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Abstract
The wave equation of TM polarized subwavelength beam propagations in a nonlinear planar waveguide is derived
beyond the paraxial approximation. This modified equation contains more higher-order linear and nonlinear terms than
the nonlinear Schrödinger equation. The propagation of fundamental subwavelength spatial solitons is numerically
studied. It is shown that the effect of the higher nonlinear terms is significant. That is, for the propagation of narrower
beam the modified nonlinear Schrödinger equation is more suitable than the nonlinear Schrödinger equation.
r 2006 Elsevier GmbH. All rights reserved.
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1. Introduction

Spatial solitons which are the balance of the diffrac-
tion and the self-focusing have been studied both
theoretically and experimentally in a nonlinear planar
waveguide [1,2]. Generally, the nonlinear Schrödinger
equation (NLSE) making the paraxial approximation
can describe well the propagation of spatial solitons. If
the beam width of spatial solitons is as narrow as one
wavelength or less, the validity of the paraxial approx-
imation becomes questionable. The full-vector nonlinear
Maxwell’s equations were use to avert this problem [3],
but it is very time consuming. In addition, to enhance
the validity of the wave equation, the modified NLSEs
are presented [4–7]. The additional terms including a
polarization-dependent correction to the soliton propa-
e front matter r 2006 Elsevier GmbH. All rights reserved.
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gation constant were considered, the dynamics of a narrow
spatial soliton with an arbitrary polarization were affected
[4]. The solution of a modified NLSE describing the
electric field for TM mode was found, they analyzed the
effects of those addition terms on the shapes of bright and
dark solitons of TM mode with a fixed polarization [5].
Beyond the paraxial approximation, a modified NLSE
describing the electric field for subwavelength TE solitons
was drived and an analytical solution for the soliton was
found [6]. Very narrow solitons in (1+1)-dimensional and
(2+1) dimensional versions of cubic–quintic and full
saturable models were analyzed [7]. For the solitons of TE
and TM polarizations, it was shown that there is always a
finite minimum of the soliton’s width, and the solitons
cease to exist at a critical value of the propagation
constant, at which their width diverges.

In this paper, we will derive the propagation equation
in a nonlinear planar waveguide by the iteration
method and the order of magnitude method [6,8,9].
The derived equation contains more higher-order linear
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and nonlinear terms than the NLSE. It is different to the
one for the propagation of TE polarized subwavelength
beams [6]. We also numerically study the propagation of
TM polarized subwavelength beams in a nonlinear
planar waveguide. It is found that the fundamental
spatial soliton is not stable due to these higher-order
terms and the effect of the higher nonlinear terms is
significant and must be considered.

2. Derivation of the wave equations

We now derive the wave equation which can describe
the propagation of TM polarized subwavelength beams
in a nonlinear planar waveguide. The electric field E of
the light obeys the vector wave equation

r2E�
o2n2

0

c2
Eþ

o2

c2e0
PNL þ

1

n2
0e0
r r � PNLð Þ ¼ 0 (1)

which follows from the Maxwell equations, where e0 is
the vacuum permittivity, n0 is linear refractive index, o
is the light frequency, c is the velocity of light in vacuum,
and PNL is the third-order nonlinear polarization and
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Here w(3)(o) is the third-order susceptibility, i, j, k and l

refer to the Cartesian components of the fields. In the
following, we will derive the wave equations which
describe the propagations of subwavelength beams in a
nonlinear planar waveguide.

The electric field of the light can be written as

E x; y; zð Þ ¼ x̂Ax x; zð Þ þ ẑAz x; zð Þ½ �F ðyÞ exp ik0zð Þ, (2)

where Ax(x, z) and Az(x, z) are slowly varying amplitude
envelopes; F(y) is the normalized linear eigenfunction of the
mode excited in the nonlinear planar waveguide; k0 ¼ n0o/c
is the propagation constant, n0 is linear refractive index, o is
the light frequency, and c is the velocity of light in vacuum.
The total refractive index is given by n ¼ n0 þ n2jEj

2,
where n2 is the Kerr coefficient and n2 ¼ 3wð3Þxxxx=8n0.
Substituting Eq. (2) into Eq. (1), we obtain
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where g ¼ k0n2/n0. For the weakly guided mode,
|Az|5|Ax|. The relation

Az ¼
i

k0

qAx

qx
� isAx

is obtained from r �D ¼ 0, where D is the electric
displacement. Therefore, Eq. (3a) can be rewritten as
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and Eq. (3b) can be neglected. To normalize Eq. (4), we
make the following transformations:
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where the parameter
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0w
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is the order of the spatial soliton, N ¼ 1 for the
fundamental soliton, w0 ¼ wF/1.763 and wF is the full-
width at the half-maximum (FWHM) of the beam, P0 is
peak power of the incident beam, the parameter s ¼ 1/
(k0w0) ¼ 0.28(l0/wF), l0 ¼ 2p/k0 is the wavelength in the
waveguide, and Ld ¼ k0w

2
0 is the diffraction length. Eq.

(4) can be normalized to
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Then we use the iteration method and the order of
magnitude method to derive the propagation equation
beyond the paraxial approximation. First, a zero order
approximation equation is obtained from Eq. (6)
neglected the q2u=qx2 term,

qu

qx
¼

i
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qZ2
uþ ijuj2u. (7)

which is the well-known NLSE for spatial soliton
propagations. For the first iteration, we differentiate
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Fig. 1. Peak power (dashed curve) and beam width (solid

curve) versus propagation distance simulated by the modified

NLSE for wF ¼ 0.75l0. Dashed-dotted curve is peak power

simulated by the NLSE.
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Eq. (7) with respect to x and obtain
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Substituting Eq. (8) into Eq. (6), we obtain the wave
equation of the first-order approximation
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For the second iteration, we differentiate Eq. (9) with
respect to x and obtain an expression of q2u=qx2 with
higher order terms. Substituting this q2u=qx2 backs into
Eq. (6), we obtain the wave equation of the second-order
approximation with s4 higher-order terms, which is the
same as Eq. (9) up to s2 terms.
3. Solution and discussion

When the same s2-order terms in Eq. (9) are ignored,
Eq. (9) is approximated to NLSE. Surely, the funda-
mental spatial soliton is a solution of one. That is, the
beam will maintain its shape unchanged after propagat-
ing long distance in a nonlinear planar waveguide if the
beam width of spatial soliton is much wider than one
wavelength. However, when the beam width of spatial
soliton is as narrow as one wavelength or less, the
higher-order terms cannot be neglected. To show the
effects of higher-order terms and the necessity of the
modified NLSE, we consider wF ¼ 0.75l0. And, Eq. (9)
is solved by the split-step Fourier method with the initial
condition u(0, Z) ¼ sech(Z). Fig. 1 shows the peak power
and beam width versus propagation distance with and
without higher order terms, respectively. Here z0 is
soliton period, z0 ¼ ðp=2ÞLd. One can see that the
changes of the beam width and the peak power are
very obviously. At the distance of 7Z0, the beam width is
about 1.86wF and the peak power is down to 0.61P0 at
the distance of 6Z0. The changes are due to the effects of
higher-order terms. Comparing to without higher-order
terms, the results are apparently different. In other
words, the propagation of narrower beam must describe
by the modified NLSE containing higher-order terms.
4. Conclusion

In conclusion, we have derived an accurate wave
equation beyond paraxial approximation by the itera-
tive method and the order of magnitude method for the
TM polarized subwavelength optical beam propagation
in a nonlinear planar waveguide. The derived equation
contains higher-order linear and nonlinear terms than
the NLSE. We numerically show that the fundamental
subwavelength spatial soliton cannot maintain any more
due to these higher-order terms. For wF ¼ 0.75l0, the
changes of the beam width and the peak power are very
obviously when the higher-order terms are considered.
In other words, for the propagation of narrower beam,
the modified NLSE is more suitable than the NLSE.
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