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THE L(2, 1)-LABELING PROBLEM ON GRAPHS*

GERARD J. CHANGe AND DAVID KUO

Abstract. An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the
set of all nonnegative integers such that If(x)- f(Y)l -> 2 if d(x, y) 1 and If(x) f(Y)l -> i if
d(x,y) 2. The 5(2, 1)-labeling number /k(G) of G is the smallest number k such that G has an

5(2, 1)-labeling with max{f(v):v E V(G)} k. In this paper, we give exact formulas of A(G 2 H)
and A(G + H). We also prove that A(G)

_
A2 + A for any graph G of maximum degree A. For

odd-sun-free (OSF)-chordal graphs, the upper bound can be reduced to A(G)

_
2A + 1. For sun-free

(SF)-chordal graphs, the upper bound can be reduced to A(G)

_
A + 2X(G 2. Finally, we present

a polynomial time algorithm to determine A(T) for a tree T.

Key words. L(2, 1)-labeling, T-coloring, union, join, chordal graph, perfect graph, tree, bipar-
tite matching, algorithm

AMS subject classifications. 05C15, 05C78

1. Introduction. The channel assignment problem is to assign a channel (non-
negative integer) to each radio transmitter so that interfering transmitters are assigned
channels whose separation is not in a set of disallowed separations. Hale [11] formu-
lated this problem into the notion of the T-coloring of a graph, and the T-coloring
problem has been extensively studied over the past decade (see [4, 5, 7, 13, 14, 16,
17, 19]).

Roberts [15] proposed a variation of the channel assignment problem in which
"close" transmitters must receive different channels and "very close" transmitters
must receive channels that are at least two channels apart. To formulate the problem
in graphs, the transmitters are represented by the vertices of a graph; two vertices
are "very close" if they are adjacent in the graph and "close" if they are of distance
two in the graph. More precisely, an L(2, 1)-labeling of a graph G is a function f from
the vertex set V(G) to the set of all nonnegative integers such that If(x)- f(Y)l >- 2
if d(x, y) 1 and If(x) f(Y)l -> 1 if d(x, y) 2. A k-L(2, 1)-labeling is an L(2, 1)-
labeling such that no label is greater than k. The L(2, 1)-labeling number of G, denoted
by A(G), is the smallest number k such that G has a k-L(2, 1)-labeling.

Griggs and Yeh [10] and Yeh [21] determined the exact values of A(P), A(C),
and A(W), where P is a path of n vertices, Cn is a cycle of n vertices, and Wn
is an n-wheel obtained from Cn by adding a new vertex adjacent to all vertices in
C. For the n-cube Q, Jonas [12] showed that n + 3 _< A(Q). Griggs and Yeh [10]
showed that i(Qn) _< 2n + 1 for n _> 5. They also determined A(Q) for n _< 5 and
conjectured that the lower bound n + 3 is the actual value of A(Q) for n _> 3. Using
a coding theory method, Whittlesey, Georges, and Mauro [20] proved that

/(Qn)

_
2k + 2k-q+1 2, where n _< 2k -q and 1 _< q _< k + 1.

In particular, A(Q2k-k-1) _< 2} 1. As a consequence, A(Qn) _< 2n for n _> 3.
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310 GERARD J. CHANG AND DAVID KUO

For a tree T with maximum degree A > 1, Griggs and Yeh [10] showed that A(T)
is either A+ 1 or A+ 2. They proved that the L(2, 1)-labeling problem is NP-complete
for general graphs and conjectured that the problem is also NP-complete for trees.

For a general graph G of maximum degree A, Griggs and Yeh [10] proved that
A(G) < A2+2A. The upper bound was improved to be A(G) < A2+2A-3 when G is
3-connected and A(G) < A2 when G is of diameter two. Griggs and Yeh conjectured
that A(G) < A2 in general. To study this conjecture, Sakai [18] considered the class
of chordal graphs. She showed that A(G) < (A + 3)2/4 for any chordal graph G. For
a unit interval graph G, which is a very special chordal graph, she also proved that
2x(G)- 2 _< A(G) _< 2x(G).

The purpose of this paper is to study Griggs and Yeh’s conjectures. We also study
L(2, 1)-labeling numbers of the union and the join of two graphs to generalize results
on the n-wheel that is the join of Cn and K1. For this purpose and a further reason
that will become clear in 3, we introduce a related problem, which we call the U(2, 1)-
labeling problem. The definitions of an L’(2, 1)-labelin9 f, a k-L’(2, 1)-labelin9 f, and
the L’(2, 1)-labelin9 number A’(G) are the same as those of an L(2, 1)-labeling f, a

k-L(2, 1)-labeling f, and the L(2, 1)-labeling number A(G), respectively, except that
the function f is required to be one-to-one. There is a natural connection between
A’(G) and the path partition number p(G) of the complement G of G. For any
graph G, the path partition number p(G) is the minimum number k such that V(G)
can be partitioned into k paths.

The rest of this paper is organized as follows. Section 2 gives general properties
of A(G) and A’(G). Section 3 studies A(GtOH), A(G+H), A’(GUH), and A’(G+H).
Section 4 proves that A(G) _< A2 + A for a general graph G of maximum degree
A. This result improves on Griggs and Yeh’s result A(G) < A2 + 2A. However,
there is still a gap in the conjecture A(G) < A2. Section 5 studies the upper bounds
for subclasses of chordal graphs. Section 6 presents a polynomial time algorithm to
determine A(T) of a tree T.

A referee points out that Georges, Mauro, and Whittlesey [8] also solved A(G+H)
and pv(G + H) by a different approach. They actually gave the solutions without
introducing the notion of A’; see the remarks after Lemmas 2.3 and 3.4.

2. Basic properties of A and A’.
<_ <_ for of a

H.
LEMMA 2.2. A(G) _< A’(G) for any graph G. A(G) A’(G) if G is of diameter

at most two.
LEMMA 2.3. pv(G) A’(Gc) -IV(G)I + 2 for any graph G.
Proof. Suppose f is a A’(GC)-L’(2, 1)-labeling of G. Note that for any two vertices

x and y in V(G), if f(x) f(y) + 1, then (x,y) E(G) and so (x,y) e E(G).
Consequently, a subset of vertices whose labels form a consecutive segment of integers
form a path in G. However, there are at most A’(G) -IV(G)I + 2 such consecutive
segments of integers. Thus p(G) < A’(G) IV(G)] + 2.

On the other hand, suppose V(G) can be partitioned into k p(G) paths in G,
say, (v,l, v,2,..., v,ni) for 1 < < k. Consider a dummy path (v0,1) and define f by

f(v,j) f(v-.,n,_) + 2,
f(v,j_) + 1,

if 0 and j 1;
if 1 < < k and j 1;
if 1 < i < k and 2 < j < ni.
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THE L(2,1)-LABELING PROBLEM ON GRAPHS 311

It is straightforward to check that f is a (k+IV(G)I-2)-L’(2, 1)-labeling of Gc. Hence
A’(G) < k + IV(G)I 2; i.e., pv(G) >_ i’(G) -IV(G)I + 2. [3

Remark. Georges, Mauro, and Whittlesey [8, Thm. 1.1] proved that for any graph
G of n vertices the following two statements hold.

(i)/(G) < n- 1 if and only if pv(G) 1.
(ii) Suppose r is an integer greater than 1. A(G) n+r-2 if and only if

Note that an L(2, 1)-labeling is precisely a proper vertex coloring with some extra
conditions on all vertex pairs of distance at most two. So, A(G) has a natural relation
with the chromatic number x(G).

For any fixed positive integer k, the kth power of a graph G is the graph G whose
vertex set V(G) V(G) and edge set E(Gk) {(x, y)" 1 da(x, y) k}.

LEMMA 2.4. x(G) 1 A(G) 2x(G2) 2 for any graph G.
Proof. x(G)- 1 A(G) follows from definitions. A(G) 2x(G2) 2 follows

from the fact that for any proper vertex coloring f of G, 2f- 2 is an L(2, 1)-labeling
of G.

The neighborhood N(x) of a vertex x is the set of all vertices y adjacent to x. The
closed neighborhood Nix] of x is {x} N(x).

LEMMA 2.5 (see [10]). A(G) A + 1 for any graph G of maximum degree . If
A(G) A + 1, then f(v) 0 or A + 1 for any A(G)-L(2, 1)-labeling f and any vertex
v of maximum degree A. In this case, Nix] contains at most two vertices of degree A
for any x V(G).

LEMMA 2.6. ’(C3)= ’(C4) 4 and A’(C) -n- 1 for n 5.
Proo The cases of C3 and C are easy to verify. For n 5, A(G) n- 1 by

definition. Let v0, Vl,..., vn-1 be vertices of C such that v is adjacent to V+l for
0 n- 1, where v v0. Consider the folIowing labeling:

f(v) { i/2, if 0 n- 1 and is even;
[n/2 + [i/2 -1, if0in-landiisodd.

It is straightforward to check that f is an (n- 1)-L’(2, 1)-labeling of Cn. So A’(C)
n-1. H

LEMMA 2.7. A’(P) 0, A’(P2) 2, A’(P3) 3, and A’(Pn) -n- 1 for n 4.

Proof. The cases of P1, P2, P3, and P4 are easy to verify. For n 5, A(P) n- 1
by definition. Last, A’(P) A’(C) n- 1 by Lemmas 2.1 and 2.6. H

3. Union and join of graphs. Suppose G and H are two graphs with disjoint
vertex sets. The union of G and H, denoted by G H, is the graph whose vertex
set is V(G) V(H) and edge set is E(G) E(H). The join of G and H, denoted
by G + H, is the graph obtained from G H by adding all edges between vertices in
V(G) and vertices in V(H).

LEMMA 3.1. A(G H) max{A(G), A(H)} for any two graphs G and H.
Proof. A(G H) max{A(G), A(H)} follows from Lemma 2.1 and the fact that

G and H are subgraphs of G H. On the other hand, an L(2, 1)-labeling of G
together with an L(2, 1)-labeling of H makes an L(2, 1)-labeling of G H. Hence

H)
LEMMA 3.2. A’(G H) max{A’(G), A’(H), ]V(G)[ + ]V(H)]- 1} for any two

graphs G and H.
Proo A’(G H) max{A’(G), A’(H)} follows from Lemma 2.1 and the fact that

G and H are subgraphs of G H. A’(G H) V(G)I + V(H)- 1 follows from the
definition of .D
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312 GERARD J. CHANG AND DAVID KUO

Assume f is a A’(G)-L’(2, 1)-labeling of G. There are no two consecutive integers
x < y in [0, A’(G)] that are not labels of vertices of G; otherwise we can "compact"
the function f to get a (A’(G)- 1)-L’(2, 1)-labeling f’ of G defined by

f’(v) { f(v)’ if f (v) < x;
f(v) l, iff(v)>x.

For the case where A’(G) > IV/)I / IVIH)I- 1, here are at least IVIH)I pairwise
nonconsecutive integers in [0, A’(G)] that are not labels of vertices of G. We can use
them to label the vertices of H. This yields a A’(G)-L’(2, 1)-labeling of G U H. For
the case where A’(H) > IVIGDI / IVIHDI- 1, similarly, there exists a A’(H)-L’(2, 1)-
labeling of G U H. For the case where max{A’(G),A’(H)} <
without loss of generality, we may assume that ]V(G)I > IV(H)]. Let f be a k-L’(2, 1)-
labeling of G such that k < IV/)I / IV(H)I- and there are no two consecutive
integers in [0, k] that are not labels of vertices of G. Such an f exists for k A’(G).
If < IV()l / IV(H)I- 3, then k < 21v(G)l- 3 and so there exist two consecutive
labels x < y. In this case, we can "separate" f to get a (k + 1)-L’(2, 1)-labeling f’
defined by

f’ (v) { f(v), if f(v) < x;
f(v) + l, iff(v)>y.

Continuing this process, we obtain a k-L’(2, 1)-labeling such that IV(G)]+IV(H)I-2 <
k < ]V(G)I + IV(H)I- 1 and there are no two consecutive integers in [0, k] that are
not labels of vertices of G. Using IV(H)] nonlabels in [0, ]V(G)I + IV(H)I- 1] to
label the vertices in H, we get a (IV(G)] + IV(H)]- 1)-L’(2, 1)-labeling of G U H.
By the conclusions of the above three cases, A’(GU H) < max{A’(G), A’(H), ]V(G)I +
IV(H)I 1}. n

LEMMA 3.3. pv(G U H) pv(G) + pv(H) for any two graphs G and H.
Proof. The proof is obvious.
LEMMA 3.4. A(G + H) A’(G + H) A’(G) + A’(H) + 2 for any two graphs G

and H.
Proof. A(G + H) A’(G + H) follows from Lemma 2.2 and the fact that G + H

is of diameter at most two. Also,

pv((G + H)c) + IV(G + H)I- 2 (by Lemma 2.3)
p(G U H) + IV(G)I + IV(H)I-
p(G) + ,(H) + IV(G)I + IV(H)I- (by Lmm 3.3)
A’(G)+ A’(H)+ 2 (by Lemma 2.3). El

Remark. Georges, Mauro, and Whittlesey [8, Cor. 4.6] proved that A(G + H)
max{IV(G)l- 1, A(G)} + max{IV(H)l- 1,/(H)} + 2.

LEMMA 3.5. p(G + H) max{p(G) -IV(H)I,p(H) -IV(G)I, 1} for any two
graphs G and H.

Proof.
p,(C+H)

A’((G + H)) -IV(G + H)I + 2 (by Lemma 2.3)
,’(G u H) -IV(a)l- IV(g)l + 2
max{A’(G),A’(H), IV(G)I / IV(H)I- 1} -Iv(G)I- IV(H)I + 2 (by Lemma

3.2)
max{)’(G) -IV(a)l-4- 2- IV(H)I,V(H) -IV(H)I + 2- IV(a)l, 1}
max{pv(G)- IV(H)I,p(H)- Iv(G)I, x) (by Lemma 2.3). El
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THE L(2, 1)-LABELING PROBLEM ON GRAPHS 313

Cographs are defined recursively by the following rules.
(1) A vertex is a cograph.
(2) If G is a cograph, then so is its complement Gc.
(3) If G and H are cographs, then so is their union G U H.

Note that the above definition is the same as one with (2) replaced by the following.
(4) If G and H are cographs, then so is their join G + H.

There is a linear time algorithm to identify whether a graph is a cograph (see [3]). In
the case of a positive answer, the algorithm also gives a parsing tree. Therefore, we
have the following consequences.

THEOREM 3.6. There is a linear time algorithm to compute A(G), IV(G), and
pv (G) for a cograph G.

4. Upper bound of A in terms of maximum degree. For any fixed positive
integer k, a k-stable set of a graph G is a subset S of V(G) such that every two distinct
vertices in S are of distance greater than k. Note that 1-stability is the usual stability.

THEOREM 4.1. A(G) _< A2 + A for any graph G with maximum degree A.
Proof. Consider the following labeling scheme on V(G). Initially, all vertices are

unlabeled. Let S-1 . When Si-1 is determined and not all vertices in G are
labeled, let

F {x e V(G)’x is unlabeled and d(x, y) _> 2 for all y e i-1}.

Choose a maximal 2-stable subset S of Fi; i.e., S is a 2-stable subset of F but S is
not a proper subset of any 2-stable subset of F. Note that in the case where Fi ,
i.e., for any unlabeled vertex x there exists some vertex y E S-1 such that d(x, y) < 2,
S . In any case, label all vertices in S by i. Then increase by one and continue
the above process until all vertices are labeled. Assume k is the maximum label used,
and choose a vertex x whose label is k. Let

II-{i’0ik-landd(x,y)=l for someyS},
I2={i’0ik-landd(x,y)2forsomeyS},
5 {i" 0 k- 1 and d(x,y) 3 for all y S}.

It is clear that I2] + ]I3] k. Since the total number of vertices y with 1 d(x, y) 2
is at most deg(x)+ E{deg(y)- (y,x) E(G)} A + A(A- ) A:, we have
]I2[ A2. Also, there exist only deg(x) A vertices adjacent to x, so I[ A. For
any I3, x Fi; otherwise Si {x} is a 2-stable subset of Fi, which contradicts
the choice of Si. That is, d(x,y) 1 for some vertex y in Si-1; i.e., i- 1 I. So,
5] ]21]. Then,

A(G) k- [I2[ + [5[ [I2[ + ]I1[ 2 + .
Jonas [12] proved that A(G) A2 + 2A- 4 if A(G) k 2. For the case of A 3,

this bound improves the bound in Theorem 4.1 from 12 to 11.

5. Subclasses of chordal graphs. A graph is chordal (or triangulated) if every
cycle of length greater than three has a chord, which is an edge joining two non-
consecutive vertices of the cycle. Chordal graphs have been extensively studied as a
subclass of perfect graphs (see [9]). For any graph G, x(G) denotes the chromatic
number of G and w(G) the maximum size of a clique in G. It is easy to see that
w(G) x(G) for any graph G. A graph G is perfect if w(H) x(H) for any vertex-
induced subgraph H of G. In conjunction with the domination theory in graphs, the
following subclasses of chordal graphs have been studied (see [1, 2, 6]). An n-sun is a
chordal graph with a Hamiltonian cycle (Xl, Yl, x2, Y2,... ,Xn, y,, Xl) in which each
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314 GERARD J. CHANG AND DAVID KUO

xi is of degree exactly two. An SF-chordal (resp., OSF-chordal, 3SF-chordal) graph
is a chordal which contains no n-sun with n >_ 3 (resp. odd n _> 3, n 3) as an
induced subgraph. SF-chordal graphs are also called strongly chordal graphs by Far-
ber (see [6]). Strongly chordal graphs include directed path graphs, interval graphs,
unit interval graphs, block graphs, and trees. A vertex x is simple if N[y] C_ N[z] or

N[z] C_ N[y] for any two vertices y, z E Nix]. Consequently, for any simple vertex x,
Nix] is a clique and x has a maximum neighbor rn Nix]; i.e., N[y] C_ N[m] for any
y Nix]. Farber [6] proved that G is a strongly chordal graph if and only if every
vertex-induced subgraph of G has a simple vertex.

THEOREM 5.1. /(G) <_ 2A for any OSF-chordal graph G with maximum de-
gree A.

Proof. First, A(G) <_ 2x(G2) 2 by Lemma 2.4. By Corollary 3.11 of [2], G2

is perfect and so x(G2) w(G2). Since G is OSF-chordal, it is 3SF-chordal. By
Theorem 3.8 of [1], w(G2) A + 1. The above inequality and equalities imply that

_<
THEOREM 5.2. /(G) _< /k-4-2X(G)- 2 for any strongly chordal graph G with

maximum degree A.
Proof. We shall prove the theorem by induction on ]V(G)I. The theorem is

obvious when IV(G)] 1. Suppose ]V(G)I > 1. Choose a simple vertex v of G. Since
G- v is also strongly chordal, by the induction hypothesis,

Let f be a i(G- v)-L(2, 1)-labeling of G- v. Note that v is adjacent to deg(v)
vertices, which form a clique in G. Let rn be the maximum neighbor of v. Since every
vertex of distance two from v is adjacent to m, there are deg(m) deg(v) vertices
that are of distance two from v. Therefore, there are at most 3 deg(v) + deg(m)
deg(v) _< A + 2w(G) 2 A + 2x(G) 2 numbers used by f to be avoided by v.
Hence there is still at least one number in [0, A + 2x(G) 2] that can be assigned to
v in order to extend f into a (A + 2X(G)- 2)-L(2, 1)-labeling. D

Although a strongly chordal graph is OSF-chordal, the upper bounds in Theorems
5.1 and 5.2 are incomparable. Theorem 5.2 is a generalization of the result that
A(T) <_ A + 2 for any nontrivial tree of maximum degree A. We conjecture that
/(G) _< A + x(G) for any strongly chordal graph G with maximum degree A.

6. A polynomial algorithm for A on trees. For a tree T with maximum
degree A, Griggs and Yeh [10] proved that A(T) A + 1 or A + 2. They also
conjectured that it is NP-complete to determine if A(T) A + 1. On the contrary,
this section gives a polynomial time algorithm to determine if A(T) A/ 1. Although
not necessary, the following two preprocessing steps reduce the size of a tree before
we apply the algorithm.

First, check if there is a vertex x whose closed neighborhood Nix] contains three
or more vertices of degree A. If the answer is positive, then A(T) A + 2 by Lemma
2.5.

Next, check if there is a leaf x whose unique neighbor y has degree less than A.
If there is such a vertex x, then T x also has maximum degree A. By Lemma 2.1
and precisely the same arguments as in the proof of Theorem 4.1 of [10], A(T x) _<
(T) _< max{(T-x), deg(x)+ 2} <_ (T-x)and so (T)= (T-x). Determining
A(T) is then the same as determining A(T- x). Continue this process until any leaf
of the tree is adjacent to a vertex of degree A.
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THE L(2, 1)-LABELING PROBLEM ON GRAPHS 315

Regardless of whether we apply the above two steps to reduce the tree size or not,
from now on we assume that T is a tree of at least two vertices and whose maximum
degree is A. For any fixed positive integer k, the following algorithm determines if
T has a k-L(2, 1)-labeling or not. We in fact only need to apply the algorithm for
k=A+l.

For technical reasons, we may assume that T is rooted at a leaf r, which is
adjacent to r. Let T T- r be rooted at r. We can consider T as the tree resulting
from T by adding a new vertex r that is adjacent to r only. For any vertex v in T,
let T(v) be the subtree of T rooted at v and T’(v’) be the tree resulting from T(v) by
adding a new vertex v that is adjacent to v only. T(v) is considered to be rooted at
the leaf v’. Note that T(r) T and T’(r’) T’. Denote

S(T(v)) {(a, b)" there is a k-L(2, 1)-labeling f on T’(v’) with f(v’) a and

f(v) =b}.
Note that A(T) 5 k if and only if S(T(r)) = O. Now suppose T(v)- v contains s
trees T(vl), T(v2),... ,T(vs) rooted at Vl, v2,..., vs, respectively, where each v is
adjacent to v in T(v). Note that T(v) can be considered as identifying v, v,..., v,
to a vertex v on the disjoint union of T’(v{), T’(v),..., T’(v’,).

For a system of sets (A)=I (A, A2,..., A,), a system of distinct representa-
tives (SDR) is an s-tuple (a) * (a ,..i=1 a2 as) of s distinct elements such that

aEAforlhi<s.
THEOREM 6.1. S(T(v)) {(a,b)" 0 <_ a <_ k, 0 < b <_ k, la-bl >_ 2, and (A)=

has an SDR, where A {c c 7 a and (b, c) S(T(v))}}.
Proof. Denote by S the set on the right-hand side of the equality in the theorem.
Suppose (a,b) S(T(v)). There is a k-(2, 1)-labeling f of T’(v’) such that

f(v’) a and f(v) b. Of course, 0 < a_< k, 0 _< b_< k, and la-b] _> 2. Let
the same asv. Thenf isaf be the function f restricted on T’(v) by viewing v

k-L(2, 1)-labeling of T’(v) with f(v) f(v) b and f(v) f(v) = f(v’) a,
i.e., (b, f(v)) e S(T(v)) and f(v) e A. Thus (f(v))= is an SDR of (A)*__. This
proves c_ s.

On the other hand, suppose (a,b) S. Then 0 < a <_ k, 0 < b <_ k, la-b >_ 2,
and (A)%1 has an SDR (c)=. Let f be a k-L(2, 1)-labeling of T’(v) such that
f(v) b and f(v) c. Consider the labeling f of T’ defined by f(x) f(x) for
x V(T(v)) and f(v’) a. It is straightforward to confirm that f is a k-L(2, 1)-
labeling of T’(v’) with f(v’) a and f(v) b; i.e., (a, b) S(T(v)). [:]

Our algorithm for determining if a tree has a k-L(2, 1)-labeling recursively applies
the above theorem with the initial condition that for any leaf v of T,

S(T(v)) {(a,b)" 0 _< a _< k, 0 _< b _< k, [a- b >_ 2}.
To decide if the tree T’ has a k-L(2, 1)-labeling, we calculate S(T(v)) for all vertices
v of the tree T. The algorithm starts from the leaves and works toward r. For any
vertex v, whose children are v, v2,..., v, we use S(T(vl)),... ,S(T(v)) to calculate
S(T(v)) by Theorem 6.1. More precisely, for any (a,b) with 0 < a < k, 0 _< b _< k,
la-bl >_ 2, we check if (a, b) S(T(v)) by the following method. Construct a bipartite
graph G (X, Y, E) with

X {Xl,X2,...,Xs}, Y= {0, 1,...,k},

E {(x,c)’c a and (b,c) e S(T(v))}.
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We can use any well-known algorithm to find a maximum matching of the bipartite
graph G. Then (a,b) E S(T(v)) if and only if G has a matching of size s. Note
that for any vertex v we need to solve the bipartite matching problem O(k2) times.
Therefore, the complexity of the above algorithm is O(IV(T)lk2g(2k)), where g(n)
is the complexity of solving the bipartite matching problem of n vertices. The well-
known flow algorithm gives g(n) O(n2"5).
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