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We calculate bosonic open string one-loop massive scattering amplitudes for some low-
lying string states. By using the periodicity relations of Jacobi theta functions, we explicitly
prove an infinite number of one-loop type I stringy Ward identities derived from type I zero-
norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. The
subtlety in the proofs of one-loop type II stringy Ward identities is discussed by comparing
them with those of string-tree cases. High-energy limit of these stringy Ward identities can
be used to fix the proportionality constants between one-loop massive high-energy scattering
amplitudes of different string states with the same momenta. These proportionality constants
cannot be calculated directly from sample calculation as we did previously in the cases of
string-tree scattering amplitudes.

§1. Introduction

Recently it was discovered that1),2) the high-energy limit α′ → ∞ of stringy
Ward identities, or massive gauge invariances, derived from the decoupling of two
types of zero-norm states imply an infinite number of linear relations3) among high
energy scattering amplitudes of different string states with the same momenta. The
calculation was first done for mass levels m2 = 4, 6 and was soon generalized to ar-
bitrary mass levels.4),5) These linear relations can be used to fix the proportionality
constants between high energy scattering amplitudes of different string states alge-
braically at each fixed mass level. These proportionality constants were found to be
independent of the scattering angle φCM and the loop order χ of string perturbation
theory. Thus there is only one independent component of high-energy string scat-
tering amplitudes for each fixed mass level. For the case of string-tree amplitudes, a
general formula can even be given to express all high-energy stringy scattering am-
plitudes at arbitrary mass levels in terms of those of tachyons.1),6) Other approaches
of stringy symmetries can be found in Refs. 7) and 8).

The importance of zero-norm states and their implication on stringy symmetries
were first pointed out in the context of massive σ-model approach of string theory.9)

On the other hand, zero-norm states were also shown10) to carry the spacetime ω∞
symmetry charges of 2D string theory. Some implications of stringy Ward identities
on the scattering amplitudes were also discussed in Ref. 11). All the above zero-norm
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state calculations are independent of the high-energy saddle-point calculations of
Gross and Mende,12) Gross3) and Gross and Manes.13) In fact, the results of saddle-
point calculations by those authors were found1),2),6) to be inconsistent with stringy
Ward identities, which are valid to all energy, and thus could threat the validity
of unitarity of string perturbation theory. A corrected saddle-point calculation was
given in Ref. 6) where the missing terms of the calculation in Refs. 3), 12) and 13)
were identified to recover the stringy Ward identities.

In this paper, we shall first calculate bosonic open string one-loop massive scat-
tering amplitudes for some low-lying string states which were not calculated in the
literature. Bosonic open string tree massive scattering amplitudes were calculated
in Ref. 11), and the tree-level massive gauge invariances were explicitly justified for
the first few mass levels. General tree-level gauge invariances were proved by “the
canceled propagator argument” in the operator approach in Ref. 14). On the other
hand, bosonic closed string one-loop massless scattering amplitudes were calculated
in Ref. 15), and the one-loop modular invariance was justified there. Here we are
aiming to explicitly show the one-loop massive gauge invariances or Ward identities.
High-energy limit of these stringy Ward identities can be used to fix the propor-
tionality constants between one-loop massive high-energy scattering amplitudes of
different string states with the same momenta.

Unlike the string-tree scattering amplitudes, which can be exactly integrated to
calculate their high-energy limit, one-loop scattering amplitudes are not exactly inte-
grable and their high-energy limit are difficult to calculate. Thus the determination
of the proportionality constants between high-energy one-loop scattering amplitudes
relies solely on the algebraic high-energy stringy Ward identities, and cannot be
calculated directly from sample calculation as we did previously1),2) in the cases of
string-tree scattering amplitudes. This is one of the main motivations to explicitly
prove one-loop stringy Ward identities in this paper. In §2 of this paper, we first give
a new proof of tree-level stringy Ward identities, which will be useful for the proof
of one-loop Ward identities in §3. In §3, by using the periodicity relations of Jacobi
theta functions, we will show an infinite number of type I one-loop stringy Ward
identities derived from type I zero-norm states in the old covariant first quantized
(OCFQ) spectrum of open bosonic string. The subtlety in the proofs of one-loop
type II stringy Ward identities will be discussed by comparing them with those of
string-tree cases. The explicit proof of type II one-loop Ward identities seems to be
much more involved and are, presumably, related to more advanced identities of Ja-
cobi theta functions. In §4, high-energy limit of stringy Ward identities will be used
to fix the proportionality constants between one-loop massive high-energy scattering
amplitudes of different string states. These proportionality constants are otherwise
difficult to calculate directly from sample calculation as in the cases of string-tree
scattering amplitudes. We thus have explicitly justify Gross’s conjecture,3) for the
first time, that the proportionality constants between high energy scattering ampli-
tudes are independent of the scattering angle φCM and the loop order χ of string
perturbation theory, at least for χ = 1, 0. A brief conclusion is given in §5.
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§2. A new proof of tree-level stringy Ward identities

For illustration and setting up the notations, let us begin with simple examples
of string tree-level massive scattering amplitudes of the first massive level. For the
string-tree level χ = 1, with one tensor v2 and three tachyons v1,3,4, all scattering
amplitudes of mass level m2 = 2 were calculated in Ref. 11). These are

T µν =
∫ 4∏

i=1

dxi〈eik1X∂Xµ∂Xνeik2Xeik3Xeik4X〉 (1)

=
Γ (− s

2 − 1)Γ (− t
2 − 1)

Γ (u
2 + 2)

[t/2(t/2 + 1)kµ
1k

ν
1

−2(s/2 + 1)(t/2 + 1)k(µ
1 k

ν)
3 + s/2(s/2 + 1)kµ

3k
ν
3 ], (2)

T µ =
∫ 4∏

i=1

dxi〈eik1X∂2Xµeik2Xeik3Xeik4X〉 (3)

=
Γ (− s

2 − 1)Γ (− t
2 − 1)

Γ (u
2 + 2)

[−t/2(t/2 + 1)kµ
1 − s/2(s/2 + 1)kµ

3 ], (4)

where s = −(k1 + k2)2, t = −(k2 + k3)2 and u = −(k1 + k3)2 are the Mandelstam
variables. In deriving Eqs. (2) and (4), we have made the SL(2, R) gauge fixing and
restricted to the s−t channel of the amplitudes by choosing x1 = 0, 0 � x2 � 1, x3 =
1, x4 = ∞.

In the OCFQ spectrum of open bosonic string theory, the solutions of physical
states conditions include positive-norm propagating states and two types of zero-
norm states. The latter are14)

Type I : L−1 |x〉 , where L1 |x〉 = L2 |x〉 = 0, L0 |x〉 = 0; (5)

Type II :
(
L−2 +

3
2
L2
−1

)
|x̃〉 , where L1 |x̃〉 = L2 |x̃〉 = 0, (L0 + 1) |x̃〉 = 0. (6)

Equations (5) and (6) can be derived from Kac determinant in conformal field theory.
While type I states have zero-norm at any spacetime dimension, type II states have
zero-norm only at D=26. In the first quantized approach of string theory, the stringy
on-shell Ward identities are proposed to be11) (for simplicity we choose four-point
amplitudes in this paper)

Tχ(ki) = g2−χ
c

∫
Dgαβ

N DXµ exp

(
− α′

2π

∫
d2ξ

√
ggαβ∂αX

µ∂βXµ

)
4
Π

i=1
vi(ki) = 0, (7)

where at least one of the 4 vertex operators corresponds to the zero-norm state so-
lution of Eq. (5) or (6). In Eq. (7) gc is the closedstring coupling constant, N is
the volume of the group of diffeomorphisms and Weyl rescalings of the worldsheet
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metric, and vi(ki) are the on-shell vertex operators with momenta ki. The inte-
gral is over orientable open surfaces of Euler number χ parametrized by moduli −→m
with punctures at ξi. For the first massive level, m2 = 2, there are two zero-norm
states, and the corresponding string tree-level χ = 1 Ward identities were explicitly
calculated to be11)

kµθνT µν + θµT µ = 0, (8)(
3
2
kµkν +

1
2
ηµν

)
T µν +

5
2
kµT µ = 0, (9)

where θν is a transverse vector. In Eqs. (8) and (9), we have chosen, say, v2(k2) to
be the vertex operators constructed from zero-norm states and kµ ≡ k2µ. Note that
Eq. (8) is the type I Ward identity while Eq. (9) is the type II Ward identity which
is valid only at D = 26.

The proof of the decoupling theorem at string-tree amplitudes for general mass
levels, without explicit calculations of massive scattering amplitudes, has been demon-
strated in Ref. 14), where cyclic symmetry is used to show that both types of zero-
norm states decouple from the on-shell correlation functions. Unfortunately, both
approaches in Refs. 7) and 10) only work for string tree amplitudes, and one can-
not extend similar arguments to stringy amplitudes at loop levels. For this reason,
it is instructive to give a new proof of the decoupling of zero-norm states for the
string-tree amplitudes. As we will see soon that the essential features of this new
proof will be maintained in our proof for the decoupling theorem at one-loop level.
Also this new proof illustrates some subtle features associated with the proof of the
decoupling theorem for type II zero-norm states.

Our strategy for proving the decoupling theorem is to rewrite the stringy ampli-
tudes as an integral of worldsheet total derivatives, and the boundary terms vanish
due to the special properties of the string propagator. Taking the massless state in
open bosonic string theory as an example

T µ ≡
∫ 4∏

i=1

dxi〈eik1X∂Xµeik2Xeik3Xeik4X〉, (10)

k2µT µ =
∫ 1

0
dx x(1,2)(1 − x)(2,3)

[(1, 2)
x

− (2, 3)
1 − x

]
=
∫ 1

0
dx

∂

∂x
[x(1,2)(1 − x)(2,3)]

= [x(1,2)(1 − x)(2,3)]|10 = 0. (11)

Notice that we have introduced a convention for inner products among external
momenta, e.g., (1, 2) ≡ k1 · k2. This derivation has employed the SL(2, R) gauge
fixing to reduce the four point integrations into a single integral, and we list only the
s − t channel of the scattering amplitude. However, it should be easy to generalize
our derivation to the case without doing this SL(2, R) fixing. In particular, for the
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one-loop open string amplitudes the residual gauge symmetry is a U(1) symmetry,
thus we cannot fix the positions of vertex operators (three out of four) as in the case
of tree amplitudes. Still, as we shall show later, the total derivative argument can
be applied at the one-loop level, at least in the case of type I zero norm state.

The fact that scattering amplitudes containing a vertex operator of the massless
zero-norm state can be expressed as an integral of total derivative should come as
no surprise, since the vertex operator for m2 = 0 zero-norm state can be written as
a worldsheet total derivative,

v(k, ζ = k) = k · ∂X expikX = −i∂(expikX), (12)

where the partial derivative means derivative with respect to the worldsheet time
variable. Indeed, according to Eq. (5), all type I zero-norm states are generated
by the L−1 Virasoro generator, which is a partial derivative on the holomorphoic
coordinate of string worldsheet.

To illustrate this point further for the cases of massive scattering amplitudes,
let us work out the case for type I singlet zero-norm state at m2 = 4. The stringy
Ward identity associated with this state is,(17

4
kµkνkλ +

9
2
kµηνλ

)
T (µνλ) + (21kµkν + 9ηµν)T (µν) + 25kµT µ = 0, (13)

where we have defined the m2 = 4 scattering amplitudes as

T µνλ ≡
∫ 4∏

i=1

dxi〈eik1X∂Xµ∂Xν∂Xλeik2Xeik3Xeik4X〉, (14)

T (µν) ≡
∫ 4∏

i=1

dxi〈eik1X∂X(µ∂2Xν)eik2Xeik3Xeik4X〉, (15)

T µ ≡
∫ 4∏

i=1

dxi〈eik1X∂3Xµeik2Xeik3Xeik4X〉. (16)

After some algebraic manipulations, we can rewrite the sum of the left-hand side of
Eq. (13) as an integral∫ 1

0
dx

[17
4
∂3

∂x3
M0,0 −

33
4
∂2

∂x2
M1,0 +

33
4
∂2

∂x2
M0,1 +

3
4
((1, 2) + (2, 3))

∂

∂x
M1,1

+
3
4
∂

∂x
M2,0 − 9

∂

∂x
M1,1 +

3
4
∂

∂x
M0,2

]
= 0. (17)

Here we have introduced a notation for the factor in the stringy amplitudes

Mp,q ≡ x(1,2)−p(1 − x)(2,3)−q. (18)

Based on these observations and the fact that all type I zero-norm states can be
written as a worldsheet total derivative, one can easily extend our proof to all type
I zero-norm states, and conclude that all stringy scattering amplitudes for a type I
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zero-norm state and any other physical states can be written as integrals of world-
sheet total derivatives and thus vanish due to the boundary conditions.

Having shown that one can use the total derivative argument to prove decoupling
theorem for type I zero-norm states, one natural question is that whether we can use
the same trick to prove the decoupling theorem for type II zero-norm states. As we
have emphasized before,1),2) the decoupling of type II zero-norm states is of crucial
importance for demonstrating linear relations between stringy scattering amplitudes
at high energies. Nevertheless, given the definition of type II zero-norm states,
Eq. (6), it can be shown that, in general, type II zero-norm states cannot be written
as worldsheet total derivatives, thus our proof for type I zero-norm states seems need
to be modified. Fortunately, a detailed investigation shows that, at least in the case
of tree amplitudes, one can still express the stringy amplitudes associated with type
II zero-norm states as integrals of total derivatives, and the boundary terms vanish
as before. For instance, at first massive level, −k2 = m2 = 2, we have one singlet
type II zero-norm state,[(3

2
kµkν +

1
2
ηµν

)
αµ
−1α

ν
−1 +

5
2
kµα

µ
−2

]
|0, k〉. (19)

The amplitude of this state with three tachyons can be written as∫ 1

0
dx
{3

2
∂2

∂x2
M0,0 +

∂

∂x
[M0,1 −M1,0]

}
=

3
2
∂

∂x
M0,0|10 + [M0,1 −M1,0]|10 = 0. (20)

At the second massive level, m2 = 4, we have two vector zero-norm states, D1 and
D2, which we chose to be linear combinations of the original type I and type II vector
zero-norm states, and the stringy Ward identities associated with them are11)(5

2
kµkνθλ + ηµνθλ

)
T (µνλ) + 9kµθνT (µν) + 6θµT µ = 0, (21)(1

2
kµkνθ

′
λ + 2ηµνθ

′
λ

)
T (µνλ) + 9kµθ

′
νT [µν] − 6θ′µT µ = 0. (22)

The amplitudes of these states with three tachyons can be written as∫ 1

0
dx

{
(θ · k1)

[5
2
∂2

∂x2
M1,0 −

3
2
∂

∂x
M2,0 + 2

∂

∂x
M1,1

]
+(θ · k3)

[
− 5

2
∂2

∂x2
M0,1 −

3
2
∂

∂x
M0,2 + 2

∂

∂x
M1,1

]}
= 0, (23)

∫ 1

0
dx

{
(θ′ · k1)

[1
2
∂2

∂x2
M1,0 +

3
2
∂

∂x
M2,0 + 4

∂

∂x
M1,1

]
+(θ′ · k3)

[
− 1

2
∂2

∂x2
M0,1 +

3
2
∂

∂x
M0,2 + 4

∂

∂x
M1,1

]}
= 0. (24)

Notice that in these derivations, one needs to use momentum conservation and on-
shell conditions for vertex operators. Instead of scattering with three tachyons, the
derivation here can be generalized to arbitrary three string states.
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In the next section, we shall extend the total derivative argument of our proof
for the string-tree amplitudes in this section to the string one-loop amplitudes, where
subtlety arises for the calculation of type II zero-norm Ward identities.

§3. One-loop stringy Ward identities

It is believed that the decoupling of zero-norm states in string theory, or the
stringy Ward identities, should hold true for all loop orders in string perturbation
theory. Nevertheless, a mathematical proof of this assertion is non-existent and,
as we will see soon, our investigation shows some subtleties associated with the
proof of the decoupling theorem for type II zero-norm states. To begin with, we
first discuss the decoupling theorem of type I zero-norm state at one-loop level, the
stringy amplitude for one massless zero-norm state scatters with three tachyons is
calculated to be

Tµ = g4

∫ 4∏
i=1

dxi〈∂Xµe
ik1Xeik2Xeik3Xeik4X〉, (25)

kµ
1 · Tµ = −g4

∫ 1

0

dω

ω2

∫ 1

ρ2

dρ1

ρ1

∫ 1

ρ3

dρ2

ρ2

∫ 1

ω

dρ3

ρ3
f(ω)−24

(−2π
lnω

)13

ψ
(1,2)
12 ψ

(1,3)
13 ψ

(1,4)
14 ψ

(2,3)
23 ψ

(2,4)
24 ψ

(3,4)
34 [(1, 2)η12 + (1, 3)η13 + (1, 4)η14], (26)

where g is the open string coupling constant. Here we follow the notations of Green,
Schwarz and Witten,10) and the one-loop open string propagator is given by

lnψrs ≡ lnψ(csr, ω) = 〈Xµ(ρr)Xν(ρs)〉, (27)

where

lnψ(c, ω) = −1
2

ln c+
ln2 c

2 lnω
−

∞∑
m=1

cm + (ω/c)m − 2ωm

m(1 − ωm)
. (28)

Here ρr, ω and csr are related to the worldsheet time coordinates τ1, τ2, etc., as
follows:

ρr ≡ e−(τ1+τ2+....+τr), r = 1, 2, 3, 4; ω ≡ ρ4; csr ≡ ρs

ρr
. (29)

In Eq. (28), the ψ function can be recasted in terms of the Jacobi θ function

ψ(ρ, ω) =
1 − ρ
√
ρ

exp
( ln2 ρ

2 lnω

) ∞∏
n=1

(1 − ωnρ)(1 − ωn/ρ)
(1 − ωn)2

(30)

= −2πie−iπν2/τ θ1(−ν/τ)| − 1/τ)
θ′1(0| − 1/τ)

, (31)

where the Jacobi θ1 function satisfies the important periodicity relations

θ1(ν + 1|τ) = −θ1(ν|τ), (32)
θ1(ν + τ |τ) = −e−iπτ−2iπνθ1(ν|τ), (33)
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and ν and τ are defined to be

ν ≡ ln ρ
lnω

, τ ≡ − 2πi
lnω

. (34)

For the calculations of massive scattering amplitudes, we also need the following
expressions which can be obtained by taking higher derivatives of one-loop string
propagator lnψ in Eq. (28)

η(crs, ω) =
〈
∂

∂τr
Xµ(ρr)Xµ(ρs)

〉
(35)

= csr
∂

∂csr
lnψ(csr, ω), (36)

where

η(c, ω) = −1
2

+
( ln c

lnω

)
− c

1 − c
+

∞∑
n=1

(
ωn/c

1 − ωn/c
− cωn

1 − cωn

)
; (37)

and

Ω(crs, ω) =
〈
− ∂2

∂τ2
r

Xµ(ρr)Xν(ρs)
〉

(38)

= −csr
∂

∂csr
η(csr, ω), (39)

where

Ω(c, ω) = −
( 1

lnω

)
+

c

(1 − c)2
+

∞∑
n=1

(
ωn/c

(1 − ωn/c)2
+

cωn

(1 − cωn)2

)
. (40)

Due to the residual conformal symmetry U(1) of the one-loop open string world-
sheet, in addition to the moduli parameter ω, there are three points of vertex oper-
ators we need to integrate over for a four-point scattering amplitude, and we have
chosen the first vertex operator corresponding to the zero-norm state. To calculate
the one-loop Ward identity for the massless zero-norm state, we make the following
observation. Taking the first term in the square bracket of Eq. (26) as an example,
we can rewrite

(1, 2)ψ(1,2)
12 η12 = (1, 2)ψ(1,2)−1

12

∂

∂ ln c21
ψ12

=
∂

∂ ln c21
ψ

(1,2)
12

= − ∂

∂ ln ρ1
ψ

(1,2)
12 = −ρ1

∂

∂ρ1
ψ

(1,2)
12 . (41)

Similarly, the next two terms in the square bracket of Eq. (26) can be rewritten as a
partial derivative acting on ψ(1,3)

13 and ψ(1,4)
14 with respect to the variable ρ1. Putting
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them all together, we get

kµ
1 · Tµ = g4

∫ 1

0

dω

ω2

∫ 1

ρ2

dρ1

ρ1

∫ 1

ρ3

dρ2

ρ2

∫ 1

ω

dρ3

ρ3
f(ω)−24

(−2π
lnω

)13

ρ1
∂

∂ρ1
[ψ(1,2)

12 ψ
(1,3)
13 ψ

(1,4)
14 ψ

(2,3)
23 ψ

(2,4)
24 ψ

(3,4)
34 ]. (42)

Now, we can perform the integration by parts for the variable ρ1, and rewrite the
integral as two surface terms

kµ
1 · Tµ = g4

∫ 1

0

dω

ω2

∫ 1

ρ3

dρ2

ρ2

∫ 1

ω

dρ3

ρ3
f(ω)−24

(−2π
lnω

)13

[ψ(1,2)
12 ψ

(1,3)
13 ψ

(1,4)
14 ψ

(2,3)
23 ψ

(2,4)
24 ψ

(3,4)
34 ]|1ρ2

. (43)

However, both terms vanish due to the periodicity properties of the ψ function, or
Eqs. (32) and (33) of the Jacobi θ1 function. For the upper limit ρ1 = 1, we have

ψ14|ρ1=1 = ψ
( ω
ρ1
, ω
)
|ρ1=1 = ψ(ω, ω) = ψ(1, ω) = 0. (44)

On the other hand, for the lower limit ρ1 = ρ2, we have

ψ12|ρ1=ρ2 = ψ
(ρ2

ρ1
, ω
)
|ρ1=ρ2 = ψ(1, ω) = 0. (45)

Again, we have assumed that both (1, 2) ∼ − s
2 and (1, 4) ∼ − t

2 are positive num-
bers, and have extended the decoupling theorem to physical region via analytical
continuation, as we have done in the proof for tree amplitudes.

The Ward identity, Eqs. (43)–(45), corresponding to the massless zero-norm
state serves as a typical example of one-loop decoupling theorem for type I zero-
norm state. We can follow the similar procedure and calculate the one-loop Ward
identity for m2 = 2 vector zero-norm state

(θµk1να
µ
−1α

ν
−1 + θµα

µ
−2)|0, k1〉, −k2

1 = m2 = 2. (46)

First of all, we define the following one-loop amplitudes

T µν ≡ g4

∫ 4∏
i=1

dxi〈∂Xµ∂Xνeik1Xeik2Xeik3Xeik4X〉, (47)

T µ ≡ g4

∫ 4∏
i=1

dxi〈∂2Xµeik1Xeik2Xeik3Xeik4X〉. (48)

These amplitudes are calculated to be

θµkν
1Tµν = g4

∫ 1

0

dω

ω2

∫ 1

ρ2

dρ1

ρ1

∫ 1

ρ3

dρ2

ρ2

∫ 1

ω

dρ3

ρ3
f(ω)−24

(−2π
lnω

)13

×ψ(1,2)
12 ψ

(1,3)
13 ψ

(1,4)
14 ψ

(2,3)
23 ψ

(2,4)
24 ψ

(3,4)
34
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×
{
(θ · k2)[(1, 2)η2

12 + (1, 3)η12η13 + (1, 4)η12η14]

+(θ · k3)[(1, 3)η2
13 + (1, 2)η12η13 + (1, 4)η13η14]

+ (θ · k4)[(1, 4)η2
14 + (1, 2)η12η14 + (1, 3)η13η14]

}
, (49)

θµ · Tµ = −g4

∫ 1

0

dω

ω2

∫ 1

ρ2

dρ1

ρ1

∫ 1

ρ3

dρ2

ρ2

∫ 1

ω

dρ3

ρ3
f(ω)−24

(−2π
lnω

)13

×ψ(1,2)
12 ψ

(1,3)
13 ψ

(1,4)
14 ψ

(2,3)
23 ψ

(2,4)
24 ψ

(3,4)
34

×[(θ · k2)Ω12 + (θ · k3)Ω13 + (θ · k4)Ω14]. (50)

Based on the same trick in Eqs. (41)–(45), we can now combine these results to
obtain

θµkν
1Tµν + θµTµ = g4

∫ 1

0

dω

ω2

∫ 1

ρ2

dρ1

ρ1

∫ 1

ρ3

dρ2

ρ2

∫ 1

ω

dρ3

ρ3
f(ω)−24

(−2π
lnω

)13

× ∂

∂ ln ρ1
{ψ(1,2)

12 ψ
(1,3)
13 ψ

(1,4)
14 ψ

(2,3)
23 ψ

(2,4)
24 ψ

(3,4)
34

×[(θ · k2)η12 + (θ · k3)η13 + (θ · k4)η14]}. (51)

It can then be shown that, upon integration by parts, Eq. (51) vanishes due to the
periodicity properties Eqs. (32)–(33) of the Jacobi θ1 function.

To calculate the one-loop stringy Ward identity for the type II zero-norm state
at m2 = 2, we first decompose the combination of stringy amplitudes into two terms(3

2
kµkν +

1
2
ηµν

)
T µν +

5
2
kµT µ =

3
2
[kµkνT µν + kµT µ] +

[1
2
ηµνT µν + kµT µ

]
. (52)

The first term in the decomposition can be expressed as an integral of a worldsheet
total derivative as following

(I) ≡ 3
2
[kµkνT µν + kµT µ]

=
3
2
g4

∫ 1

0

dω

ω2

∫ 1

ρ2

dρ1

ρ1

∫ 1

ρ3

dρ2

ρ2

∫ 1

ω

dρ3

ρ3
f(ω)−24

(−2π
lnω

)13

×ψ(1,2)
12 ψ

(1,3)
13 ψ

(1,4)
14 ψ

(2,3)
23 ψ

(2,4)
24 ψ

(3,4)
34

×
{
(1, 2)2η2

12 + (1, 3)2η2
13 + (1, 4)2η2

14

+2(1, 2)(1, 3)η12η13 + 2(1, 2)(1, 4)η12η14 + 2(1, 3)(1, 4)η13η14

− (1, 2)Ω1,2 − (1, 3)Ω1,3 − (1, 4)Ω1,4}

=
3
2
g4

∫ 1

0

dω

ω2

∫ 1

ρ2

dρ1

ρ1

∫ 1

ρ3

dρ2

ρ2

∫ 1

ω

dρ3

ρ3
f(ω)−24

(−2π
lnω

)13

× ∂2

∂ ln ρ2
1

[ψ(1,2)
12 ψ

(1,3)
13 ψ

(1,4)
14 ψ

(2,3)
23 ψ

(2,4)
24 ψ

(3,4)
34 ]. (53)

The second term on the right-hand side of Eq. (52) can be further decomposed into
two pieces
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(II) ≡ 1
2
ηµνT µν + kµT µ

= g4

∫ 1

0

dω

ω2

∫ 1

ρ2

dρ1

ρ1

∫ 1

ρ3

dρ2

ρ2

∫ 1

ω

dρ3

ρ3
f(ω)−24

(−2π
lnω

)13

×[ψ(1,2)
12 ψ

(1,3)
13 ψ

(1,4)
14 ψ

(2,3)
23 ψ

(2,4)
24 ψ

(3,4)
34 ]

×
{k2

2

2
η2
12 +

k2
3

2
η2
13 +

k2
4

2
η2
14 + (2, 3)η12η13 + (2, 4)η12η14 + (3, 4)η13η14

−(1, 2)Ω1,2 − (1, 3)Ω1,3 − (1, 4)Ω1,4

}
(54)

= g4

∫ 1

0

dω

ω2

∫ 1

ρ2

dρ1

ρ1

∫ 1

ρ3

dρ2

ρ2

∫ 1

ω

dρ3

ρ3
f(ω)−24

(−2π
lnω

)13

× ∂

∂ ln ρ1

{
ψ

(1,2)
12 ψ

(1,3)
13 ψ

(1,4)
14 ψ

(2,3)
23 ψ

(2,4)
24 ψ

(3,4)
34 [η1,2 + η1,3 + η1,4]

}
+∆, (55)

where the extra piece ∆ in Eq. (55) is given by

∆ ≡ g4

∫ 1

0

dω

ω2

∫ 1

ρ2

dρ1

ρ1

∫ 1

ρ3

dρ2

ρ2

∫ 1

ω

dρ3

ρ3
f(ω)−24

(−2π
lnω

)13

×[ψ(1,2)
12 ψ

(1,3)
13 ψ

(1,4)
14 ψ

(2,3)
23 ψ

(2,4)
24 ψ

(3,4)
34 ]

×
{
(1 + (1, 2))(η2

12 −Ω12) + (1 + (1, 3))(η2
13 −Ω13) + (1 + (1, 4))(η2

14 −Ω14)
}
.

(56)

From the expressions above, one sees that while piece (I) can be written as an integral
of a worldsheet total derivative, piece (II) fails to be an integral of a worldsheet total
derivative. Consequently, it seems that we cannot apply the integration by parts to
show the total amplitudes to be zero.

One might be curious about the difference between string-tree and one-loop cal-
culations, and wonders why the simple total derivative argument cannot be applied
at one-loop level. To see this, we replace the one-loop string propagator lnψ by the
tree level propagator ln(x1 − x2) in Eq. (56). The derivatives of the one-loop string
propagator become η = 1

x1−x2
and Ω = 1

(x1−x2)2
respectively. After making these

replacements, the extra terms in piece (II) , which are proportional to η2−Ω, vanish
identically.

Another observation is that in our proofs of type I one-loop Ward identities,
the vanishings of Eqs. (43) and (51) are valid for all values of moduli parameter ω.
That means one need not do the ω integration to prove the type I Ward identities.
On the contrary, it may happen that an explicit ω integration is needed in order to
prove the type II Ward identities. If this is the case, the proof of closed string type II
Ward identities will be closely related to the SL(2, Z) modular invariance of one-loop
massive scattering amplitudes on torus. Although the proofs of modular invariance of
bosonic closed string one-loop massless scattering amplitudes were given in Ref. 15)
as we have mentioned in §1, the proofs for the massive cases are still lacking. It is
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thus of interest to see the relations between type II one-loop Ward identities and the
one-loop modular invariance of massive stringy scattering amplitudes.

§4. High energy limit of stringy Ward identities

The proof of stringy Ward identities for both types of zero-norm states at one-
loop level is not only of interest for demonstrating one-loop stringy gauge invariances,
but also important in extracting the high energy behavior of one-loop scattering am-
plitudes. As we have shown in the previous works1),2) that, by taking high energy
limit of these Ward identities, one can obtain linear relations among scattering ampli-
tudes of different string states with the same momenta. In particular, we can exactly
determine the proportionality constants between high energy scattering amplitudes
of different string states algebraically without any integration.

For the cases of string-tree scattering amplitudes, which can be exactly inte-
grated to calculate their high-energy limits, these proportionality constants have
been explicitly calculated through a set of sample calculations and were found to
agree with the algebraic calculations based on the stringy Ward identities. For the
cases of string one-loop scattering amplitudes, however, exact integrations for the
sample calculations are not possible and their high-energy limit are difficult to calcu-
late. Thus the determination of the proportionality constants between high-energy
one-loop scattering amplitudes relies solely on the algebraic high-energy stringy Ward
identities. This is one of the main motivations to explicitly prove one-loop stringy
Ward identities in this paper.

To illustrate this point in a more concrete way, we shall use the simplest case as
an example. We first discuss the string-tree case. At the first massive level m2 = 2,
we have two string-tree Ward identities, Eqs. (8) and (9), which have been proved by
various methods discussed in §2. In order to take high energy limits of these Ward
identities, we need to define the following orthonormal polarization vectors for the
second string vertex v2(k2)

eP =
1
m2

(E2, k2, 0) =
k2

m2
, (57)

eL =
1
m2

(k2, E2, 0), (58)

eT = (0, 0, 1) (59)

in the CM frame contained in the plane of scattering. In the high energy limit, we
define the following projections of stringy amplitudes

T αβ ≡ eα
µe

β
ν · T µν , α, β = P,L, T, (60)

T α ≡ eα
µ · T µ, α, β = P,L, T, (61)

where T αβ and T α are defined similarly as in Eqs. (1) and (3), except that v1,3,4 can
now be any string vertex and we have conventionally put the zero-norm state at the
second vertex. After taking the high energy limit of the stringy Ward identities and
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identifying T ··P ·· = T ··L·· in Eq. (9),6) Eqs. (8) and (9) reduce to
√

2T 3→1
TP + T 1

T = 0, (62)√
2T 4→2

LL + T 2
L = 0, (63)

6T 4→2
LL + T 2

TT + 5
√

2T 2
L = 0. (64)

In the above equations, we have denoted the naive power counting for orders in
energy1),2) in the superscript of each amplitude according to the following rules,
eL · k ∼ E2, eT · k ∼ E1. Note that since T 1

TP is of subleading order in energy, in
general T 1

TP �= T 1
TL. A simple calculation of Eqs. (62)–(64) shows that

T 1
TP : T 1

T = 1 : −
√

2, (65)

T 2
TT : T 2

LL : T 2
L = 4 : 1 : −

√
2. (66)

It is interesting to see that, in addition to the leading order amplitudes in Eq. (66),
the subleading order amplitudes in Eq. (65) are also proportional to each other. This
does not seem to happen at higher mass level.2) Since the proportionality constants
in Eqs. (65) and (66) are independent of particles chosen for vertex v1,3,4, we will
choose them, for example, to be tachyons to do the sample calculation. The string-
tree level calculations by both energy expansion method1),2) and the saddle-point
method6) give the same results

T 1
T = 4E5 sinφCMT (2) = −

√
2T 1

TP , (67)
T 2

TT = 4E6 sin2 φCMT (2) = 4T 2
LL = −2

√
2T 2

L , (68)

where T (2) = −1
4

√
πE−5(sin φCM

2 )−3(cos φCM
2 ) exp(−s ln s+t ln t−(s+t) ln(s+t)

2 ). Equa-
tions (67) and (68) agree with Eqs. (65) and (66) respectively as expected. We have
also checked that T 1

TP �= T 1
TL.

We now discuss the string one-loop case. The calculations of Eqs. (57)–(66) go
through except that we have no sample calculations, Eqs. (67) and (68), for the string
one-loop case. This is due to the fact that exact integrations, apart from numerical
calculations, for the one-loop amplitudes, Eqs. (49) and (50), are not possible and
their high-energy limits are difficult to calculate. Also, the string one-loop saddle-
point calculations of Refs. 3), 12) and 13) are not reliable.1),2),6) For example, the
calculation of Ref. 13) predicts T 2

LL to be of the subleading order in energy compared
to T 2

TT , which obviously violates the high-energy stringy Ward identity Eq. (66).
Thus, the one-loop stringy Ward identities calculations become, so far, the only way
to determine the one-loop proportionality constants in Eqs. (65) and (66). This is
one of the main motivations to prove one-loop stringy Ward identities in this paper
as we have stressed before.

Notice that Eq. (65) is obtained from the high energy one-loop Ward identity for
type I zero-norm state, Eq. (51), which has been proved in the previous section. The
validity of Eq. (66), or Eqs. (63) and (64), however, relies on the proof of high energy
one-loop Ward identities for both Type I and Type II zero-norm states, Eqs. (51)
and (52). Unfortunately, we are not able to explicitly prove Eq. (52) at this moment.
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Thus, strictly speaking, only Eq. (65) is rigorously proved at one-loop level but not
Eq. (66). Equation (65) is our first example to explicitly justify Gross’s conjecture3)

that the proportionality constants between high energy scattering amplitudes are
independent of the scattering angle φCM and the loop order χ of string perturbation
theory, at least for χ = 1, 0. Equation (65) is remarkable in the sense that although
both T 1

TL and T 1
T are not one-loop exactly calculable, they are indeed proportional

to each other and the ratio of them is determined by the one-loop stringy Ward
identity, Eq. (51). While a complete proof of one-loop decoupling theorem for type
II zero-norm states might require sophisticated use of non-trivial identities of Jacobi
theta functions, the validity of these type II stringy Ward identities should be a rea-
sonable consequence from stringy gauge symmetries and the unitarity of the theory.
Thus, even though one cannot exactly integrate Eqs. (49) and (50), we do believe
that these one-loop scattering amplitudes are proportional to each other in the high
energy limit, and the proportionality constants can be determined exactly by simple
algebraic means. This simple example of one-loop m2 = 2 amplitudes calculations
serve as an illustrative example for the power of zero-norm state approach,1),2),6)

and can be generalized to higher massive levels and higher genus amplitudes.

§5. Summary and conclusion

In this paper, we have studied one-loop massive scattering amplitudes and their
associated Ward identities in bosonic open string theory. A new proof of the de-
coupling of two types of zero-norm states at string-tree level is given which allows
us to express the scattering amplitudes containing zero-norm states as integrals of
worldsheet total derivatives. Based on the explicit one-loop calculations of four-
point scattering amplitudes for some low-lying massive string states, we show that
the same technique for proving string-tree level Ward identities can be generalized to
the case of type I zero-norm states. However, the one-loop Ward identities for type
II zero-norm states cannot be proved in the same way. The subtlety in the proofs of
one-loop type II stringy Ward identities are discussed by comparing them with those
of string-tree cases. Finally, as an example, high-energy limit of m2 = 2 stringy
Ward identities are used to fix the proportionality constants between one-loop mas-
sive high-energy scattering amplitudes at mass level m2 = 2. It is interesting to see
that, in addition to the leading order amplitudes, the subleading order amplitudes
are also proportional to each other. This does not seem to happen at higher mass
level. These proportionality constants cannot be calculated directly from sample
calculations as we did in the cases of string-tree scattering amplitudes.

It should be clear from our study in this paper that the explicit proof of the
decoupling theorem for type II zero-norm states at one-loop level is of crucial im-
portance. Presumably, one needs some higher identities of Jacobi theta functions.
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