
PHYSICAL REVIEW A 92, 063429 (2015)

Effects of strong laser fields on hadronic helium atoms
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The metastable hadronic helium atoms in microseconds lifetime are available in laboratory, and two-photon
spectroscopy was reported recently. This exotic helium atom has an electron in the ground state and a negative
hadron rotating around the helium nucleus. We theoretically study the excitation on hadronic helium by femtosec-
ond pulse and elucidate the influence of moleculelike structure and rotation behavior on the photoelectron spectra
and high-order harmonic generation. Because of the moleculelike structure, the electronic ground state consists
of several angular orbitals. These angular orbitals can enhance photoelectron spectra at high energies, and also
influence the harmonic generation spectra considerably. In particular, the harmonic spectra can occur at even har-
monic orders because of the transition between these angular orbitals and continuum states. On the other side, the
rotation behavior of hadron can induce a frequency shift in the harmonic spectra. The magnitude of the frequency
shift depends on the orbiting speed of the hadron, which is considerable because the rotation period is in a few
femtoseconds, a time scale that is comparable to that of infrared laser and is feasible in current laser experiments.
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I. INTRODUCTION

The experiments of the ASACUSA group [1–3] in CERN
[4] demonstrated that by impinging antiproton beams on
liquid or gaseous helium, most antiprotons are captured and
about 3% of them form metastable atoms (pHe+) that have a
lifetime of a few microseconds. Similar results were observed
for the incidence of negative hadron beams, such as kaons
(K−) or pions (π−), which form metastable hadronic helium
atoms (X−He+) [5], too. The origin of longevities of the
mesonic atoms, known from the bubble-chamber experiment,
was explained by Condo [6] and Russell [7] during the
1960s. In the formed hadronic atom, the quantum state can
be distributed broadly; however, the captured hadron favors to
occupy a quantum state of the large principle quantum number
nx ∼ (Mr/me)1/2 [8] [e.g., nx of (pHe+) ∼ 38] because the
orbital has a binding energy similar to that of the replaced
electron, where Mr is the reduced mass of X−He+ and
me is the mass of the electron. The decay mechanism of
hadronic helium was carefully studied [3,8,9]. The circular
state (nx,lx = nx − 1) is more stable than other states and can
be modeled semiclassically.

Hadronic heliums were intensively investigated [10].
Namely, the antiproton capture process has been studied exper-
imentally [1,2,11–13] and theoretically [14,15]. A recent two-
photon experiment demonstrated the antiproton-to-electron
mass ratio with a similar precision to that of proton-to-electron
mass ratio [16] and the transition frequency of antiprotonic
helium with agreement to that of the highly precise theoretical
calculations [17]. These studies provide critical data for
examining fundamental physics laws in antimatter such as
charge, parity, time reversal symmetry [13], and quantum
electrodynamics. Recently, the three-body mass polarization
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effect that induced a resonance energy difference by using
V-shaped coordinates and Jacobi coordinates was resolved by
sophisticated calculations [18,19].

Hadronic helium is an unusual three-body system which
consists of a helium nucleus, a hadron, and an electron. On
one hand, hadronic helium is a kind of exotic atom, but
the heavy hadron mass and nucleus make it similar to a
two-center diatomic molecule. On the other hand, the captured
hadron is negatively charged unlike a diatomic molecule which
has two positive nuclei. Because of the dual atomic and
molecular property, hadronic helium was called atomcule [3].
Furthermore, the captured hadron is moving around the helium
nucleus in the field of an electron cloud. The orbiting speed of
hadron is particularly fast. According to the hadron-to-electron
angular speed ratio ∼1/lx , the orbiting period of the hadron
is in the order of femtoseconds, while lx is in the order of
several tens. This orbiting time scale approaches the optical
cycle of an infrared (IR) laser. Thus, possible coupling effects
between the hadronic rotation and the IR laser can occur.
As shown in Ref. [16], the hadronic atom is amenable for
laser spectroscopy; thus, the interactions of atomcules with
current ultrashort laser pulses could be a new subject in
quantum dynamics to explore. Intense and ultrashort laser
pulse interactions involving atoms and molecules has been a
growing field in atomic, molecular, and optical physics. Promi-
nent phenomena such as above-threshold ionization (ATI)
and high-order harmonic generations (HHG) have generated
much new interest [20–27]. However, to our knowledge, such
research on hadronic helium has not yet been performed.

In this paper we theoretically study the strong-field phe-
nomena of hadronic heliums excited by IR laser pulses. Among
the plenty of hadron trapping conditions, we consider the most
probable circular state, and elucidate the circular-state effect
on the ATI and HHG spectra. Because of the molecularlike
structure, the electronic ground state is no longer spherical but
consists of a number of angular momentum components. The
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presence of these angular orbitals can enhance ATI spectra at
high photoelectron energies. The enhancement depends on the
hadronic rotation speed. As the rotation speed increases, the
enhanced effect is strengthened. As for the HHG, because of
the molecularlike structure, the hadronic helium is no longer
limited to generate odd harmonics only, but also allows the
generation of even-order harmonics, just like the heteronuclear
diatomic molecules. Moreover, the HHG in hadronic helium
can also emit harmonics that are not an integer of IR frequency
because of hadronic rotation dynamics. The rotation effect
makes a frequency shift in the HHG spectra. The frequency
shift is dependent on the hadronic rotation frequency and
considerable because of a fast hadronic rotation period, which
is comparable to an IR optical cycle.

This paper is organized as follows. In Sec. II we describe
the theoretical method including (i) the metastable state of
the hadronic helium atom, (ii) the transformation from the
rotating coordinates system to the laboratory system, and
(iii) the electronic excitation by the strong laser pulse. In
Sec. III we present the ATI and the HHG spectra to elucidate
the moleculelike effect and the rotational effect. Finally,
conclusions are drawn in Sec. IV. Unless otherwise stated,
atomic units (a.u.), i.e., me = e = � = 1, are used in this paper.

II. METHODOLOGY

A. The metastable state of the hadronic helium atom

Figure 1(a) shows the semiclassical picture of circular
motion for a hadronic helium. In the laboratory frame S, a
hadron X− rotates around the coordinate origin at which the
nucleus stands. Instead, if we change to the rotating frame S ′
as plotted, the hadron X− becomes fixed at the z′ axis. This

FIG. 1. (a) Schematic diagrams of hadronic helium for the
transformation between the laboratory frame S and the rotating frame
S ′. (b) Geometric description of the X−He+ atom for the interaction
among the He2+ ion, hadron X−, and electron at the rotating frame
S ′. (c) Geometrical description of the X−He+ atom in the presence
of an electric field.

is helpful to solve this problem because the system can be
reduced to a static Hamiltonian description, where we can find
the total wave function of the hadronic helium in a proper
method. With Fig. 1(b), the Hamiltonian in the rotating frame
S ′ can be written down as

H = − 1

2Mr

∇2
R′ − 1

2
∇2

r′ + V (r′,R′) − 2

R′ , (1)

where V (r′,R′) = − 2
r ′ + 1

|r′−R′ | , and Mr is the reduced mass
of hadron and the helium nucleus. The mass polarization term
is neglected here because it provides a small contribution
to both the energy structures and the capture cross sections
for such a system [19]. Within the Born-Oppenheimer (BO)
approximation, the wave function for the Hamiltonian can
be written as �(r′,R′) = ψ(r′; R′)χ (R′), where ψ(r′; R′)
and χ (R′) are the electronic and hadronic wave functions,
respectively. They satisfy

− 1

2
∇2

r′ψ + V (r′,R′)ψ = E(R′)ψ, (2a)

− 1

2Mr

∇2
R′χ +

[
E(R′) − 2

R′

]
χ = εχ. (2b)

The validity of the BO approximation depends on the
characteristic time of the He+-X− vibration and the electron
motion. The ratio of vibration time scale to electron motion
for targets considered here (pHe+ and K−He+) at the circular
state can be at two orders of magnitude as showed by Shima-
mura [9], thus justifying the approximation. To solve Eq. (2a),

the potential 1
|r′−R′ | is expanded as

∑∞
k=0

r ′k
<

r ′k+1
>

Pk(cos θ ′), where
Pk(cos θ ′) is the Legendre polynomial of order k, r ′

< =
min(r ′,R′) and r ′

> = max(r ′,R′). The electronic wave function

TABLE I. Comparison between electronic eigenenergies of p̄He+

in the molecular Born-Oppenheimer model by Shimamura [9] and the
present results.

1σ 2σ

R Shimamura This work Shimanura This work

0.05 −0.5031900 −0.5031880 −0.1253978 −0.1253976
0.10 −0.5123196 −0.5123131 −0.1265262 −0.1265254
0.15 −0.5269067 −0.5268941 −0.1282993 −0.1282978
0.20 −0.5465679 −0.5465653 −0.1306356 −0.1306353
0.25 −0.5709082 −0.5708841 −0.1334506 −0.1334479
0.30 −0.5994601 −0.5994285 −0.1366563 −0.1366529
0.35 −0.6316630 −0.6316229 −0.1401650 −0.1401609
0.40 −0.6668734 −0.6668161 −0.1438933 −0.1438876
0.45 −0.7043992 −0.7043573 −0.1477675 −0.1477634
0.50 −0.7435419 −0.7434934 −0.1517257 −0.1517212
0.55 −0.7836382 −0.7835822 −0.1557197 −0.1557147
0.60 −0.8240915 −0.8240098 −0.1597134 −0.1597062
0.65 −0.8643914 −0.8643242 −0.1636814 −0.1636756
0.70 −0.9041202 −0.9040266 −0.1676070 −0.1675991
0.75 −0.9429518 −0.9428656 −0.1714796 −0.1714724
0.80 −0.9806429 −0.9805620 −0.1752934 −0.1752867
0.85 −1.0170227 −1.0169392 −0.1790456 −0.1790386
0.90 −1.0519803 −1.0518962 −0.1827354 −0.1827283
0.95 −1.0854533 −1.0853879 −0.1863632 −0.1863576
1.00 −1.1174174 −1.1173550 −0.1899302 −0.1899248
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FIG. 2. (Color online) Hadronic potential (left axis) and hadronic
wave function (right axis) as a function of distance R′ between hadron
X− and the He2+ ion for the pHe+ atom (red-solid line) and the
K−He+ atom (blue-dashed line).

is decomposed by ψ(r′; R′) = ∑
j

√
2j+1

2
uj (r ′;R′)

r ′ Pj (cos θ ′).
Integrating Eq. (2a) over the angle yields[

−1

2

∂2

∂r ′2 + l(l + 1)

2r ′2 − 2

r ′

]
ul(r

′; R′)

+
∑

j

j+l∑
k=|j−l|

√
(2l + 1)(2j + 1)

×
(

j k l

0 0 0

)2
r ′k
<

r ′k+1
>

uj (r ′; R′)

= E(R′)ul(r
′; R′), (3)

where (j k l

0 0 0) is the Wigner-3j symbols [28,29]. To
solve the eigenvalue problem, we apply the generalized
pseudospectral (GPS) method [30], which provides a highly
accurate differentiation matrix. The nonlinear mapping
r ′ = 1+x+c1

1−x+c2
, x ∈ [−1,1] is used, where c1 and c2 are

determined by the r ′ range with r ′
min = 10−15 and r ′

max = 200

adopted here, together with ul(r ′(x)) =
√

dr ′(x)
dx

gl(r ′(x))
as explained in Ref. [30]. The Legendre-Gauss-Lobatto
grids are used in calculation [31], i.e., {xk}N−1

k=2 the zeros
of d

dx
PN−1(xk) with x1,N = ∓1, where PN−1(x) is the

Legendre polynomial with N being the number of grids
that we use N = 201 here. After discretization, the

coupled Eq. (3) can be written as (N − 2) × (lmax + 1)
matrix equation with the column vector uT =
[u0(x2),u0(x3), . . . ,u0(xN−2), . . . ,ulmax (x2),ulmax (x3), . . . ,ulmax

(xN−2)], where lmax denotes the maximum angular quantum
number and with the boundary conditions ul(x1,N ) = 0.
The electronic wave function converges as lmax increases.
Here we use lmax = 7, which is calibrated by comparing the
calculated electronic potential energies with the results of
Shimamura [9]. Table I shows an excerpt of the results at
1σ and 2σ states. The difference between Shimamura’s and
ours is less than 10−4 for 1σ , and the accuracy of the 2σ

state is better than that of the 1σ state. The validity of lmax is
also examined by the accuracy of the hadron eigenenergy ε.
Substituting χ (R′) = f (R′)

R′ Ylxmx
(
R′ ) into Eq. (2b) yields

− 1

2Mr

∂2

∂R′2 f (R′) +
[
lx(lx + 1)

2M ′
rR

′2 + Eg(R′) − 2

R′

]
f (R′)

= εf (R′), (4)

where lx is equal to nx − 1 with nx = (Mr )1/2 for the circular
states [1,3,8,32], and Eg(R′) is the electronic ground-state
eigenenergy of Eq. (3). For antiprotons, the eigenenergies we
obtained are −2.80031 (lmax = 7) and −2.80033 (lmax = 8),
whereas for kaons, the eigenenergies are −2.80013 (lmax = 7)
and −2.80015 (lmax = 8), where the GPS method is applied
with R′

min = 10−15 and R′
max = 10. Both hadrons show the

accuracy of eigenenergies at the fourth digit in mantissa, which
is sufficient for the strong-field calculations. The two kinds
of hadronic circular-state wave functions considered here are
shown on the right axis of Fig. 2, whereas the left axis denotes
the hadronic potential. The hadronic wave functions are used
to estimate the average distance 〈R′〉, which determines the
electronic ionization energy Ip = Eg(〈R′〉) and the rotation
period of the hadron Trot = 2π〈R′〉/〈v′〉. The hadronic velocity
〈v′〉 is determined by the hadronic kinetic energy 〈p2〉

2Mr
, where

Mr is compiled in Refs. [33,34]. The list of parameters used for
the two targets before (X−He+) and after (X−He2+) electronic
ionization is shown in Table II. After electronic ionization,
the hadron experiences a stronger attractive force from the
helium nucleus (+2e) than that before ionization (+e). Thus,
the average distance 〈R′〉 after ionization becomes shorter and
the rotation speed of the hadron is faster than that before
ionization. In our paper, the electronic motion driven by the
laser field is calculated with R′ fixed at 〈R′〉.

TABLE II. Parameters of negative hadronic helium atoms and ions. (nx,lx) are principal and azimuthal quantum numbers of the most
probable circular states in the hydrogenic model. Mr is the reduced mass of the hadron and helium nucleus. 〈R′〉 is the averaged distance of the
hadron to nucleus of the circular state. Ip is the electron ionization potential. Trot is the hadron rotation period in femtosecond and ωrot is the
rotation frequency in eV.

Hadronic atom (nx,lx) Mr (a.u.) 〈R′〉 (a.u.) Ip (a.u.) Trot (fs) ωrot (eV)

p̄He+ (38,37) 1466.8986 0.5749 0.8037 1.9097 2.1656(∼1.4ωIR)
p̄He2+ – – 0.4987 – 1.4407 2.8707(∼1.9ωIR)
K−He+ (29,28) 853.1106 0.5791 0.8071 1.4694 2.8144(∼1.8ωIR)
K−He2+ – – 0.5014 – 1.1055 3.7411(∼2.4ωIR)
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B. Coordinates transformation

The wave function in the rotating frame S ′ is now trans-
formed back to the laboratory frame S. The transformation
can be described by the rotation operator R̂(ϑ̂), where ϑ̂ =
(α,β,γ ) is the Eulerian angle [29]

ϕjm(r̂′) =
∑
j ′m′

〈j ′m′|R̂(ϑ̂)|jm〉ϕj ′m′(r̂′)

=
∑
m′

D
j

m′m(ϑ̂)ϕjm′ (̂r), (5)

where D
j

m′m(ϑ̂) = 〈jm′|R̂(ϑ̂)|jm〉 is the rotation matrix and
the summation index j ′ is excluded later because the total
angular momentum is unaltered during the rotation transfor-
mation. By designating the rotation of R̂(ϑ̂) that transforms
P1(θ1,φ1) and P2(θ2,φ2) to P ′

1(θ ′
1,φ

′
1) and P ′

2(θ ′
2,φ

′
2) in a unit

sphere, respectively, the orthogonality of D
j

m′m(ϑ̂) can provide
the identity [29]∑

m

Y ∗
jm(θ1,φ1)Yjm(θ2,φ2) =

∑
m

Y ∗
jm(θ ′

1,φ
′
1)Yjm(θ ′

2,φ
′
2). (6)

In the S ′ frame we simply set the hadron at (θ ′
1 = 0,φ′

1 = 0),

and the electron at (θ ′,φ′). By using Y ∗
jm(0,0) =

√
2j+1

4π
δm0 we

obtain

Yj0(θ ′,φ′) =
√

4π

2j + 1

∑
m

Y ∗
jm(θ1,φ1)Yjm(θ2,φ2). (7)

Comparing Eq. (7) with Eq. (5) thus gives D
j

m0(ϑ) =√
4π

2j+1Y ∗
jm(θ1,φ1). We assume the classical orbiting motion [1]

of the hadron nucleus at large angular momentum lx with the

rotation angle θ1 = θrot(t) = ωrott + θ0 and φ1 = 0 according
to Fig. 1(a). The ground-state electronic wave function in the
laboratory frame S can be written as

ψ(r′; R′) =
∑

j

uj (r ′; R′)
r ′ Yj0(θ ′,φ′)

=
∑
jmj

uj (r; R)

r
Yjmj

(θ,φ)

√
4π

2j + 1
Y ∗

jmj
(θrot,0)

=
∑
jmj

ψjm(r; R)Rjmj
(θrot), (8)

where ψjm(r; R) = uj (r;R′)
r

Yjmj
(θ,φ) and Rjmj

(θrot) =√
4π

2j+1Y ∗
jmj

(θrot,0) called the rotation factor here, which is

useful to elucidate the rotation effects in Sec. III.

C. Electronic excitation by intense field

With the presence of a strong IR field, the electron in the
hadronic helium can be excited into a continuum, rescattered
with a parent ion, and then emits a high-order harmonics [35].
In contrast, the excitation of the hadron can be neglected
because of a much heavier hadronic mass than the electron
mass. Figure 1(c) shows a schematic diagram of an interaction
of the hadronic helium with an IR electric field. In this paper
we consider the linearly polarized light pulse. We assign the
polarization direction as the z axis (θE = 0) for convenience.
If we choose θE �= 0, there will be a factor difference of
cos γ [described below Eq. (11)] in transition amplitude
Eq. (11) between the two conventions and the factor is time
independent. Hence this assumption will not affect the physical

FIG. 3. (Color online) (a) ATI spectra of the pHe+ atom (black-solid line) and the K−He+ atom (black-dashed line). Decomposed ATI
spectra of (b) the pHe+ atom and (c) the K−He+ atom by the angular quantum number from l = 0 to l = 3. (d) Comparison between decomposed
ATI spectra of the pHe+ atom (solid line) and the K−He+ atom (dashed line). λIR = 800 nm, IIR = 5×1014 W/cm2, and τIR = 5 fs.
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interpretation for the circular-state effect on the ATI and HHG
spectra.

The electronic excitation process can be described by the
interaction potential VIR(t) = AIR(t) · p/c + A2

IR(t)/2c2 with

AIR(t) = ε̂
cEIR

ωIR
exp

[
−2 ln 2

(
t

τIR

)2]
cos(ωIRt), (9)

where ωIR = 1.55 eV (800 nm) and τIR = 5 fs were used as
an example. The unit vector ε̂ is defined in Fig. 1(c).

The ionized ground-state electron is described by the
Volkov wave as∣∣φV

k (t)
〉 = φk(r) exp

[
−i

∫ t

−∞
Ek(t ′)dt ′

]
, (10)

where φk(r) = (2π )−3/2 exp(ik · r) and Ek(t ′) =
1
2 [k + AIR(t)/c]2.

According to the S-matrix theory [36–39], the first-order
transition amplitude can be written as

Tk(t) = −i

∫ t

ti

dt1
〈
φV

k (t1)
∣∣VIR(t1)|ψg(t1)〉

= −i

∫ t

ti

dt1

〈
φV

k (t1)|VIR(t1)|
∑
lml

ψlml
(t1)Rlml

(θrot)

〉
,

(11)

and the photoelectron (ATI) spectrum ∂P (E)/∂E is calculated
by

∫
all 
k

|Tk(tf )|2kd
k . Here we can see the transition
amplitude with θE �= 0 differs from that with θE = 0 by the
factor cos γ = cos θ cos θE + sin θ sin θE cos(φ − φE), which

is a time-independent term and shall not affect the circular
effect caused by the rotation factor.

Regarding the HHG, by constructing the time-dependent
electronic wave function

|�(t)〉 = |ψg(t)〉 +
∫

d3kTk(t)
∣∣φV

k (t)
〉
, (12)

the dipole moment for harmonic emission can then be
calculated using

d(t) ≡ 〈�(t)|z|�(t)〉

= −i

∫ t

ti

dt1

∫
d3k〈ψg(t)|z|φk〉〈φk|VIR(t1)|ψg(t1)〉

× exp

[
−i

∫ t

t1

Ek(t ′)dt ′
]

+ c.c., (13)

where c.c. means the complex conjugate, and the multiple inte-
gral is accurately calculated without using the stationary phase
approximation [40]. Consequently, the HHG spectrum can be
obtained through |HHG(ω)|2 = | ∫ ∞

−∞ d(t) exp(−iωt)dt |2.

III. RESULTS AND DISCUSSIONS

A. ATI spectra of the hadronic helium atom

Figure 3(a) shows the ATI spectra of pHe+ (solid line) and
K−He+ (dashed line) under the laser pulse of peak intensity
3 × 1013 W/cm2, where the Coulomb rescattering effect can
be neglected. As expected, both spectra monotonically decay
with the energy, but K−He+ shows a spectrum higher than
pHe+. It seems inconsistent with the fact that the ionization
potential of K−He+ is higher than that of pHe+. The
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FIG. 4. (Color online) (a) Differential photoelectron spectra calculated from |Tk(l = 0) + Tk(l = 1)|2 and |Tk(l = 0)|2 + |Tk(l = 1)|2 show
invisible interference. (b) Corresponding plot for l = 0 and l = 2, interferences appear near the energy region 16 eV. The label of vertical axis
is in power of 10.
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results come from the effect of hadronic rotation. To reveal
this effect, it is helpful to decompose the ATI spectrum by
angular quantum numbers l. Figures 3(b) and 3(c) show the
decomposed spectrum for pHe+ and K−He+, respectively. At
very low photoelectron energies, the l = 0 spectrum is most
dominant among all decomposed spectra. However, at higher
photoelectron energy, this dependence changes because the
l = 1 spectrum becomes higher than the l = 0 one. This
phenomenon is particularly evident for K−He+, where the
crossover point is at ∼3 eV. Moreover, in K−He+ the l = 2
spectrum can even overcome the l = 1 spectrum beyond
∼14 eV. The enhanced ATI spectrum is stronger in K−He+

than pHe+ because of their different hadronic rotation speeds.
Note that the convergence of enhanced ATI spectrum as l

increases was examined, while the spectra in Fig. 3(a) are
summed up to lmax = 7 to ensure the accuracy.

The relation between the enhancement and the rotation
effect can be elucidated analytically. In hadronic helium, the
molecularlike structure causes the electronic ground state to
have a number of orbital components, and each of these orbital
components is multiplied by the rotation factor Rlml

(θrot) be-
cause of the effect of hadronic rotation as shown in Eq. (8). The
rotation factor is proportional to Y ∗

lml
(θrot,0), which reduces

the effective ionization energy because of the phase term
(ωkg − lωrot)t in the transition amplitude [Eq. (11)], where
ωkg = ωk − ωp, ωk is the energy of an ionized electron, and
Ip ≡ −ωg is the ionization potential. For the l = 1 component,
the effective ionization energy is reduced by ωrot, because,
for example, Y ∗

10(θrot,0) ∝ cos θrot ∝ (eiωrott + e−iωrott ), which
leads to a phase term (ωkg − ωrot)t = (ωk + Ip − ωrot)t in
the transition amplitude, where θ0 is temporarily neglected
for simplicity, and so is Y ∗

1±1(θrot,0). Similarly, for the l = 2
component, the effective ionization energy is reduced by 2ωrot,
and so on. Because the kaon has a smaller mass than the
antiproton, the rotation speed of K−He+ is faster than that of
pHe+. Thus, the enhancement caused by the rotation factor is
more substantial in K−He+ than in pHe+. This is particularly
evident in Fig. 3(d), where the difference of ATI spectra
between K−He+ and pHe+ is multiplied as l increases. The
rotation effect then overcomes the difference of ionization
energy between the two targets, and eventually produces a
higher ATI spectrum in K−He+ than in pHe+.

In the transition amplitude Eq. (11), various angular com-
ponents ψl,ml=0 contribute to a photoelectron at momentum
k. The transition amplitudes from different l angular orbitals
cause an interference effect. As an example, Fig. 3(b) shows
the differential photoelectron spectra of l = 0 cross l = 1 near
energy 5 eV and other energies; while l = 0,1,2 cross near
the 16 eV region. The interferences in these energy regions
are possible. With the expansion of plane wave, Eq. (11)
becomes

e−i�k·�r = 4π
∑
l,m

(−i)lYlm(k̂)Y ∗
lm(r̂)jl(kr),

Tk(t = ∞) = 1

π

∑
l

(−i)l+1

√
2l + 1

2
Pl(cos θk)

×
∫ +∞

−∞
dt[kzA(t) + A(t)2/2]Pl(cos[ωrott])

× exp

[
i

∫ t

−∞
Ek(t ′)dt ′ + iIpt

]
×

∫ ∞

0
drjl(kr)ψl0(r). (14)

We can see there is a factor (−i)l+1 for l-component transi-
tion amplitude Tk(l). Thus, l = 0 and l = 1 will have a minor
interference effect because of the phase difference of i, while
l = 0 and l = 2 may show interference. Figure 4(a) shows
|Tk(l = 0) + Tk(l = 1)|2 and |Tk(l = 0)|2 + |Tk(l = 1)|2,
there is negligible interference effect. In Fig. 4(b) we show
corresponding plots for l = 0 and l = 2, interferences appear
in the electron energy region near 16 eV.

B. HHG spectra of the hadronic helium atom

Figure 5 shows the HHG spectrum of the pHe+ atom under
the laser pulse at a peak intensity of 5×1014 W/cm2. At
first glance, the HHG spectrum of pHe+ (black solid line)

FIG. 5. (Color online) (a) HHG spectra of the X−He+ atom
(black solid line) and the He atom (purple dashed line). (b) Harmonic
spectra of the pHe+ atom at first few orders (black solid line)
and decomposed harmonic spectrum by the recombined orbitals
lr = 0 (red-dashed line), lr = 1 (green-scatter line), and lr = 2
(blue-triangular scatter) with all ionized orbitals li . λIR = 800 nm,
IIR = 5×1014 W/cm2, and τIR = 5 fs.
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FIG. 6. (Color online) Decomposed harmonic spectra of pHe+ by the ionized orbital li and the recombined orbital lr at a number of
conditions to demonstrate the effect of molecularlike structure and rotation behavior, where ωM denotes the main harmonic. (a) At li = 0 and
lr = 0, ωM = ωIR. (b) At li = 1 and lr = 0, ωM = ωrot(pHe+). (c) At li = 2 and lr = 0, ωM = ωIR + 2ωrot(pHe+). (d) At li = 0 and lr = 1,
ωM = ωrot(pHe2+).

resembles that of the atomic helium case (purple dashed line),
which can be classified into perturbative, plateau, and cut-off
regions, except a larger HHG intensity in pHe+, because
its ionization potential, is lower than that of the He atom.
However, at a closer look, the HHG spectrum of pHe+ has
a quite different fine structure from that of He atoms. As
shown in Fig. 5(b), the harmonic orders of pHe+ are not
exactly in odd integers as atomic case and also not in exact
integers as that of heteronuclear diatomic molecules [41–43].
The special harmonics are due to different transitions between
the continuum and the ground states as indicated, and can be
interpreted below by the combined effect of the moleculelike
structure with the hadronic rotation, where li and lr denote the
ionized and recombined angular orbitals, respectively.

First, we consider the effect of molecularlike structure. In
such structure, since the electronic ground state involves dif-
ferent orbital l components, the ionized orbital can be different
from the recombined orbital. If the parity of an ionized orbital
keeps the same as the parity of a recombined orbital [i.e.,
even (odd) li and even (odd) lr ], emitted photons occur at
odd harmonic orders, which maintains the case of atoms and
homonuclear diatomic molecules with inversion symmetry. In
contrast, if the parity of an ionized orbital becomes opposed to
that of a recombined orbital [i.e., even (odd) li and odd (even)
lr ], emitted photons start occurring at even harmonic orders.
This is similar to the case of heteronuclear diatomic molecules,
where even harmonic orders appear because of the lack of
inversion symmetry [41–43]. Next, as for the rotation effect,
it can cause the shift of HHG spectra because of the rotation

factor ∝Y ∗
lml

(ωrott,0), which contains lth order harmonics of
frequency ωrot. Since the harmonics can be of ±lωrot, the
shift can cause the HHG spectrum to a higher or lower
frequency at the variant amount of lωrot, which is considerable
because ωrot is comparable to ωIR. The rotation frequency
can be further classified into two types, i.e., ωrot(X−He+)
and ωrot(X−He2+). Before X−He+ is ionized, the rotation
frequency is ωrot(X−He+) and the frequency shift in the HHG
spectra can be expressed as ±liωrot(X−He+) by Eq. (13),
where the rotation contribution is due to the ionized electron
state |ψg(t1)〉. In contrast, after X−He+ is ionized, the rotation
frequency is ωrot(X−He2+) and the frequency shift in the HHG
spectra can be expressed as ±lrωrot(X−He2+) by Eq. (13),
where the rotation contribution is due to the recombined
electron state 〈ψg(t)|. Because of a stronger Coulomb force,
ωrot(X−He2+) is higher than ωrot(X−He+), whose magnitudes
are listed in Table II.

To examine the above statements, Fig. 6 shows the HHG
spectra of pHe+ at different orbital conditions. If an electron
is ionized from the li = 0 orbital and finally recombines to
the lr = 0 orbital [as shown in Fig. 6(a)], the parity between
the ionized and recombined orbitals remains the same (both li
and lr are even), and the rotation factor ∝Y ∗

lml
(ωrott,0) at l = 0

gives no frequency shift. Thus, the main harmonic is ω
M

= ωIR

with subsequent harmonic orders separated by 2ωIR, which
maintains the atomic or homonuclear diatomic case. Next, if
the electron becomes ionized from the li = 1 orbital and finally
recombines to the lr = 0 orbital [as shown in Fig. 6(b)], the
parity between the two orbitals now turn differently; thus,
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FIG. 7. (Color online) Decomposed harmonic spectra of K−He+

by the ionized orbital li and the recombined orbital lr at a number of
conditions to demonstrate the effect of molecularlike structure and
rotation behavior, where ωM denotes the main harmonic. (a) At li =
1 and lr = 0, ωM = ωrot(K−He+). (b) At li = 2 and lr = 0, ωM =
ωIR + 2ωrot(K−He+). (c) At li = 0 and lr = 1, ωM = ωrot(K−He2+).

the emission occurs at even harmonic order. Because the
rotation factor also provides a frequency shift ωrot = 2.17 eV
(∼1.4ωIR), the main harmonic occurs at 1.4ωIR, as indicated
by the dashed line, with subsequent orders separated by 2ωIR.
The rotation factor also provides a lower frequency shift, thus
there is a minor peak at the left of the main harmonic, which
is at 0.6ωIR and this equals (2 − 1.4)ωIR exactly.

If the ionized orbital increases to li = 2 but lr = 0 remains
unchanged, the parity between the ionized and recombined
orbitals recovers. Because the rotation factor has a frequency
component of 2ωrot, the main harmonic shown in Fig. 6(c)

occurs at 3.8ωIR and this is exactly equal to (1 + 2 × 1.4)ωIR.
Regarding the component of −2ωIR, a small but visible
peak at [(3 − 2 × 1.4) = 0.2]ωIR is an example caused by
it. Otherwise, the rotation factor contains a component of
zero frequency, for example, Y ∗

20(ωrott,0) ∝ [3 cos2(ωrott) −
1]. Thus, odd harmonic orders also contribute to the spectrum.
Finally, the case of li = 0 and lr = 1 is considered in Fig. 6(d),
which is similar to that in Fig. 6(b) except for the fact that li and
lr exchange their values with each other. In this case, because
ωrot(pHe2+) is involved, which is faster than ωrot(pHe+), the
main harmonic becomes higher than that of Fig. 6(b) and
occurs at 1.9ωIR.

To provide a further example, Fig. 7 show the decom-
posed harmonic spectra for K−He+. In Fig. 7(a) ωM =
ωrot(K−He+) ≈ 1.8ωIR, where li = 1 and lr = 0. In Fig. 7(b)
ωM = ωIR + 2ωrot(K−He+) ≈ 4.6ωIR, where li = 2 and lr =
0. In Fig. 7(c) ωM = ωrot(K−He2+) ≈ 2.4ωIR, where li = 0
and lr = 1. All main harmonics are exactly at their positions
according to the orbital parity and the rotation effect.

IV. CONCLUSION

In conclusion, we study the strong-field phenomena of
hadronic helium atoms by using S-matrix theory. The com-
bined effect of the molecularlike structure with rotation
behavior of the hadronic helium is elucidated. Because of
the moleculelike structure, there is a number of angular
momentum components in the electronic ground state, each
one carries a rotation factor caused by the rotation behavior
of X−He+. The combined effect can reduce the effective
ionization energy of X−He+, and then enhances the ATI
spectra. The enhancement depends on the rotation speed of
X−He+. As the rotation speed increases, the enhancement
grows stronger and makes the ATI spectra of K−He+ become
larger than that of pHe+ by overcoming the difference
between ionization potentials of the two targets. The combined
effect also makes HHG spectra of X−He+ unusual. Among
various angular orbitals, if the parity between the ionized and
recombined orbitals remains the same (e.g., li = even and lr =
even), the HHG occurs at odd harmonic orders. By contrast,
if the parity between the two orbitals differs (e.g., li = odd
and lr = even), the HHG can occur at even harmonic orders.
In addition to the effect of molecularlike structure, the HHG
spectra are also shifted by ±liωrot(X−He+) ± lrωrot(X−He2+)
because of the hadronic rotation behavior. Consequently, the
combined effect can cause broad harmonic spectra of X−He+,
which is suited for applications such as the generation of a
high-power single attosecond pulse.
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