenvec-
tor matrix V with its column vectors sorted in the descend-
ing order of eigenvalues. Finally, the wavelet vector u is
projected on the eigenvectors to obtain the principal compo-
nent vector p = VT(u − ū). In this work, only the first seven
principal components are selected based on containment of
99% of the total variability. Together with the RR-interval,
the BIV for the FS2 is composed of eight features and is
denoted as b(2) = {p(1), . . . , p(7),RRav}. As for the feature
set FS3, it is a combined version of FS1 and FS2 and the
corresponding BIV is denoted as b(3) = {b(1),b(2)}.

3.2 Enrollment and Recognition

Enrollment and recognition are two important stages of the
person identification system. In the enrollment stage, BIVs
of each subject are taken as representations of the subject
and enrolled into a database. In the recognition stage, the
query BIV of an unknown subject is compared with the en-
rollment database to find a match. The recognition perfor-
mance depends on the underlying classifier used for person
identification. First, nearest-neighbor (NN) classifiers are
exploited for testing various feature sets in discriminating
different subjects. The NN classifier tends to search for the
most similar class to a given query BIV with similarity de-
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fined by the normalized Euclidean distance [23].
Another classification approach considered here is the

support vector machine (SVM) which has shown effective in
many pattern recognition problems [26], [27]. This is partly
due to their good generalization capability derived from the
structural risk minimization principle. Since person iden-
tification involves the simultaneous discrimination of sev-
eral subjects, we considered the one-against-one method for
solving multiclass SVM problems [27]. For a K-class prob-
lem, the method constructs K(K − 1)/2 binary SVM clas-
sifiers where each one is trained on the training data from
two classes. Training the binary SVM consists of finding
a separating hyperplane with maximum margin and can be
posed as the quadratic optimization problem. For the t-th
ECG image, suppose that the pair (xt, yt) contains the fea-
ture vector xt ∈ {b(1),b(2),b(3)} and its corresponding class
label yt ∈ {1, 2, . . . ,K}. Given a set of T training data pairs
{(xt, yt), t = 1, 2, . . . ,T } from classes i and j, SVM algo-
rithm can be formulated as the following primal quadratic
optimization problem:

min
wi j,bi j,ξ

i j
t

1
2
||wi j||2 +C

T∑
t=1

ξ
i j
t ,

subject to: (wi j)Txt + bi j ≥ 1 − ξi j
t , if yt = i,

(wi j)Txt + bi j ≤ −1 + ξi j
t , if yt = j,

ξ
i j
t ≥ 0, (4)

where C is a regularization parameter, wi j, bi j and ξi j
t are the

weight vector, bias and slack variable, respectively. Due to
various complexities, a direct solution to minimize the ob-
jective function (4) with respect to wi j is usually avoided. A
better approach is to apply the method of Lagrange multi-
pliers to solve the dual problem as follows:

max
ai j

T∑
t=1

ai j
t −

1
2

T∑
t=1

T∑
t′=1

ai j
t ai j

t′ ytyt′xT
t xt′ ,

subject to:
T∑

t=1

ai j
t yt = 0,

0 ≤ ai j
t ≤ C, (5)

where ai j = (ai j
1 , a

i j
2 , . . . , a

i j
T ) is the vector of Lagrange mul-

tipliers. In this work, the dual problem to SVM learn-
ing is solved using the sequential minimal optimization
method [26]. After obtaining the optimum values of La-
grange multipliers ai j, it is then possible to determine the
corresponding weight vector wi j and the decision function
fi j(xt) as follows:

wi j =

T∑
t=1

ai j
t ytxt, (6)

fi j(xt) = (wi j)Txt + bi j. (7)

Finally, the class label y for a query BIV x of a new subject

is determined based on the max-wins voting strategy [27].
More precisely, each binary SVM casts one vote for its pre-
ferred class and the final result is the class with the highest
vote, i.e.,

y = arg max
i

K∑
j�i, j=1

sign[ fi j(x)]. (8)

4. Experimental Results

Computer simulations were conducted to evaluate the per-
formances of the proposed ECG biometric system for both
healthy and diseased subjects. ECG records from the Phy-
sioNet QT Database [28] were chosen to represent a wide
variety of QRS and ST-T morphologies. First, 10 healthy
subjects that are originally from the MIT-BIH Normal Sinus
Rhythm Database are used in the experiments and denoted
as dataset D1. Subjects that are added to the database to
examine the effects of diseased ECG consist of 10 records
from the MIT-BIH Arrhythmia Database, 10 records from
the MIT-BIH Supraventricular Arrhythmia Database, and 10
records from the Sudden Cardiac Death Holter Database.
For convenience, these three groups of diseased subjects are
denoted as D2, D3, and D4, respectively. Each of these
records is 15 minutes in duration and are sampled at 250 Hz
with a resolution of 11 or 12 bits/sample. The JPEG2000
simulation was run on the open-source software JasPer ver-
sion 1.900.0 [29]. Each ECG image is regarded as a single
tile and the dimension of the code-block is 64 × 64. ECG
images were compressed in lossy mode using Daubechies
9/7 filter with 5-level wavelet decomposition. Besides, the
targeted coding rate ρwas empirically determined to be 0.15
and 0.08 in order to achieve the compression ratio in the re-
gion of 10 and 20, respectively.

A preliminary experiment was first conducted to exam-
ine the performance dependence of 2-D compression on the
number Nc of heartbeats employed in constructing an ECG
image. The system performance is evaluated in terms of the
compression ratio (CR) and the percent root mean square
difference (PRD). The CR is defined as CR = Nori/Ncom,
where Nori and Ncom represent the total number of bits used
to code the original and compressed ECG data, respectively.
The PRD is used to evaluate the reconstruction distortion
and is defined by

PRD(%) =

√∑L
l=1[xori(l) − xrec(l)]2∑L

l=1 xori(l)2
× 100, (9)

where L is the total number of original samples in the record
and xori and xrec represent the original and reconstructed
ECG signals, respectively. Table 1 presents the average re-
sults of CR and PRD for JPEG2000 simulation with coding
rate ρ = 0.15 and ρ = 0.08. As expected, the system yielded
better performance with an increase in the heartbeat num-
ber Nc. However, the increasing delay may limit its prac-
tical applicability as the JPEG2000 must buffer a total of
Nc × 200 samples before it can start encoding. Thus, we
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Table 1 Average CR and PRD (%) performances for JPEG2000 with coding rate ρ = 0.15 and
ρ = 0.08.

Rate ρ = 0.15 Rate ρ = 0.08
Dataset Nc 50 100 150 200 50 100 150 200

D1
CR 12.19 13.45 14.04 14.28 21.62 21.90 21.84 21.84

PRD 3.59 3.19 3.19 3.08 8.72 5.91 5.55 5.55

D2
CR 9.03 9.37 9.49 9.70 16.81 16.92 16.84 16.84

PRD 4.19 3.48 3.36 3.26 11.36 7.95 7.18 7.18

D3
CR 10.07 10.06 10.06 10.61 18.90 19.19 18.87 18.87

PRD 4.53 3.56 3.45 3.18 11.86 8.75 7.99 7.94

D4
CR 10.11 10.23 10.42 10.05 19.11 19.13 19.13 19.13

PRD 4.21 3.32 3.19 3.29 12.35 8.76 7.92 7.92

empirically choose Nc = 200 as the best compromise in the
sequel. Note that while the 2-D compression method works
well for normal ECGs, it may suffer from ECG irregularities
due to the false QRS detection in the preprocessor stage. For
the case of ρ = 0.08 and Nc = 200, the PRD performance
has dropped from 5.55% in the D1 to 7.92% in the D4.

In order to justify the efficiency of the proposed
method, we also analyze the run-time complexity of
JPEG2000 decoder for ECG data. According to the
JPEG2000 coding standard, its full decompression process
can be highlighted as: entropy decoding, dequantization to
obtain the DWT coefficients, and inverse DWT to recon-
struct blocks of pixels. By studying the code execution pro-
files, we can see that the decoder spends most of its time
on the inverse DWT (typically 61.5% or more). By con-
trast, the amount of time consumed by entropy decoding and
de-quantization is about 30.8%. This observation is in ac-
cord with the results for natural and synthetic imagery pro-
duced by the Jasper software implementation, reported ear-
lier [30]. It was found that the execution time breakdown
for the JPEG2000 decoder depends heavily on the particular
image and coding scenarios employed. In the case of loss-
less image compression, tier-1 decoding usually requires the
most time (typically more than 50%), followed by the in-
verse DWT (typically 30–35%), and then tier-2 decoding.
For lossy image compression, as in our case, the inverse
DWT accounts for the vast majority of the decoder’s exe-
cution time (typically 60–80%). The complexity analysis
results demonstrate that the proposed method has the ad-
vantage of by-passing the inverse DWT operation.

The next step is to evaluate the recognition perfor-
mances of NN classifiers on the feature sets FS1 and FS2.
Both feature sets have in common the RRav to provide dy-
namics feature of ECG signals. Morphological features to
be computed for the FS1 are subband energies {E j, 1 ≤
j ≤ 16}, and PCA-based features {p(i), 1 ≤ i ≤ 7} for the
FS2. The system performance is evaluated in terms of the
recognition rate, which is normally defined as the ratio of
the number of correctly identified subjects to the total num-
ber of testing subjects. First of all, the proposed systems
were individually tested on datasets from D1 to D4. Since
ECG records from the QT database may vary in the num-
ber of heartbeats, a total of 4 to 8 ECG images of dimen-
sion 200× 200 would be generated for different individuals.
For a fair assessment, 1000 trials of repeated random sub-

Table 2 Recognition rates (%) of NN classifiers using feature sets FS1
and FS2.

Dataset
JPEG2000 (ρ = 0.15) JPEG2000 (ρ = 0.08)

FS1 FS2 FS1 FS2
D1 96.16 100 95.29 99.98
D2 86.82 91.82 86.73 91.75
D3 91.61 95.62 91.75 95.50
D4 84.50 91.77 83.52 91.91

D1, D2, D3, D4 88.92 95.55 88.85 95.57

sampling were implemented to eliminate possible classifi-
cation biases. In each trial, four compressed ECG images
per subject were randomly selected for feature extraction.
Among them, the first two ECG images are used for training
in the enrollment stage, and the other two are used for testing
in the recognition stage. Table 2 presents the average recog-
nition rates associated with various datasets for JPEG2000
coding with ρ = 0.15 and ρ = 0.08. Compared with the
subband energy-based FS1, the improved performances of
FS2 indicate that morphological features of ECG signals are
better to be exploited in the DWT domain. The results also
show that the recognition performances are affected by ECG
variations caused by cardiovascular diseases. For the case of
FS2 and ρ = 0.15, the recognition rate was 100% for nor-
mal subjects, 91.82% for arrhythmia subjects, 95.62% for
supraventricular arrhythmia subjects, and 91.77% for sud-
den cardiac death subjects. The possible reasons resulting
in a lower recognition rate for diseased subjects could be
unstable QRS-complex that appear aperiodically in ECGs.
It is important to note that the lower value of ρ = 0.08 did
not result in a significant performance degradation. This can
be attributed to the fact that the JPEG2000 supports a lower
coding rate by enlarging the quantizer step sizes within high
frequency subbands. This has little effect on the recognition
performance, as the frequency content of the QRS complex
is most concentrated in low frequency subbands. To elabo-
rate further, we also include in Table 2 the recognition per-
formances for the case where normal and diseased subjects
are jointly enrolled and tested. As the table shows, the ad-
ditional inclusion of 30 diseased subjects has dropped the
recognition rate by 4.45%. The results indicate that the com-
bined use of FS2 and NN classifier is still not robust enough
to handle the inclusion of diseased patients in the database.

Another problem which requires further investigation
is to test the proposed system for the situation where sub-
jects were identified solely by means of DWT-based mor-
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Table 3 Recognition rates (%) of NN classifiers using feature sets FS1
and FS2 without RR-interval.

Dataset
JPEG2000 (ρ = 0.15) JPEG2000 (ρ = 0.08)

FS1 FS2 FS 1 FS2
(no RRav) (no RRav) (no RRav) (no RRav)

D1 95.77 99.73 94.93 99.65
D2 85.61 88.18 85.93 88.40
D3 91.27 95.34 90.84 95.57
D4 80.98 90.20 77.73 89.69

D1, D2, D3, D4 86.32 94.58 86.46 94.56

phological features. The performances of NN classifiers for
FS1 and FS2 without incorporating the RR-interval are sum-
marized in Table 3. A comparison between Table 2 and 3
indicates that the inclusion of RR-interval is likely to help
in discriminating between subjects with greater accuracy.
However, we should state that the issue of whether it is better
to use RR-interval in the ECG biometric does not appear to
be settled and may be problem dependent [5]. Prior works
on ECG biometric [2]–[4], [15] have suggested the use of
the RR-interval as a second source of biometric data to sup-
plement morphological features of ECG signals. However,
almost all these works exploited a database containing ECG
signals in rest conditions, which represents also a limita-
tion for practical issues of biometric systems. Recent stud-
ies [5], [31] have shown that ECG signals acquired in differ-
ent physiological conditions allow for substantial variability
in heart rates, which could significantly impact the perfor-
mance of the biometric system. Continuing this research,
we will address ourselves to the study of robust ECG bio-
metric algorithms utilizing biometric features without the
RR-interval.

We next compare the performances of NN and SVM
classifiers trained on the combined feature set FS3. With 5-
level wavelet decomposition, a total of 24 features are used
to form the FS3, including RRav, {p(i), 1 ≤ i ≤ 7}, and
{E j, 1 ≤ j ≤ 16}. Table 4 gives the recognition perfor-
mances of various datasets using NN and SVM for classi-
fication. With respect to the implementation of SVM clas-
sifiers, the simulation was run on the open-source software
LIBSVM [32], which supports SVM formulations for var-
ious classification problems. The results clearly demon-
strate the improved performances achievable using the FS3
in comparison to those of FS1 and FS2, even with a sim-
ple NN classifier. The main reason for this is that the FS3
features a high similarity among the BIVs of the same per-
son, either healthy or with CVD, but a much lower simi-
larity between two BIVs of different persons. The results
also indicate that the SVM classifiers trained on FS3 are
very effective with 100% recognition rate in all test datasets.
Compared with NN classifier, the SVM shows better gener-
alization ability on the limited training data, which is indeed
the case performed in this study. Also included in the ta-
ble are the performances when 86 ECG records from the
QT database are jointly enrolled and tested. The proposed
system can achieve 99.50% and 99.48% in accuracies for
JPEG2000 compression with ρ = 0.15 and ρ = 0.08, re-
spectively. The results indicate that the combined use of

Table 4 Recognition rates (%) of the feature set FS3 using NN and SVM
classifiers.

Dataset
JPEG2000 (ρ = 0.15) JPEG2000 (ρ = 0.08)

NN SVM NN SVM
D1 100 100 99.99 100
D2 98.99 100 98.93 100
D3 99.85 100 99.99 100
D4 97.37 100 97.44 100

D1, D2, D3, D4 99.09 100 99.15 100
QT database 96.06 99.50 96.15 99.48

Table 5 Recognition rates (%) of the feature sets FS3 with and without
quantization.

Dataset
FS3 FS3 (uncompressed)

NN SVM NN SVM
D1 100 100 100 100
D2 98.99 100 98.89 100
D3 99.85 100 99.91 100
D4 97.37 100 97.39 100

D1, D2, D3, D4 99.09 100 99.11 100
QT database 96.06 99.50 96.09 99.49

Fig. 7 Recognition rates for different ECG image sizes using JPEG2000
with ρ = 0.15.

FS3 and SVM classifier is more invariant to ECG irregular-
ities induced by cardiovascular diseases.

In addition to the above-mentioned schemes, we also
investigated the situation where the feature set FS3 was ex-
tracted using uncompressed data. Toward this end, we re-
peated the same steps as the proposed system, only this time
the DWT coefficients do not go through the quantization but
instead they go directly to the feature extractor for classi-
fication. Table 5 gives the results that compare the case
where morphological features were extracted using quan-
tized DWT coefficients (ρ = 0.15) against the case that was
extracted using uncompressed data. As the table shows, the
quantization does not degrade the accuracy of the proposed
identification system. Finally, we examine how the recog-
nition performance changes as a function of the number of
heartbeats used in constructing an ECG image. The results
are illustrated in Fig. 7 for various image sizes using an NN
classifier and a combined dataset from D1 to D4. Our gen-
eral conclusion is that better performances can be achieved
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with an increase in the heartbeat number Nc, but the perfor-
mance has a tendency to become flattened for Nc ≥ 100.
This would be beneficial for future works on real-time im-
plementation of the proposed ECG biometric systems.

5. Conclusions

This paper proposed a robust method for biometric iden-
tification using wavelet-based features extracted from the
JPEG2000 compressed ECG. Under the JPEG2000 frame-
work, the person identification problem is analogous to
a content-based image retrieval problem. Morphologi-
cal features of ECG signals are derived directly from the
DWT coefficients without involving full decompression of
JPEG2000 bit-stream. Also, dynamic feature such as RR-
interval proved to be beneficial for ECG biometric. Com-
bined performance from both healthy persons and diseased
patients indicate that the proposed system enables faster bio-
metric identification in compressed domain and at the same
time it is more invariant to ECG irregularities induced by
cardiovascular diseases.

It should be noted that the results presented in this
work, while promising, were obtained from a moderate size
of datasets. Also, the experiments were conducted off-line,
using ECG signals collected under controlled conditions
from public databases. In practical applications, however,
a range of issues would require further investigations. First,
the ECG biometric system needs to be tested in more realis-
tic environments, varying with respect to the type and quan-
tity of data collected. Second, the effects of varying mental
and physiological conditions on the recognition accuracy, as
well as the delay induced by JPEG2000 coding also need to
be resolved.
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