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Turbulent shear flow beneath a flat free surface driven by a surface stress is simulated
numerically to gain a better understanding of the hydrodynamic processes governing
the scalar transfer across the air–water interface. The simulation is posed to mimic
the subsequent development of a wind-driven shear layer as in a previous experiment
except that the initiation of the surface waves is inhibited, thus focusing on the
boundary effect of the stress-imposed surface on the underlying turbulent flow and vice
versa. Despite the idealizations inherent in conducting the simulation, the computed
flow exhibits the major surface features, qualitatively similar to those that appear
in the laboratory and field experiments. Two distinct surface signatures, namely
elongated high-speed streaks and localized low-speed spots, are observed in the
simulated flow. Including temperature as a passive tracer and describing an upward
heat flux at the surface, we obtain high-speed streaks that are colder and low-
speed spots that are warmer than the surrounding regions. The high-speed streaks,
arranged with somewhat equal cross-spacing of centimetres scale, are formed by
an array of streamwise jets within the viscous sublayer immediately next to the
surface. Beneath the streaks, counter-rotating streamwise vortex pairs are observed
among other prevailing elongated vortices. However, they are significantly shorter
in length and more irregular than their corresponding high-speed streaks at the
surface. Accompanying the more organized high-speed streaks, localized regions of
low streamwise velocity emerge randomly on the surface. These low-speed spots are
attributed to strong upwelling flows which disrupt the viscous sublayer and also bring
up the submerged fluids of low streamwise velocity. The occasional interruptions
of the streamwise high-speed jets by the upwelling flows account for bifurcation or
dislocation of the surface streaks. Statistics of the turbulence are presented and their
implications for the formation of the flow structures are discussed.

1. Introduction
The layer of water adjoining and including the air–sea interface controls the

exchange of slightly soluble gases, such as carbon dioxide, between the atmosphere
and the ocean. Such a liquid-phase controlled process is determined by the near-
surface turbulence in the ocean side, of which the dominant forcing is the wind stress
on the interface. The energetic, coherent vortical motions within the aqueous turbulent
boundary layer, or known as the surface renewal eddies, therefore account for the
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effectiveness of transport across the air–water interface. Through interacting with
the boundary, these coherent eddies also induced structural patterns on the water
surface. A popular approach in recent years to estimate the air–water transfer rate
is to infer the renewal events from remote-sensing images of water surface (e.g.
Haussecker et al. 2002; Garbe, Schimpf & Jähne 2004; Schimpf, Garbe & Jähne
2004). The accuracy of the technique thus relies on relating quantitatively the small-
scale surface signatures to the underlying turbulence processes.

The observation by Woodcock (1941) is among the pioneering experiments to
study the small-scale motions on the water surface. He observed that when winds
blow, high-speed surface water movements occur that subsequently form surface
streaming in lines and streaks roughly parallel to the wind direction. The water in the
streams moves down-wind much faster than that between the streams. The streaks
are approximately a centimetre across and with a distance of the order of centimetres
between the streaks. The subsequent visualization experiments of Gemmrich & Hasse
(1992) and Kenny (1993) all observed similar small-scale surface streaks on natural
water surfaces. These high-speed streaks, which are the most frequently appearing
patterns of surface water movement at wind speeds of 2 or 3 cm s−1 or higher, were
taken by Gemmrich & Hasse (1992) as indication of surface renewals that might
enhance air–sea gas exchange. They interpreted the appearance of these surface
streaks with a cross-spacing of the order of centimetres either as a result of wave
breaking or as an indication of the existence of counter-rotating helical vortex rolls
similar to those in Langmuir circulations, which have a typical spacing of metres to
kilometres (Langmuir 1938; or see the reviews by Leibovich 1983 and Thorpe 2004).
The observation of Kenney (1993), nevertheless, indicated the contrary. No evidence
was found of fixed circulations beneath the streaky surface. In addition, no significant
surface waves were observed and the streaks could appear on a calm water surface at
low wind condition, indicating the absence of wave–current interaction for generating
Langmuir circulations.

In a laboratory experiment by Melville, Shear & Veron (1998) (and also Veron &
Melville 2001), predominant streaks aligned in the wind direction were also observed
at a wind-driven water surface. The streaky surface undergoes several stages in its
evolution which begins with a quiescent water surface at the onset of the wind. The
appearance of the surface streaks was shown to follow closely the initial growth of the
surface waves and the inception of the Langmuir circulations. (In another laboratory
experiment by Caulliez, Ricci & Dupont 1998, transition of the initial laminar flow
to a turbulent field was observed, which then leads to an explosive growth of the
initial wind-generated ripples and the formation of surface streaks.) In addition to
the surface streaks, local upwellings and divergence of the velocity field at the surface
were also observed by Melville et al. (1998), which caused bifurcation or dislocation
of the streaks.

The acting of wind stress on the water surface induces both surface waves and
turbulent shear flow. It is possible that the coherent surface signatures observed in
various experiments might result from several different mechanisms, including the
interaction among surface waves, the interaction between waves and shear current,
and also the development of the turbulent boundary layer itself. None of these
mechanisms has been demonstrated to the exclusion of the others. The formation of
a wind-driven shear current always accompanies the inception of the surface waves.
Accordingly, it is difficult, if not impossible, to distinguish various mechanisms in
the experiments, in particular those pertinent to surface waves. Attempts to separate
the generation of surface waves from the wind-driven shear current by supplied
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surfactants to inhibit the wave initiation (Faller & Perini 1984; Veron & Melville
2001), however, would also modify the sub-surface flow structures and, consequently,
affect the induced surface signatures (McKenna & McGillis 2004; Tsai & Yue 1995;
Tsai 1996).

In this study, the difficulty encountered in the experiments is resolved by numerical
simulation of a canonical problem. Specifically, turbulent shear layer driven by a
shear stress acting at a water-surface boundary is simulated numerically without the
formation of the surface waves. Such a model problem has previously been studied
for stress-driven oceanic mixed layers by large-eddy simulations (e.g. Skyllingstad
& Denbo 1995; McWilliams, Sullivan & Moeng 1997; Sander et al. 2000), which
require parameterization of the near-surface flow using the law-of-the-wall theory.
The approach adopted here is a direct numerical simulation of the wind-driven
turbulent shear flow using neither any turbulence closure to model the subgrid flow
processes nor a ‘vortex force’ to initiate the mechanism of wave–current interaction as
in these large-eddy simulations. Therefore, with direct numerical simulation we can
resolve the flow scales down to that of the viscous sublayer and examine the detailed
flow field immediately next to the surface. The present study thus attempts to deduce
the possible correlation between the observed centimetre-scale surface signatures and
the coherent flow processes induced by shear turbulence. The simulation also focuses
on providing further insight into the detailed hydrodynamic mechanism, particularly
the coherent flow structures that govern the process of scalar exchange across the
air–sea interface.

The numerical aspects of the simulation, including the model formulation, the
numerical method and the simulation implementation are described in § § 2, 3 and
4, respectively. Statistics of the turbulence are first discussed in § 5. The numerical
results of the first-order mean profiles are compared with those derived from the
surface renewal theory (Liu & Businger 1975) and the experimental measurements
(Wu 1984). Turbulent energetics budgets of the present shear turbulence bounded by
a stress-driven boundary, compared to those next to either a shear-free boundary or
a no-slip wall, are discussed. Two-dimensional surface signatures of the velocity and
scalar fields arising from the development of the turbulent boundary layer are then
presented in § 6, and compared with those observed in the experiment of Melville
et al. (1998). The underlying three-dimensional flow structures, which induce the
surface signatures, are finally examined and discussed in § 7. Some of the preliminary
results from this investigation were reported in letters (Tsai 2001; Tsai et al. 2003).

2. Mathematical formulation
We consider a turbulent shear flow beneath a flat free surface at z = 0. The

coordinate axes x =(x, y, z) are in the streamwise, spanwise and upwards vertical
direction, respectively, with the corresponding velocities v = (u, v, w). The turbulent
shear flow is driven by a shear stress τs acting at the boundary surface. The fluid
is assumed to be incompressible and Newtonian, such that the velocity v and the
dynamic pressure p are governed by the solenoidal condition and the Navier–Stokes
equations:

∇ · v = 0, (2.1)

∂v

∂t
+ v · ∇v = − 1

ρ
∇p + ν∇2v, (2.2)

where ρ and ν are density and kinematic viscosity of the fluid, respectively.
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With the focus of this study being on the boundary effect of the stress-imposed
surface on the underlying shear turbulence and vice versa, an idealized boundary of
a flat free surface is considered (e.g. Walker, Leighton & Garza-Rios 1996; Calmet
& Magnaudet 2003) in this study. By a flat free surface, what is meant is that the
exerted stress is balanced by local surface tangential stress and that the surface is
free to flow horizontally, but not vertically. A previous study (Tsai 2001) using more
realistic free-surface boundary conditions (Borue, Orszag & Staroselsky 1995; Tsai
1998) indicates only a minor impact of the small-amplitude surface motions on both
the surface and subsurface turbulent structures. At the surface, the tangential surface
stress is balanced by the mean exerting shear stress, whereas the normal surface stress
vanishes. Accordingly, the corresponding kinematic and dynamic conditions on the
mean surface, z = 0, are

w = 0,
∂u

∂z
=

τs

ρν
,

∂v

∂z
= 0,

∂p

∂z
= 0. (2.3)

Note that in contrast to the Dirichlet pressure condition on a free surface with
deformation (e.g. Tsai 1998), the normal-stress condition on a flat free surface results
in a homogeneous Neumann pressure condition. With w = 0, the surface gravity waves
are excluded from our simulations. Although the idealized free surface differs from
that of the experiment of Melville et al. (1998) and also from the real ocean surface,
the exclusion of surface waves allows us to isolate the effect of shear turbulence on
small-scale signatures at the air–sea interface without the complicating effects of the
mean-flow/surface-wave interaction. Our simulations also differ from that of a wall-
bounded shear turbulent boundary layer (e.g. Mansour, Kim & Moin 1988; Moin
& Mahesh 1998). In contrast to shear turbulence over a no-slip wall, our simulated
flows allow for tangential motions on the surface in response to the driven surface
stress and the underlying turbulence.

To study the effects of the near-surface flow processes on the transport of passive
scalars, advection–diffusion equations governing the evolutions of the temperature
field θ(x, t) and the gas concentration c(x, t) are also integrated in time with the flow
simulation. The boundary condition at the surface, however, depends on the transport
process considered. A given uniform heat flux Q gives rise to a Neumann condition
for the temperature field at the surface as

∂θ(x, y, 0, t)

∂z
= − Q

ρcpνθ

, (2.4)

where cp and νθ are specific heat and thermal diffusivity, respectively. In our
simulations, the temperature field is treated as a passive tracer; the buoyancy effect
due to temperature fluctuations and the imposed surface heat flux does not modify
the vertical momentum equation in (2.2).

In the case of transfer of sparingly soluble gas, the resistance is dominated by
the subsurface aqueous flow and the atmosphere can be regarded as an infinite
reservoir with a constant concentration. This results in a Dirichlet condition for the
concentration field at the surface as

c(x, y, 0, t) = cs. (2.5)

3. Numerical method
The numerical method used in the present simulation resembles that in Tsai (1998)

but with modifications to improve the near-surface resolution and to impose the
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solvability condition for the pressure equation. A mixed scheme of the pseudo-
spectral method in the two horizontal directions and second-order finite differencing
in the vertical is adopted for approximation of the spatial-differential operators in the
equations and boundary conditions. A stretched grid system is employed such that
the discretization grids cluster when approaching the surface so as to allow proper
resolution of the viscous sublayer adjacent to the upper surface. The vertical domain
of physical coordinate −h � z � 0 is discretized according to the transformation
function

zk = −h

[
1 − tanh aζk

tanh a

]
, 0 � ζk � 1, (3.1)

where the grids of the numerical coordinate ζ are uniformly distributed. The degree
of cluster is determined by the parameter a. A typical value used in the present
computations is a = 1.8417 (Gavrilakis 1992).

A low-storage Runge–Kutta scheme (Spalart, Moser & Rogers 1991) is adopted
for temporal integration of the Navier–Stokes equation (2.2) for the velocity field
and the transport equations for the scalar fields. The pressure field is first solved
at each interval step in the Runge–Kutta time integration before updating towards
the next time step for the new velocities. The Poisson equation for the pressure
field is obtained by taking the divergence of the temporal-discretized Navier–Stokes
equation and applying the solenoidal constraint to the velocity field at the new time
interval. Since the pressure conditions on both the flat free surface and the free-slip
bottom are of the Neumann type, an additional solvability condition is required to
make the solution unique when solving the pressure Poisson equation. In the present
numerical implementation, a convenient value for pressure is assigned to a chosen grid
point. For spectral representation of the pressure field, this corresponds to explicitly
specifying the constant mode. Such a solvability condition, however, would not affect
the solution as only the pressure gradients are required in integrating the velocity
equations.

4. Posing the simulation
We pose the simulations to mimic the subsequent development of the flow of water

which has been driven by a wind field accelerating constantly from rest to a reference
speed of ua in a time interval of t0 as in the experiment of Melville et al. (1998).
Accordingly, numerical simulation of the flow is initiated with a mean streamwise
velocity distribution (in the unit of cm s−1):

U (z) = At0

[
(1 + 2η2)erfc(η) − 2

π1/2
η exp(−η2)

]
, (4.1)

where η = − z/2(νt)1/2. Equation (4.1) corresponds to the velocity profile of a plane
laminar shear layer driven by a surface stress, which induces a linear increase in the
surface velocity with a constant acceleration A for a period of t0. Assuming continuity
in the evolution of the air flow, the shear stress acting at the surface,

τs = ρν

(
dU

dz

)
z=0

=
2

π1/2
ρA(νt)1/2, (4.2)

therefore increases with time in the rate proportional to t1/2 from the start of
the simulation. The surface velocity develops freely and the maximum turbulence
production occurs near the water surface. The constant acceleration A depends on
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the reference wind speed ua . For the three reference wind speeds considered in the
experiments of Melville et al. (1998), ua = 3, 4 and 5 m s−1, the estimated acceleration
constants are A= 0.27, 0.5 and 1 cm s−2 with the corresponding acceleration periods
t0 = 45, 30 and 20 s. The characteristic depths Ls = 2(νt0)

1/2 and velocities us = At0 of
the shear layers at the beginning of the simulation are 1.4, 1.1 and 0.9 cm, and 12.15,
15 and 20 cm s−1, respectively. These result in the corresponding Reynolds numbers
of the initial driven shear flows, Re = usLs/ν = 1630, 1650 and 1800, for the three
reference wind speeds ua = 3, 4 and 5 m s−1, respectively. From (4.2), the initial surface
friction velocities are determined as u∗ = (τs/ρ)1/2 = 0.45, 0.56 and 0.71 cm s−1, which
result in the wall Reynolds numbers Re∗ = u∗Ls/ν =60.4, 61.9 and 63.6 for ua =3, 4
and 5 m s−1, respectively.

In the experiment of Melville et al. (1998), predominant streamwise-elongated high-
speed streaks (see also the present simulation results in § 6) were observed. The streaks
reveal a nearly equal spacing, which varies with the wind speeds. Accordingly, the
length and width of the computational domain are chosen to be at least six times
that of the observed characteristic steak spacing; the domain size in both x and
y is therefore 45, 33.6 and 23 cm, respectively, for the three reference wind speeds
ua =3, 4 and 5 m s−1. All the simulations are carried out with 1283 grid points. This
means that the lateral region between two streaks is resolved by at least twenty grids.
The corresponding non-dimensional streamwise and spanwise grid sizes in wall unit,
�x+ and �y+, are 15.89, 14.54 and 12.87 for ua = 3, 4 and 5 m s−1, respectively. In
the vertical direction near the upper surface, the stretched grid distribution allows
sufficient resolution of the viscous layer. For the three simulations considered, there
are at least ten grids in the near-surface region (z+ � 10).

In the depth direction, the computational domain is closed by imposing a free-slip
bottom condition at a depth of a quarter of the length (and the width) of the domain
to emulate the infinite depth. Thus, the depth of the turbulent layer will grow in time
through entrainment in proportion to the applied wind stress. The thickness of the
shear layer develops to about a quarter of the depth of the computational domain at
the end of the simulation. For all the simulations conducted in the present study, the
numerical depth is sufficiently large not to affect the near-surface flow.

In order to generate a realistic turbulent velocity field, a fluctuating but solenoidal
vector field is first generated by taking the curl of another random vector field.
The simulation is then conducted using the fluctuating solenoidal vector field as the
initial velocity condition without the mean streamwise velocity. As the integration
of the momentum equations proceeds, the simulated flow field adjusts itself from an
initial artificial random vector field to a realistic turbulence. The ‘spin-up’ simulation
is performed until the simulated flow reaches an equilibrium state in which the
inertial and dissipating ranges of the energy spectra converge. During this stage,
the turbulence field near the surface become effectively anisotropic, with a rapid
attenuation of the vertical fluctuating velocities and an accompanying increase in
the horizontal turbulence intensities. The turbulent velocity fluctuations, which are
homogeneous in the horizontal plane ((x, y)-plane), is then added to the mean flow
(4.1) to form the initial velocity field for the simulation.

The abrupt superposition of the turbulent velocity field onto the mean streamwise
velocity would require additional spin-up time before meaningful flow statistics and
structures can be obtained from the simulations. Evolutions of three averaged flow
properties, the surface-averaged mean velocity us = 〈u〉z = 0 and turbulent kinetic en-

ergy 〈u′2+v′2〉z = 0, and the volume-averaged turbulent kinetic energy 〈u′2+v′2+w′2〉V ,
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Figure 1. Evolutions of the surface-averaged streamwise velocity 〈u〉z = 0/us (solid curves),
the surface-averaged turbulent kinetic energy 〈u′2 + v′2〉z = 0/u

2
s (dashed curves), and the

volume-averaged turbulent kinetic energy 〈u′2 + v′2〉V/u2
s (dash-dotted curves) for the wind

speeds ua = (a) 5 m s−1, (b) 4 m s−1 and (c) 3 m s−1.

are shown in figure 1, where the turbulent fluctuating quantity q ′ = q − 〈q〉, and 〈·〉
and 〈·〉V represent the averaging over the horizontal plane and the entire volume,
respectively. Immediately after the start of the simulation, both the surface mean
velocity and fluctuation intensity decrease drastically showing a rapid adjustment of
the imposed initial flow to turbulence. The subsequent evolution of the flow after the
surface mean velocity and turbulent intensity reaching the minima can be divided into
two stages. During the first stage (non-dimensional time tus/Ls ≈ 30 to 120), the mean
surface velocity rises in a higher rate while the turbulent intensity evolves gradually.
After the developing stage (tus/Ls � 120), the flow can be considered as that of fully



170 W.-T. Tsai, S.-M. Chen and C.-H. Moeng

developed turbulence in which the mean surface velocity increases in a reduced rate
while the surface turbulent intensity approaches a constant level. To determine if the
simulated flow has reached an equilibrium state and has become representative of
turbulence, the evolutions of the one-dimensional turbulent energy spectra at various
depths are examined. (The details are the same as those in Tsai 1998.) Once the
surface turbulent intensities reach the fully-developed stage, the distributions of the
inertial and dissipation ranges of the energy spectra also reach the steady states at
both the shallow and submerged depths, indicative of the equilibrium of turbulence.
The turbulence statistics, which are discussed in § 5, are space and time averages (over
the whole horizontal plane and the large-scale time tus/Ls =120 ∼ 200) of the flow
fields in this fully developed stage.

5. Flow statistics
5.1. Mean profiles

For the temporal mean current beneath a wind-blown air–water interface, a two-layer
velocity profile, analogous to that of the turbulent wall layer, has been observed in
the laboratory (Wu 1975, 1984; McLeish & Putland 1975) and field (Churchill &
Csanady 1983) experiments. The mean current near, but not immediately below, the
interface is found to be characterized by a logarithmic velocity profile:

us − 〈u〉(z)
u∗

=
1

κ
ln z+ + ψ+ =

1

κ
ln

z

z0

, (5.1)

where κ is the von Kármán constant, the friction velocity u∗ = (τs/ρ)1/2, the wall
coordinate z+ = zu∗/ν, and the constant of integration ψ+ which is related to surface
roughness length z0 by z0 = (ν/u∗) exp(−κψ+). The greater the constant ψ+, the
smaller the surface roughness length z0. The universal function of (5.1) is also appli-
cable to the profiles of the mean temperature 〈θ〉(z) and dissolved gas concentration
〈c〉(z) as

〈θ〉(z) − θs

θ∗
=

1

κθ

ln z+ + ψ+
θ (5.2)

and
〈c〉(z) − cs

c∗
=

1

κc

ln z+ + ψ+
c , (5.3)

where θs = 〈θ〉(0), cs = 〈c〉(0), θ∗ = − Q/(ρcpu∗), c∗ = − J/u∗, and Q and J are the
mean heat and gas fluxes, respectively.

Immediately below the interface, the vertical component of the turbulence is
largely suppressed so that a thin viscous sublayer exists where molecular viscosity
dominates the momentum transport. This viscous sublayer was found to be thinner
than the analogous sublayer adjacent to a solid no-slip wall (Csanady 1984; Wu
1984). Adopting the surface renewal model that the viscous sublayer undergoes cyclic
growth and disruption, Liu & Businger (1975) proposed an exponential profile for
the mean velocity distribution within the sublayer as

us − 〈u〉(z)
us − ub

= 1 − exp

(
− z

δu

)
, (5.4)

where ub denotes the bulk mean velocity. δu is a scaling depth equivalent to the
thickness of the viscous sublayer, and relates to the average residence duration of
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renewal fluid elements t∗
r through

δu = (νt∗
r )

1/2 = ν
us − ub

u2
∗

. (5.5)

In developing (5.4), Liu & Businger (1975) assumed that the probability of renewal of
any fluid element is independent of the duration for which it has resided in contact
with the surface (Danckwerts 1951), and the probability distribution of the residence
time tr is described by an exponential function, exp(−tr/t∗

r )/t∗
r . Equation (5.4) can be

re-written in terms of the wall coordinate as

us − 〈u〉(z)
u∗

= ξu

[
1 − exp

(
−z+

ξu

)]
, (5.6)

where ξu = δuu∗/ν is the sublayer parameter. The asymptotic limit of (5.6) as (z+/ξu) →
0 becomes the familiar linear profile (us − 〈u〉)/u∗ = z+.

For heat and gas transport across the conduction and diffusion sublayers, similar
exponential profiles can be obtained for temperature and concentration distributions
within the sublayers as

〈θ〉(z) − θs

θ∗
= ξθ

[
1 − exp

(
−Pr

z+

ξθ

)]
, (5.7)

〈c〉(z) − cs

c∗
= ξc

[
1 − exp

(
−Sc

z+

ξc

)]
, (5.8)

where the Prandtl number Pr = ν/νθ and the Schmidt number Sc = ν/νc, νθ and
νc are the diffusivities of heat and dissolved gas, respectively, the non-dimensional
parameters ξθ = δθu∗/νθ and ξc = δcu∗/νc, the thicknesses of the thermal and molecular
sublayers δθ = (νθ tθ )

1/2 and δc = (νctc)
1/2.

Comparisons between the theoretical and simulated vertical mean distributions of
the streamwise velocity, the temperature and the gas concentration are shown in
figure 2 for the three wind speeds ua = 5, 4 and 3 m s−1. As shown in figure 2, the
simulated mean velocity, temperature and concentration distributions are all well
represented by the two-layer profiles. Our simulated flows reveal an exponential
viscous sublayer above z+ ≈ 10 and a logarithmic inertial layer between z+ ≈ 20
and 100. For the velocity comparison, the available laboratory measurements by
Wu (1984) at the wind speeds of 4.8, 4.0 and 3.0 m s−1 are also plotted. The
experimental measurements, the numerical simulations and the parameterized profiles
are comparative for the whole sublayer range extending to the buffer layer.

In determining the non-dimensional constants κ and ψ+ in (5.1), least-squares
fitting to the simulated mean streamwise velocities for the depths z+ = 20 to 100 is
employed. The exponential and logarithmic profiles are then matched by equating
the right-hand sides and their first derivatives of (5.1) and (5.4) at the matching
depth z+ = ζ+ (Liu, Katsaros & Businger 1979; Kraus & Businger 1994). This yields
two nonlinear equations for the sublayer parameter ξu and the matching coordinate
ζ+. The same procedure is employed to reach the matched temperature and gas
concentration profiles.

The corresponding parameters of the matched mean velocity profiles in figure 2
for the three wind speeds are listed in table 1. For logarithmic fitting of the averaged
velocity distributions, the typical computed values of κ are between 0.35 and 0.40,
which are close to the universal Kármán constant, 0.4. The typical values of the
computed ψ+, however, are much less than 5.0 of a no-slip smooth wall, indicating
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Figure 2. (a–c) Mean profiles of the streamwise velocity (us −〈u〉(z))/u∗, (d–f ) the temperature
(〈θ〉(z)−θs)/θ∗, (g–i) the gas concentration (〈c〉(z)−cs)/c∗ for various wind speeds: ua =5ms−1

(a, d, g), 4 m s−1 (b, e, h), and 3 m s−1 (c, f, i). The computed results are represented by solid
curves. The dash-dotted curves are the exponential profiles (5.6) of the viscous sublayer
developed based on the surface renewal model, and the dash-dot-dotted curves are the linear
approximation. The dashed curves denote the matched logarithmic profiles (5.1). �, laboratory
measurements by Wu (1984) at wind speeds of 4.8, 4.0 and 3.0m s−1.

ua us u∗ z0 δu t∗
r

(m s−1) (cm s−1) (cm s−1) κ ψ+ (mm) ζ+ ξu (cm) (s)

5.0 13.0 0.74 0.39 1.1 0.089 20.9 9.8 0.13 1.8
4.0 10.7 0.61 0.34 1.5 0.092 23.3 10.5 0.17 2.9
3.0 8.2 0.47 0.36 1.9 0.098 26.2 11.2 0.24 5.6

Table 1. Computed parameters in the mean velocity profiles (5.1) and (5.4) for the three
wind speeds.

the increase in equivalent surface roughness z0. For the flow beneath a wind-blown
sea surface, this is caused by direct energy supply to the near-surface turbulence
through influences such as breaking wavelets (e.g. Csanady 1984). In the present
case of stress-driven shear flow, the increase infers the enhancement of near-surface
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horizontal turbulence intensity by the presence of the upper surface. (This will be
discussed in § 5.2.) The increase in surface roughness z0 has also been noted in a recent
direct numerical simulation of an oceanic boundary layer driven by wave breaking
(Sullivan, McWilliams & Melville 2004). For the limiting case with no breaking
surface forcing, their simulation also indicates a higher effective roughness z0 than
that of wall-bounded turbulence. Their simulations with breaking surface forcing
further reveal that wave breaking would effectively increase the surface roughness.

The computed non-dimensional viscous sublayer parameters ξu are around 10,
smaller than that immediately next to a smooth no-slip wall (≈16), and increase
slightly (within the range of O(10−1)) with decreasing wind speeds. This is quanti-
tatively similar to that observed in the experiments (Csanady 1984; Wu 1984). The
increase in ξu with decreasing wind speed also implies the thickening of the viscous
sublayer δu and the growth of resistance against the vertical momentum transport.

5.2. Turbulence intensities and production

The vertical distributions of the turbulent velocity variance normalized by the surface
friction velocity, 〈u′

i
2〉(z)/u2

∗, are shown in figure 3 for the three reference wind speeds
ua = 5, 4 and 3 m s−1. Away from the viscous layer, the magnitudes of the turbulent
velocity variances are close to those next to a no-slip solid wall (e.g. Kim, Moin
& Moser 1987). In particular, the upper bound of 〈w′2〉/u2

∗ is about 1; it does not
exhibit a large increase like that in the large-eddy simulations of oceanic mixed
layers (Skyllingstad & Denbo 1995; McWilliams et al. 1997), in which the Craik–
Leibovich ‘vortex force’ attributed to the wave–current interaction mechanism (Craik
& Leibovich 1976) is incorporated into the simulations.

The turbulence field near the interface is effectively anisotropic and two-dimensional,
with a rapid attenuation of the vertical velocity fluctuation and an accompanying
increase in the streamwise component on approaching the interface. In comparison
with the streamwise and vertical components, the spanwise turbulence intensity shows
relatively mild variation. This is contrary to the observations of the turbulent shear
flows bounded by shear-free surfaces (such as the free-surface jet flow in Walker, Chen,
& Willmarth 1995; the free-surface wake flow in Tsai 1998; and the open-channel
flow in Calmet & Magnaudet 2003), in which the transfer of the turbulence energy
to the streamwise component is much more significant than that to the spanwise one.
Immediately beneath the upper surface and within the viscous sublayer (z+ � 10), both
streamwise and spanwise turbulence intensities exhibit salient features, in particular for
the case of ua = 3 m s−1 (figure 3c). (The depths of the viscous sublayers, z+ = ξ+ ≈ 10,
are marked in the figures.)

For turbulence bounded by a shear-free surface, the normal turbulent fluctuations
are forced to decay towards the boundary. This is a manifestation of the blocking effect
brought about by the kinematic condition of vanished normal velocity at the surface.
The shear-free boundary conditions, nevertheless, give rise to much weaker constraints
on the tangential velocities and lead to the dissipation rate close to the surface actually
becoming smaller than in the bulk of the flow (Teixeira & Belcher 2000). Accordingly,
the horizontal velocity fluctuations increase upon approaching a shear-free surface
(e.g. Perot & Moin 1995; Walker et al. 1996; Tsai 1998; Calmet & Magnaudet 2003).
On the present stress-imposed surface, the constraints of the horizontal fluctuating
velocities, ∂u′/∂z = ∂v′/∂z = 0, are identical to those of a shear-free surface although
the mean velocity field is subjected to a constant vertical gradient, ∂〈u〉/∂z = τs/µ.
As figure 3 shows, the intensities of the horizontal turbulence are also amplified as
they approach a stress-imposed surface. This is also because of the decrease in the
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Figure 3. Vertical distributions of the normalized turbulent velocity variances, 〈u′2〉(z)/u2
∗

(solid curves), 〈v′2〉(z)/u2
∗ (dash-dotted curves), 〈w′2〉(z)/u2

∗ (dashed curves) and the averaged
turbulent kinetic energy, 〈u′2 + v′2 + w′2〉(z)/u2

∗ (thick solid curves) for various reference wind
speeds (a) ua = 5 ms−1, (b) 4 m s−1 and (c) 3 m s−1. The depths of the viscous sublayers,
z+ = ξ+ ≈ 10, are marked by dashes in the figures.

near-surface dissipation profiles, which will be discussed later. Such an enhancement
of the horizontal turbulence intensities has also been observed in the recent simulation
by Sullivan et al. (2004).

The drastic changes within the viscous sublayer are also discernible in vertical
variations of the vorticity variances, 〈ω2

x〉(z), 〈ω′2
y 〉(z) and 〈ω2

z〉(z), as well as the vertical

strain rate (horizontal divergence), 〈(∂w/∂z)2〉 = 〈(∂u/∂x + ∂v/∂y)2〉, as shown in
figure 4. Both the vertical and horizontal vorticity variances, in particular the spanwise
component, reach the maxima within the viscous sublayer. At the interface, the
streamwise and spanwise vorticities decrease to negligible levels, whereas the vertical
component remains finite. Away from the interface (z+ � 40; the characteristic depth
of the shear layer is approximately at z+ ≈ 70), the horizontal vortical field becomes
essentially isotropic and the vorticity variances continue reducing. No significant
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Figure 4. Vertical distributions of the vorticity variances (a–c): streamwise vorticity, 〈ω2
x〉(z)

(solid curve), fluctuating spanwise vorticity, 〈ω′2
y 〉(z) (dash-dotted curve), and vertical vorticity,

〈ω2
z〉(z) (dashed curve); and the vertical velocity–strain variance, 〈(∂w/∂z)2〉(z) (d–f ) for the

wind speeds of ua =5ms−1 (a, d), 4 m s−1 (b, e) and 3 m s−1 (c, f ). All the terms are normalized
by us/Ls . The depths of the viscous sublayers, z+ = ξ+ ≈ 10, are marked by dashes.

change in the streamwise vorticity variance is observed in these submerged depths for
all the wind speeds considered throughout the simulations, implying the absence of
predominant streamwise vortices.

To further elucidate the impact of the sheared surface on the transport of near-
surface turbulence energy, the energetics budgets are examined next. Assuming
equilibrium, the mean budget equations for turbulent flow with two-dimensional
mean shear ∂〈u〉(z)/∂z are

∂〈u′2〉
∂t

= −2〈u′w′〉∂〈u〉
∂z︸ ︷︷ ︸

P11

−∂〈u′2w′〉
∂z︸ ︷︷ ︸

T11

+
2

ρ

〈
p′ ∂u′

∂x

〉
︸ ︷︷ ︸

Π11

+ν
∂2〈u′2〉

∂z2︸ ︷︷ ︸
D11

−2ν

〈
∂u′

∂xk

∂u′

∂xk

〉
︸ ︷︷ ︸

ε11

, (5.9)
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Figure 5. Vertical distributions of the various production/consumption terms of (a) stream-
wise, (b) spanwise and (c) vertical turbulent intensities in the Reynolds-stress equations (5.9),
(5.10) and (5.11) for the reference wind speed ua =5ms−1: P11, thick solid curves; Tii , dash-dot-
dotted curves; Πii , solid curves; Dii , dash-dotted curves; εii , dashed curves. All the terms are
normalized by u3

s /Ls .

∂〈v′2〉
∂t

= −∂〈v′2w′

∂z
〉︸ ︷︷ ︸

T22

+
2

ρ

〈
p′ ∂v′

∂y

〉
︸ ︷︷ ︸

Π22

+ν
∂2〈v′2〉

∂y2︸ ︷︷ ︸
D22

−2ν

〈
∂v′

∂xk

∂v′

∂xk

〉
︸ ︷︷ ︸

ε22

, (5.10)

∂〈w′2〉
∂t

= −∂〈w′3〉
∂z︸ ︷︷ ︸

T33

− 2

ρ

∂〈p′w′〉
∂z

+
2

ρ

〈
p′ ∂w′

∂z

〉
︸ ︷︷ ︸

Π33

+ν
∂2〈w′2〉

∂z2︸ ︷︷ ︸
D33

−2ν

〈
∂w′

∂xk

∂w′

∂xk

〉
︸ ︷︷ ︸

ε33

, (5.11)

where P11 is the shear production rate, Tii the turbulent advection rate, Πii the
velocity–pressure correlation term, Dii the viscous diffusion rate, and εii the dissipation
rate. Figure 5 shows the vertical variations of the various terms in (5.9), (5.10) and
(5.11) for the reference wind speed ua = 5 m s−1. The distributions for other wind
speeds resemble those in figure 5.
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The distributions of the energy budgets shown in figure 5 reveal some general
features known for shear turbulence bounded by a no-slip wall (e.g. Mansour
et al. 1988): the shear production rate, the P11 term, is the major turbulence production
for the streamwise budget, which reaches its maximum level within the viscous
sublayer before diminishing at the surface. The pressure–strain term, Π11, converts
the u′2 component to v′2 and w′2 and hence is a consumption for u′2 and a major
source for the other two components, except near the viscous sublayer for w′2. The
dissipation terms, εii , account for the major loss for all three energy components. The
contributions of turbulent advection, Tii terms, and viscous diffusion, Dii terms, are
in general negligibly small except within the viscous sublayer. These general features
of the turbulent kinetic energy budget in the region of submerged water have also
been observed in the simulation of a stress-driven oceanic boundary layer by Sullivan
et al. (2004).

The main differences in the energetics budgets between the present stress-
driven turbulence and the wall-bounded turbulence are within the viscous sublayer
attributed to the different boundary conditions. For a free surface (sheared or shear-
free), the vertical fluctuating strain rate, ∂w′/∂z = − (∂u′/∂x + ∂v′/∂y), increases
rapidly approaching the boundary (figure 4). Concurring with the amplification of
near-surface streamwise turbulent velocities (figure 3), the convective transport of
streamwise turbulence, T11, increases from consumption in the submerged water to
production within the sublayer, and reaches its maximum at the upper surface.
The near-surface streamwise turbulent transport is of a magnitude comparable to
that of shear production P11 in the submerged region. Such a significant increase
in near-surface T11 is balanced by pressure transport (Π11) and an enhancement in
viscous diffusion (D11). The present near-surface turbulent energy budget is somewhat
different from that in a similar simulation by Sullivan et al. (2004), but with a higher
Reynolds number, in which negligible contributions from turbulent transport and
viscous diffusion have been observed.

The variations in the dissipation rates within the sublayer next to a stress-imposed
surface are completely opposite to those next to a wall boundary. The dissipation
rates of both the streamwise and spanwise turbulent energies, ε11 and ε22, decrease
drastically when approaching the upper surface. This results in a corresponding
increase in the horizontal fluctuating velocities as explained by the theoretical model
of Teixeira & Belcher (2000). The dissipation rate of the vertical turbulent energy,
ε33, increases rapidly and reaches its maximum level at the surface, indicative of an
abrupt reduction in vertical velocity towards the surface.

For shear turbulence near a no-slip wall, viscous diffusion dominates the productive
transport of u′2 and v′2, and is negligibly small for vertical component w′2. However,
for turbulence bounded by a sheared surface, both the streamwise and spanwise
diffusion rates, D11 and D22, become the primary consumption of the horizontal
components within the viscous sublayer and reach their negative minima at the
surface. On the other hand, viscous diffusion, D33, is the major term for vertical
transport immediately beneath the surface. This confirms that the vertical exchange
across the interface is controlled by viscous diffusion within the viscous sublayer.

6. Surface characteristics
6.1. Streaky appearance

The first clue of the existence of organized structures within the stress-driven surface
turbulent boundary layer is the emergence of elongated filaments of high-speed streaks
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with somewhat equal transverse spacing on the water surface as have been observed
in both field and laboratory experiments. In the experiment of Melville et al. (1998)
the typical spanwise spacing between the streaks ranges from ∼3 cm to ∼7 cm as the
reference wind speed decreases from 5 m s−1 to 3 m s−1. These streamwise elongated
streaks with transverse spacing of O(1 cm) to O(10 cm) have also been observed
in the ocean (Gemmrich & Hasse 1992) and lake (Kenney 1993; Woodcock 1941).
Such a surface signature arises from the wind-driven shear layer and is geometrically
similar to the low-speed streaks near a stationary wall, which develop within the
viscous sublayer and extend into the logarithmic region (e.g. Kline et al. 1967; Smith
& Metzler 1983).

In the present simulation of surface-driven turbulent shear flow, high-speed surface
streaming, similar to that observed in the laboratory and field experiments, emerges on
the surface boundary. Instantaneous distributions of the surface streamwise velocity
and the temperature contours for the three wind speeds are shown in figure 6.
The distribution patterns clearly demonstrate the existence of elongated surface
streaks carrying cooler and faster-moving fluids. The major streaks are arranged with
somewhat equal transverse spacing, and the spacing increases with decreasing wind
speed.

To further visualize the structures and also the inception and evolution of the surface
streaming, 1282 uniformly distributed floating Lagrangian particles are released on
the water surface and their trajectories are tracked. Figure 7 depicts the evolution
of the Lagrangian particles for the wind speed of ua = 5 m s−1. Immediately after
the particles are released, they aggregate and form a ‘fish-skin’ pattern as shown in
figure 7(a). The merged particles further accumulate into several elongated groups
and align along the fast-moving velocity streaks (figures 7b and 7c). The rapidity of
the formation of this surface streaky pattern is the same as the observation of Melville
et al. (1998) and as that described by Woodcock (1941): ‘When the powder is dusted
over the water it moves into lines so quickly that, even in moderate breeze, the eye
can hardly detect the transition from random scattering to the linear pattern.’ It takes
less than two seconds for the particles to evolve from the initial uniform distribution
to the streaky pattern in figure 7(c). The aligned particles continue travelling along
the high-speed streaky regions although some particles of the individual streets may
diverge and join other ones.

As time proceeds, some segments of the particle streets break, and the particles
further cluster in a streamwise fashion and form shorter streets, as shown in figures 7(e)
and 7(f ). These shorter streets, however, still travel along the same velocity streaks. To
confirm that the elongated velocity streaks persist though the streets of Lagrangian
particles seem to have dislocated, a new set of uniformly distributed particles are
released on the surface immediately after the time of figure 7(d) (5.364 s from the
release of the first set of particles). The distributions of the newly released particles at
the corresponding escaping times in figure 7 are shown in figure 8. Similar evolution
patterns are observed for the two sets of surface floating particles released at different
times.

Accompanying the more organized fast-moving cooler streaks are slowly-moving
warmer localized spots appearing intermittently at the surface, as shown in figure 6.
The appearance of these random surface spots can be educed from the initial
formation of the ‘fish-skin’ pattern in figure 7(a). At the early stage after the particles
are released, the floating particles bypass the localized regions of lower streamwise
velocities and begin to accumulate around the upstream edges of the slowly moving
spots. The process is focused on by showing in figure 9(a) the distribution of the
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Figure 6. Representative contour distributions of the streamwise velocity (a–c) and tempera-
ture (d–f ) at the free surface for the three reference wind speeds: (a, b) 5 m s−1; (c, d) 4 m s−1;
(e, f ) 3 m s−1. The flow travels from left to right. The warm/cold-colour areas represent regions
of high/low speed and low/high temperature.
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Figure 7. Instantaneous distribution of the surface floating Lagrangian particles at times
(a) 0.224 s, (b) 0.671 s, (c) 0.894 s, (d) 1.788 s (e) 3.129 s and (f ) 5.364 s after the release of the
particles. 1282 uniformly distributed particles are released.

Lagrangian particles superposed on the contours of the streamwise velocity shortly
after the release of the particles. A high-speed streak bifurcates into branches when it
encounters a localized low-speed spot. This can be seen from the streamwise velocity
contours (figure 6) as well as the distribution of Lagrangian particles (figure 7c, d).
A close-up superposed distribution of streamwise velocity and particles revealing
the bifurcation events is shown in figure 9(b). Such a feature is identical to the
streak dislocation or bifurcation observed by Melville et al. (1998). The merging and
bifurcation of Lagrangian particles also look similar to those shown in McWilliams
et al. (1997, figure 20), which they claimed are due to Langmuir cells.
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Figure 8. Instantaneous distribution of the surface floating Lagrangian particles at times
(a) 0.224 s, (b) 0.671 s, (c) 0.894 s, (d) 1.788 s (e) 3.129 s and (f ) 5.364 s after the release of the
second set of uniformly distributed particles. The particles are released immediately after the
time of figure 7(f ).

6.2. Spanwise distribution of streaks

For wall-bounded turbulent flows, low-speed streaks similar in geometry to the present
high-speed counterparts on a stress-imposed surface, have been identified within the
viscous sublayer in close proximity to the no-slip wall. The non-dimensional mean
spanwise spacing, λ+ = λu∗/ν, between these low-speed streaks next to a no-slip wall
is generally accepted to be around the value of 100 (e.g. Kline et al. 1967), where
λ is the dimensional mean spanwise spacing. Further study by Smith & Metzler
(1983) indicated that such a non-dimensional mean value is essentially invariant
with Reynolds number, and the streak spacing exhibits a log-normal distribution as
suggested previously by Nakagawa & Nezu (1981).
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Figure 9. Close-up snapshots of the Lagrangian particles superposed on the streamwise
velocity contours. Immediately after the particles are released (a), the floating particles bypass
the localized regions of lower streamwise velocities (blue areas). The particles eventually
accumulate and travel along the fast-moving streaks (red areas) as shown in (b), where the
fast-moving streak bifurcates into branches when it encounters a localized slowly moving spot.
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Figure 10. Sequence of the streak marks for the reference wind speed ua =5ms−1. Each
vertical line corresponds to one image frame for streak identification. The time interval
between two subsequent frames is about 0.0224 s. The dashes indicate the transverse locations
of the identified streaks.

Following the study of Smith & Metzler (1983), we determine the streak-spacing
values from visual identification using the image sequence of the contours of
streamwise velocity and the distributions of Lagrangian particles, as presented in
figures 6 and 7. The images of particle distributions are superposed on the velocity
contours to allow a cross-examination when the streak positions are determined. For
each frame of the images, a reference spanwise axis at a fixed streamwise coordinate
is chosen where the streak positions are to be marked. A streak intersecting the
reference spanwise axis is identified when the Lagrangian particles aggregate along an
elongated well-defined region of high streamwise velocity with a streamwise extent of
at least �x+ = 300. The locations of the streak intersections along the transverse axis
are then marked using a graphic digitizer software, and the transverse coordinates
are stored. An example of the sequence of streak marks for the reference wind speed
ua =5ms−1 is presented in figure 10. Each line in the figure corresponds to one image
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Figure 11. Probability density histograms of the spanwise streak spacing and the log–normal
distributions with the corresponding mean value λ+ and standard deviation σ+

λ for the wind

speed (a) ua =5ms−1, (b) 4 m s−1 and (c) 3 m s−1.

frame for streak identification, and the dashes indicate the transverse locations of the
identified streaks. The transverse distances between the neighbouring streaks, λ, are
then measured from the sequence of streak marks.

Distribution histograms of the spanwise spacing between two streamwise streaks
at the water surface determined from the described procedure of streak identification
and counting are shown in figure 11 for the three reference wind speeds considered.
The streak-spacing values are presented in non-dimensional form λ+ = λu∗/ν. The
three distributions all skew toward values lower than the means, λ+, similar to that
of low-speed streaks within a wall boundary layer. The determined non-dimensional
values of the mean spacing λ+ are 183, 161 and 201, with the corresponding standard
deviations σ+

λ = 90, 63 and 77, respectively, for the three wind speeds ua = 5, 4 and

3 m s−1, as plotted in figure 12(a). These results are about twice the values of λ+ ≈ 100
and σ+

λ ≈ 40 for the mean spacing of low-speed streaks near a no-slip wall (Smith &
Metzler 1983).
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Figure 12. (a) Variation of the non-dimensional mean streak spacing, λ+, determined by the
visual procedure with the wind speed. (b) Comparison of the dimensional streak spacings
determined by both the visual procedure (�) and the spectral analysis (©) in the present
simulations with those from the experiments of Melville et al. (1998) (
) for the three wind
speeds. The corresponding spacing of the second peaks for ua =5ms−1 from the spectral
analysis is beyond the upper range and is not shown in the figure.

As suggested by Nakagawa & Nezu (1981) and also Smith & Metzler (1983), the
skewed distribution of the streak spacing can be characterized statistically using a
log–normal probability density function determined from the values of λ+ and σ+

λ in
the form:

P (λ+) =
1√

2πλ+ψ0

exp

[
−1

2

(
1

ψ0

ln
λ+

λ+
0

)2
]

, (6.1)

where λ+
0 = λ+(1 + ψ2

λ )
−1/2 is the median value of λ+, ψ0 =

[
ln(1 + ψ2

λ )
]1/2

is the

coefficient of variation of ln λ+, and ψλ = σ+
λ /λ+. The fitted log–normal probability

density functions are superposed over the corresponding histograms in figure 11.
The comparison between the histograms and the log–normal distribution functions
appear to be quite good. These results also suggest the possible similarity between
the small-scale high-speed streaks on a wind-blown water surface and the low-speed
streaks next to a wall boundary.

The characteristics of the surface streak spacing can also be estimated by examining
the spanwise spectrum of the streamwise-averaged surface fluctuating streamwise
velocity, u′

s(y) =
∫

u′(x, y, 0) dx. The distributions of the normalized average spectra,

‖û′
s(λ)‖/〈u′2〉, for the three reference wind speeds are shown in figure 13. The power

spectra are obtained from the ensemble average of the streamwise-averaged velocity
u′

s(y) at various times within the interval when the surface turbulence reaches the
stationary state. Despite the initial broadband spectra without any predominant span-
wise wavelengths, the streamwise fluctuating velocities are dominated by components
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Figure 13. Distributions of the normalized average spectra, ‖û′
s(λ)‖/〈u′2〉, for the three

reference wind speeds of (a) 5 m s−1, (b) 4 m s−1 and (c) 3 m s−1. The power spectra are
obtained from ensemble averages of the streamwise-averaged velocity u′

s(y) at various times
within the intervals when the surface turbulence reaches the stationary state.

with preferential cross-spacing wavelengths when surface streaks appear, as shown in
figure 13. The spectra all display two characteristic peaks for the three wind speeds
considered. The non-dimensional average streak spacing λ+, which can be considered
as the shorter wavelength of the first spectrum peak, are 219, 249 and 270, respectively,
for the wind speeds ua = 5, 4 and 3 ms−1. Consistent with the finding for low-speed
streaks next to a no-slip wall (Kline et al. 1967), the spacing values determined in
this more objective manner are greater than those determined by the visual counting
scheme. The longer wavelength implies possible spanwise modulation of the streaks
as shown in figure 6.

While the present numerical simulations are not completely compatible with
the conditions in the experiments of Melville et al. (1998), the simulated surface
signatures, however, quantitatively resemble the observations. It is therefore worth
comparing the characteristic cross-spacing of the surface streaks arising from
the simulated boundary layer with that from a wind-driven surface shear layer.
Summary of the surface streak spacing determined by both the visual procedure
and the spectral analysis in the present study, and from the experiment of Melville
et al. (1998) is shown in figure 12(b). The spacing values observed in the experiment
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of Melville et al. (1998) are in general slightly larger than those determined in the
present numerical simulations. For the wind speed of ua = 5 m s−1, the numerical
predictions are close to the measurement of Melville et al. (1998). Both numerical
and experimental results clearly show the same trend: the streak spacing decreases as
the wind speed increases.

7. Coherent flow structures
The surface features discussed in § 6 are strongly linked to the coherent structures

in the subsurface flow. To reveal the underlying structures, three-dimensional cut-
away views of instantaneous streamwise velocity u and temperature θ distributions
are shown in figures 14 and 15 for the wind speed ua = 5 m s−1. The corresponding
distributions of vertical velocity w and gas concentration c on the facing cross-stream
planes are also depicted in figures 14 and 15, respectively.

It is discernible that the longitudinal streaks are the surface signatures of an array
of high-speed jets strongly contiguous to the surface. The vertical depths of the jets
are limited within the viscous sublayer. Looking into the distribution of the vertical
velocity, downdrafts occur beneath the longitudinal streaks (marked with downward
arrows in the figure). The cold water collects along the high-speed jets which are
characterized by cold streaks at the surface. The well-known cool-skin effect (e.g.
Katsaros 1980), therefore, is attributed to these coherent thermal structures within
the surface sublayer. Despite the different surface boundary conditions between the
temperature and the gas concentration fields, the two scalar distributions are virtually
identical except in the region immediately next to the water surface.

Beneath the sublayer, distinct ‘tongues’ of warmer water with lower streamwise
velocities stick vertically out of the well-mixed submerged region. In contrast to the
more organized cold high-speed jets, these warm low-speed tongues appear randomly
with no spatial pattern. Comparing the distributions of the streamwise and vertical
velocities on the cross-stream vertical plane, it can be seen that the coherent tongues
are formed by upward advection of the warm and low-speed water underneath. When
the upwelling is strong enough to penetrate the viscous sublayer (one particular event
is highlighted by a circle in figure 14), it results in a localized low-speed spot at
the surface. The bifurcation of the elongated surface streak occurs (figure 9) when a
high-speed jet encounters such a localized low-speed updraft.

An explanation of this local upwelling flow is the emergence of Ω-shaped horseshoe
vortices in the turbulent shear layer by turning and stretching of the spanwise vortices
(Tsai 1998). These coherent vortices move upwards and impinge on the surface. The
upper heads of the Ω-shaped vortices thereby induce the local upwelling flows and
bring up the submerged slowly moving fluids. Such an impinging process can also
be deduced from the enhancement of horizontal divergence of the velocity field
immediately beneath the surface (figure 4).

To assess the presence of circulatory flow that forms the surface streaks, we plot
in figure 16 the instantaneous iso-surfaces of streamwise vorticity ωx , the contours of
ωx on various vertical cross-sections (y, z-plane) along with the streamwise velocity
contour on the surface. In sharp contrast to the more organized high-speed streaks
at the surface, the streamwise vortical field display is irregularly spaced and is much
shorter in length. The spanwise spacing between the vortex tubes is also narrower
than that between the streaks. Furthermore, the predominant streamwise vortices are
strongly confined to near the surface, highly consistent with the vertical distribution
of streamwise vorticity (figure 4). While the pairing of the counter-rotating vortices
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Figure 14. Three-dimensional cut-away view of streamwise velocity u for the reference wind
speed ua =5ms−1. The corresponding contours of vertical velocity w on the facing cross-stream
plane are also depicted on an additional vertical section. Note that the non-dimensional friction
coordinate z+ is used for the vertical axis to demonstrate better the vertical scale of the flow
structures. The downward arrow indicates the occurrence of downdraft beneath the high-speed
streaks. The circle highlights a particular region where the upwelling tongue penetrates the
viscous sublayer, and the upward advection carries the submerged slowly-moving water and
induces a low-speed spot on the free surface.
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Figure 15. Three-dimensional cut-away view of temperature θ for the reference wind speed
ua =5ms−1. The corresponding contours of gas concentration c on the facing cross-stream
plane are also depicted on an additional vertical section. Note that the non-dimensional friction
coordinate z+ is used for the vertical axis to demonstrate better the vertical scale of the flow
structures. The circle highlights the region where the upwelling penetrates the conductive
sublayer and induces a warm spot on the free surface.
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Figure 16. Representative iso-surfaces of streamwise vorticity ωx beneath a selective area
of water surface for the reference wind speed ua =5ms−1. Two contour values, having the
same magnitude, but opposite signs, are shown. Also depicted are the contour distributions of
the streamwise vorticity on various cross-stream vertical planes and the streamwise velocity
contours on the surface. Note that the non-dimensional friction coordinate z+ is used for the
vertical axis to demonstrate better the vertical scale of the flow structures.

takes place throughout the vorticity field, alternating vortex tubes are commonly
observed among other dominant streamwise vortices. Such an irregular streamwise
vortical structure not only differs from, but also is more complex than, the idealized
Langmuir circulatory flow pattern where a fixed array of counter-rotating streamwise
vortices exists directly beneath the fast-moving surface streaks (see, for example,
Leibovich 1983, figure 1a; Thorpe 2004, figure 1).

8. Concluding remarks
The development of a turbulent shear layer beneath a flat free surface driven by a

shear stress is investigated by direct numerical simulation of the flow. The emphasis
is on the underlying flow structures as well as the induced signatures on the surface
boundary. Despite the simplification of neglecting the motions of surface waves,
the simulated flow exhibits the major surface features observed in the laboratory
and field experiments. The interaction between surface boundary and the coherent
turbulent flows is found to account for the characteristics of the near-surface statistical
properties. The key findings of the results as given below.

The simulations successfully resolve the molecular sublayers next to the surface
boundary for the vertical transport of momentum and scalar. The computed thickness
scales of these sublayers compare favourably with the measurements in the field and
laboratories. The conceptual physical process of ‘surface renewal’ is realized in the
simulated flow, in which the molecular sublayer is disrupted momentarily by the
updrafts randomly arising from well-mixed turbulent regime. The upwelling flows
advect upward the submerged warmer and slowly moving fluids, which then induce
localized warm and low-speed spots on the surface.
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Surface streaming with the cross-spacing of the order of centimetres, as evidenced
by the experimental observations, also appear on the simulated upper surface. The
streaming is characterized by longitudinally elongated streaks carrying high-speed and
low-temperature fluids. Floating Lagrangian particles aggregate and travel along these
streaks. The computed streak spacings for various wind speeds compare reasonably
with those determined in the laboratory experiments. Visualization of the three-
dimensional velocity field indicates that these surface streaks are formed by the
high-speed streamwise jets within the viscous sublayer. Branching of a streak occurs
when the high-speed jet encounters, an upwelling flow.

Such markedly smaller-scale surface streaming is geometrically similar to the
windrows at sea or in lakes with the scale of the order of metres to kilometres
formed by the well-known Langmuir circulations (Leibovich 1983; Thorpe 2004).
These streaky surface features also resemble those from large-eddy simulations of
ocean mixed layer (e.g. McWilliams et al. 1997; Skyllingstad & Denbo 1995), in
which the Langmuir-circulation formation mechanism arising through the interaction
between the Stokes drift induced by surface waves and the wind-driven vertical shear
is modelled by including a vortex force in the momentum equations. Since the water
surface is artificially assumed to remain flat in the present simulations, the mechanism
involving wave–current interaction to generate Langmuir turbulence is also prohibited.
As a direct consequence, the anomalous increase in the upwelling/downwelling
velocity variance 〈w2〉, which has been observed in the large-eddy simulations of
Skyllingstad & Denbo (1995) and McWilliams et al. (1997) as well in the field
measurements of D’Asaro & Dairiki (1997), is not found in the present study.

Attempts to identify the corresponding subsurface circulatory flows that produce the
organized surface streaks, however, reveal variable and transient vortical structures.
Notably, alternating vortices with streamwise extent much shorter than the elongated
surface streaks are observed among other predominant streamwise vortices. No spatial
or temporal correlation between the high-speed streaks and the elongated streamwise
vortices is detected in the present study. The findings for the high-speed streaks on
a stress-driven surface are similar to what has been observed for low-speed streaks
arising within the viscous sublayer in close proximity to a no-slip boundary. Direct
numerical simulation results of wall-bounded turbulent boundary layer (Moin &
Mahesh 1998) reveal not only that the extent of the streamwise vortices in the near-
wall region is significantly shorter than the elongated regions of low-speed streamwise
velocity, but also that the vortices are not necessarily in pairs. The large streamwise
length of the low-speed streaks are found to be attributed to a sequence of vortices
following each other, pumping low-speed fluid away from the wall.

The close resemblance of the streak geometries and streamwise vortical structures
suggests that the low-speed streaks of a turbulent wall boundary layer and the high-
speed streaks of a stress-driven turbulent shear layer might well share the same
formation mechanism. Similar to the turbulent boundary layer next to a no-slip
wall, the wind-driven shear flow adjacent to the water surface is subjected to a
mean shear which is prescribed by wind stress. A stress-driven surface flow differs
from wall-bounded turbulence in that the surface-tangential velocities are free to
evolve on the stress-imposed surface whereas, they are not on the no-slip wall. Our
simulation results, however, demonstrate that the turbulent flow next to a stress-
imposed surface also exhibits a two-layer (linear viscous sublayer and logarithmic
buffer layer) velocity profile, analogous to that of a turbulent wall layer. The high-
speed streaks in a stress-driven turbulent shear flow appear within the viscous sublayer
and undergo a self-sustaining process like the low-speed streaks in a turbulent wall
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layer. Furthermore, the numerical experiment on near-wall turbulence by Jiménez &
Pinelli (1999) indicates that the presence of a no-slip wall is only necessary to maintain
the mean shear in the formation of velocity streaks. This finding clearly shows the
possibility that the mechanism, similar to that which generates geometrically alike
low-speed streaks next to a no-slip wall, can also produce streaks on natural water
surfaces. Although, so far, no correlation between the high-speed streaks and the
streamwise vortices beneath has been visually detected in our simulations, further
study is required to see if the relationship between streaks and vortical motions found
near a no-slip wall also exists in this stress-driven free-surface turbulent layer, and
also to investigate the formation mechanisms of both structures.

This work was supported by grants from the National Science Council of Taiwan
under contract numbers NSC 92-2611-M-008-003 and 93-2611-M-008-002. We thank
K.-H. Wen for his assistance in visual counting of the surface streaks.
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