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1 Introduction

Confinement-deconfinement phase transition is an important and challenging problem in

QCD. Near the phase transition region, the interaction becomes very strong so that the

conventional perturbation method of QFT does not work. For a long time, lattice QCD

has been the only method to study strong interacted QCD. Although lattice QCD works

well for zero density, it encounters the sign problem when considering finite quark density.

See [1, 2] for a review of the current status of lattice QCD. Recently, using the idea of

AdS/CFT duality from string theory, one is able to study QCD in the strongly coupled

region by studying its weakly coupled dual gravitational theory, i.e. holographic QCD [3–

19]. In [20], we considered a Einstein-Maxwell-scalar system and studied its holographic

dual QCD model. We obtained a family of analytic black hole solutions by the potential

reconstruction method. By studying the thermodynamics of the black hole backgrounds,

we found a phase transition between two black holes with different size. We interpreted this

black hole to black hole phase transition as the confinement-deconfinement phase transition

of heavy quarks in the dual holographic QCD model.

On the other hand, the heavy quark potential is an important observable relevant to

confinement. It has been measured in great detail in lattice simulations [21] and the results

remarkably agree with the Cornell potential [22]

V (r) = −κ
r

+ σsr + C, (1.1)
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which is dominant by Coulomb potential at short distances and by linear potential at

large distances with the coefficient σs defined as string tension. In QCD, the heavy quark

potential can be read off from the expectation value of the Wilson loop along a time-like

closed path C,

〈W (C)〉 ∼ e−tV (r). (1.2)

In string/gauge duality, the expectation value of the Wilson loop is given by [23]

〈W (C)〉 =

∫
DXe−SNG , (1.3)

where SNG is the string world-sheet action bounded by the loop C at the boundary of an

AdS space. In [24–35], a probe open string in an AdS background was considered. The

two ends of the open string are attached to the boundary of AdS background and behave

as a quark-antiquark pair. Thus the open string could be interpreted as a bound state, i.e.

meson state, in QCD. By studying the dynamics of the open string, the expectation value

of the Wilson loop can be obtained, so as the heavy quark potential. From the behavior

of the heavy quark potential, one is able to study the process that an open string breaks

to two open strings with their two ends attaching to the AdS boundary and the black hole

horizon, respectively. This string breaking phenomenon describes how a meson melts to a

pair of free quark and antiquark in its dual QCD.

In this work, we put probe open strings in the background obtained in [20]. We study

the dynamics of the open strings to obtain the expectation value of the Wilson loop as well

as the heavy quark potential. In [20], various black hole phases for different temperatures

have been obtained. In this work, we found three open string configurations for the various

black hole phases as in figure 1. According to AdS/QCD duality, these different open

string configurations correspond to the confinement and deconfinement phases in QCD,

respectively. This supports our preferred interpretation that the black hole to black hole

phase transition in the bulk corresponds to the confinement-deconfinement phase transition

of heavy quarks in the dual holographic QCD in [20]. Nevertheless, we found that the

phase transition temperatures obtained from the black hole phases and the open string

configurations are not exact the same. In fact, we will argue that neither the black hole

phases nor the string configurations alone could explain the full phase structure of the

confinement-deconfinement phase transition in QCD. The string configurations tells us

that whether the system is in confinement or deconfinement phase, while the black hole

phase transition determines the location of the phase boundary. By combining the two

effects together in this paper, we find a more natural picture to describe the phase diagram

of the confinement-deconfinement transition for the heavy quarks in QCD. Furthermore, in

the deconfinement phase, we also study the meson melting process by studying the process

of an open string breaking to two open strings.

The paper is organized as follows. In section 2, we consider an Einstein-Maxwell-scalar

system. We review how to get the analytic solutions in [20] by potential reconstruction

method and study the phase structure in the these backgrounds. In section 3, we add

probe open strings in our black hole background to study their various configurations. We

calculate the expectation value of the Wilson loop and study the heavy quark potential.
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(a) no BH (b) small BH (c) large BH

Figure 1. Three configurations for open strings in a black hole. There is no black hole in case (a),

open strings are always connected with their two ends on the AdS boundary. In the small black hole

case (b), open strings can not exceed a certain distance from the boundary and are still connected

with their two ends on the AdS boundary. In the large black hole case (c), the open strings with

their two ends far away enough will break to two open strings with their two ends attaching the

AdS boundary and the black hole horizon, respectively.

In section 4, by combining the background phase structure and the open string breaking

effect, we obtain the phase diagram for confinement-deconfinement transition. We further

study the meson melting process in the deconfinement phase. We conclude our result in

section 4.

2 Einstein-Maxwell-scalar system

In this section, we review the black hole solution and its phase structure obtained in [20].

2.1 Background

We consider a 5-dimensional Einstein-Maxwell-scalar system with probe matters. The

action of the system has two parts, the background part and the matter part,

S = Sb + Sm. (2.1)

In Einstein frame, the background action includes a gravity field gµν , a Maxwell field Aµ
and a neutral scalar field φ, while the matter action includes a massless gauge fields AVµ ,

which we will treat as probe, describing the degrees of freedom of vector mesons on the

4d boundary,

Sb =
1

16πG5

∫
d5x
√−g

[
R− f (φ)

4
F 2 − 1

2
∂µφ∂

µφ− V (φ)

]
, (2.2)

Sm = − 1

16πG5

∫
d5x
√−g f (φ)

4
F 2
V , (2.3)

where G5 is the coupling constant for the gauge field strength Fµν= ∂µAν − ∂νAµ, f (φ) is

the gauge kinetic function associated to the Maxwell field Aµ and V (φ) is the potential of

the scalar field φ.
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The equations of motion can be derived from the above action as

∇2φ =
∂V

∂φ
+

1

4

∂f

∂φ

(
F 2 + F 2

V

)
, ∇µ [f(φ)Fµν ] = 0, ∇µ

[
f(φ)FµνV

]
= 0, (2.4)

Rµν −
1

2
gµνR =

f(φ)

2

(
FµρF

ρ
ν −

1

4
gµνF

2

)
+

1

2

[
∂µφ∂νφ−

1

2
gµν (∂φ)2 − gµνV

]
. (2.5)

To solve the background of the Einstein-Maxwell-scalar system, we first turn off the probe

gauge field AVµ and consider the ansatz for the metric, scalar field and Maxwell field as,

ds2 =
e2A(z)

z2

[
−g(z)dt2 +

dz2

g(z)
+ d~x2

]
, (2.6)

φ = φ (z) , Aµ = At (z) , (2.7)

which leads to the following equations of motion for the background fields,

φ′′ +

(
g′

g
+ 3A′ − 3

z

)
φ′ +

(
z2e−2AA′2t fφ

2g
− e2AVφ

z2g

)
= 0, (2.8)

A′′t +

(
f ′

f
+A′ − 1

z

)
A′t = 0, (2.9)

A′′ −A′2 +
2

z
A′ +

φ′2

6
= 0, (2.10)

g′′ +

(
3A′ − 3

z

)
g′ − e−2Az2fA′2t = 0, (2.11)

A′′ + 3A′2 +

(
3g′

2g
− 6

z

)
A′ − 1

z

(
3g′

2g
− 4

z

)
+
g′′

6g
+
e2AV

3z2g
= 0. (2.12)

To solve the above equations of motion, we need to specify the following boundary and

physical conditions:

1. Near the boundary z → 0, we require the metric in string frame to be asymptotic to

AdS5;

2. Near the horizon z = zH , we put the regular condition At (zH) = g (zH) = 0;

3. The vector meson spectrum should satisfy the linear Regge trajectories at zero tem-

perature and zero density [36].

With the above conditions, the equations of motion (2.8)–(2.12) can be analytically

solved as

φ′ (z) =

√
−6

(
A′′ −A′2 +

2

z
A′
)
, (2.13)

At (z) = µ
ecz

2 − ecz2H
1− ecz2H

, (2.14)
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g (z) = 1 +
1∫ zH

0 y3e−3Ady
×

×

 2cµ2(
1− ecz2H

)2
∣∣∣∣∣∣
∫ zH
0 y3e−3Ady

∫ zH
0 y3e−3Aecy

2
dy∫ z

zH
y3e−3Ady

∫ z
zH
y3e−3Aecy

2
dy

∣∣∣∣∣∣−
∫ z

0
y3e−3Ady

 ,
(2.15)

V (z) = −3z2ge−2A
[
A′′ + 3A′2 +

(
3g′

2g
− 6

z

)
A′ − 1

z

(
3g′

2g
− 4

z

)
+
g′′

6g

]
, (2.16)

where µ ≡ At (0) is defined as chemical potential.

The solution (2.13)–(2.16) depends on the warped factor A (z). The choice of A (z) is

arbitrary provided it satisfies the boundary conditions. To be concrete, we fix the warped

factor A (z) in our solution in a simple form as

A (z) = − c
3
z2 − bz4, (2.17)

where the parameters b and c will be determined later.

2.2 Phase structure of the background

With the background (2.6), one can calculate the Hawking-Bekenstein entropy

s =
e3A(zH)

4z3H
, (2.18)

and the Hawking temperature

T =
z3He

−3A(zH)

4π
∫ zH
0 y3e−3Ady

1−
2cµ2

(
ecz

2
H

∫ zH
0 y3e−3Ady −

∫ zH
0 y3e−3Aecy

2
dy
)

(
1− ecz2H

)2
 . (2.19)

The temperature T v.s. horizon zH at different chemical potentials is plotted in figure 2.

At µ = 0, the temperature has a global minimum Tmin (0) at zH = zmin (0). The black

hole solution is only thermodynamically stable for zH < zmin (0) and is unstable for zH >

zmin (0). Below the temperature Tmin (0), there is no black hole solution and we expect

a Hawking-Page phase transition happens at a temperature THP (0) & Tmin (0) where the

black hole dissolves to a thermal gas background. For 0 < µ < µc, the temperature has

a local minimum/maximum Tmin (µ) /Tmax (µ) at zH = zmin (µ) /zmax (µ) and decreases

to zero at a finite size of horizon. The black holes between zmin (µ) and zmax (µ) are

thermodynamically unstable. There are two sections that are stable with zH < zmin (µ)

and zH > zmax (µ). We expect a similar Hawking-Page phase transition happens at a

temperature THP (µ) & Tmin (µ). Nevertheless, since the thermodynamically stable black

hole solutions exist even when the temperature below Tmin (µ) for the section zH > zmax (µ),

we also expect a black hole to black hole phase transition happening at a temperature

TBB (µ) between Tmin (µ) and Tmax (µ), where a large black hole with the horizon z =

zHl (µ) collapses to a small black hole with the horizon z = zHs (µ) as showed in figure 3.
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0.0 0.5 1.0 1.5

zH0.0

0.5

1.0

1.5

2.0

THGeVL

Μ=1

Μc=0.7142

Μ=0.5

Μ=0

(a)

THP

TminH0L

TminH0.5L

TmaxH0.5L

HzHl,TBBL
HzHs,TBBL

HzHc,TcL

0.6 0.8 1.0 1.2 1.4

zH0.45

0.50

0.55

0.60

0.65

0.70

THGeVL

(b)

Figure 2. The temperature v.s. horizon at different chemical potentials µ = 0, 0.5, 0.714, 1 GeV. We

enlarge a rectangle region in (a) into (b) to see the detailed structure. For µ > µc, the temperature

decreases monotonously to zero; while for µ < µc, the temperature has a local minimum. At

µc ' 0.714 GeV, the local minimum reduces to a inflection point.

z = 0

z = zHl

z = zHs

z = ∞

Figure 3. Phase transition from a large black hole with the horizon z = zHl collapses to a small

black hole with the horizon z = zHs at the transition temperature T = TBB .

Finally, for µ > µc, the temperature monotonously decreases to zero and there is no black

hole to black hole phase transition anymore.1

To determine the phase transition temperatures THP (µ) and TBB (µ), we compute the

free energy from the first law of thermodynamics in grand canonical ensemble

F = −
∫
sdT. (2.20)

We plot the free energy v.s. temperature in (a) of figure 4.

At µ = 0, the free energy intersect the x-axis at T = THP (0) where the Hawking-Page

phase transition happens. The black hole dissolves to thermal gas which is thermodynam-

ically stable for T < THP (0). We fix the parameter b ' 0.273GeV 4 in eq. (2.17) by fitting

the Hawking-Page phase transition temperature THP (0) with the lattice QCD simulation

of THP ' 0.6 GeV in [37].

1There could still be a Hawking-Page phase transition at some temperature for the case of µ > µc, but

we will show later that the black hole solution is always thermodynamically favored in this case.
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THP

TBB

Tc

0.4 0.6 0.8 1.0

THGeVL

-0.010

-0.005

0.000

0.005

F

(a)

HΜc, Tc)

0.0 0.5 1.0 1.5

ΜHGeVL0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

THGeVL

(b)

Figure 4. (a) The free energy v.s. temperature at chemical potentials µ = 0, 0.5, 0.714, 1 GeV. At

µ = 0, the free energy intersect with the x-axis at T = THP where the black hole dissolves to thermal

gas by Hawking-Page phase transition. For 0 < µ < µc ' 0.714 GeV, the temperature reaches its

maximum value where the free energy turns back to intersect with itself at T = TBB where the

black hole to black hole transition happens. For µ > µc, the swallow-tailed shape disappears and

there is no phase transition in the background. (b) The phase diagram in T and µ plane. At small

µ, the system undergoes a first order phase transition at finite T . The first order phase transition

stops at the critical point (µc, Tc) = (0.714GeV, 0.528GeV ), where the phase transition becomes

second order. For µ > µc, the system weaken to a sharp but smooth crossover [20].

For 0 < µ < µc, the free energy behaves as the expected swallow-tailed shape. The

temperature reaches its maximum where the free energy turns back and intersects with

itself at T = TBB (µ) where the large black hole transits to the small black hole. Since the

free energies of the stable black holes are always less than that of the thermal gas (Fgas ≡ 0),

the thermodynamic system will always favor the small black hole background other than

the thermal gas background. When we increase the chemical potential µ from zero to µc,

the loop of the swallow-tailed shape shrinks to disappear at µ = µc. For µ > µc, the curve

of the free energy increases smoothly from higher temperature to lower temperature.

The phase diagram of the background is plotted in (b) of figure 4. At µ = 0, the system

undergoes a black hole to thermal gas phase transition at T = THP (0). For 0 < µ < µc,

the system undergoes a large black hole to small black hole phase transition at TBB (µ).

The phase transition temperature TBB (µ) approaches to THP at µ → 0 that makes the

phase diagram continuous at µ = 0. The phase transition stops at µ = µc and reduces to

a crossover for µ > µc.

The phase diagram we obtained here in figure 4 is different from the conventional

QCD phase diagram, in which crossover happens for small chemical potential and phase

transition happens for large chemical potential. In [20], by comparing with the phase

structure in lattice QCD simulation, the authors argued that this ‘reversed’ phase diagram

should be interpreted as confinement-deconfinement phase transition of heavy quarks in

QCD. In this paper, we consider the same background as in [20] to study pure gluon QCD

with one additional heavy flavour, and not light quarks. Since our model describes heavy

quarks system in QCD, the flavour field AVµ in the matter action 2.3 should be associated

to the mesons make up of heavy quarks, i.e. quarkonium states. By fitting the lowest
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z = z0

x = r
2x = − r

2 x = 0

z = zH

z = 0

(a)

x = r
2x = − r

2 x = 0

z = zH

z = 0

(b)

Figure 5. Two open string configurations. In (a), a U-shape open string connects its two ends at

the boundary at z = 0 and reaches its maximum depth at z = z0. In (b), two straight open strings

with their ends connecting the boundary at z = 0 and the horizon at z = zH , respectively.

two spectrum of quarkonium states mJ/ψ = 3.096 GeV and mψ′ = 3.685 GeV, we can fix

c ' 1.16GeV 2 in eq. (2.17).

Nevertheless, there left a problem that, in the gravity side, it is commonly believed

that the confinement-deconfinement phase transition in the field theory side is dual to the

Hawking-Page phase transition. Hawking-Page phase transition is the transition between

black hole and thermal gas backgrounds. However, in our gravity background, the phase

transition is between two black holes for a non-zero chemical potential. Thus it is not

consistent to consider a black hole to black hole phase transition in the gravity side to be

dual to the confinement-deconfinement phase transition in QCD. In the following of this

paper, by adding open strings in the background, we will study this issue more carefully

to gain a more reasonable physical picture.

3 Open strings in the background

In this paper, we consider an open string in the above background with its two ends on the

boundary of the space-time at z = 0. There are two configurations for an open string in

the black hole background. One is the U-shape configuration with the open string reaching

its maximum depth at z = z0; the other is the straight configuration with the straight

open string having its two ends attached to the boundary and the horizon at z = zH ,

respectively. The two configurations are showed in figure 5. Since the dual holographic

QCD lives on the boundary, it is natural for us to interpret the two ends of the open string

as a quark-antiquark pair. The U-shape configuration corresponds to the quark-antiquark

pair being connected by a string and can be identified as a meson state. While the straight

configuration corresponds to a free quark or antiquark.

The Nambu-Goto action of an open string is

SNG =

∫
d2ξ
√
−G, (3.1)

– 8 –
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xx = 0
r
2− r

2

z0

z

t

t0

Figure 6. Wilson loop as the boundary of string world-sheet.

where the induced metric

Gab = gµν∂aX
µ∂bX

ν , (3.2)

on the 2-dimensional world-sheet that the string sweeps out as it moves with coordinates

(ξ0, ξ1) is the pullback of 5-d target space-time metric gµν ,

ds2 =
e2A(z)

z2

(
g(z)dt2 + d~x2 +

1

g(z)
dz2
)
, (3.3)

where, to study the thermal properties of the system, we consider the Euclidean metric

and identify the periodic of the time with the inverse of temperature as β = 1/T .

3.1 Wilson loop

We consider a r× t0 rectangular Wilson loop C along the directions (t, x) on the boundary

of the AdS space attached by a pair of the quark and antiquark separated by r. The quark

and antiquark located at (z = 0, x = ±r/2) are connected by an open string, which reaches

its maximum at (z = z0, x = 0) as in figure 6.

It is known that taking the limit t0 → β = 1/T allows one to read off the energy of

such a pair from the expectation value of the Wilson loop,

〈W (C)〉 ∼ e−V (r,T )/T , (3.4)

where V (r, T ) is the heavy quark-antiquark potential [26, 33].

In string/gauge duality, the expectation value of the Wilson loop is given by

〈W (C)〉 =

∫
DXe−SNG ' e−Son−shell , (3.5)

where SNG is the string world-sheet action bounded by a curve C at the boundary of AdS

space and Son−shell is the on-shell string action, which is proportional to the area of the

string world-sheet bounded by the Wilson loop C.

Comparing with eq. (3.5), the free energy of the meson is defined as

V (r, T ) = TSon−shell (r, T ) . (3.6)

– 9 –
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3.2 Configurations of open strings

The string world-sheet action is defined by the Nambu-Goto action,

S =

∫
d2ξL =

∫
d2ξ
√

detG, (3.7)

where Gab = ∂aX
µ∂bXµ is the induced metric on string world-sheet. For the meson con-

figuration, by choosing static gauge: ξ0 = t, ξ1 = x, the induced metric in string frame

becomes

ds2 = Gabdξ
adξb =

e2A(z)

z2
g (z) dt2 +

e2A(z)

z2

(
1 +

z′2

g (z)

)
dx2, (3.8)

where the prime denotes a derivative with respect to x. The Lagrangian and Hamiltonian

can be calculated as

L =
√

detG =
e2A(z)

z2

√
g (z) + z′2, (3.9)

H =

(
∂L
∂z′

)
z′ − L = − e2A(z)g (z)

z2
√
g (z) + z′2

. (3.10)

With boundary conditions

z
(
x = ±r

2

)
= 0, z(x = 0) = z0, z

′(x = 0) = 0, (3.11)

we obtain the conserved energy

H(x = 0) = −e
2A(z0)

z20

√
g (z0). (3.12)

We can solve z′ from eq. (3.10),

z′ =

√
g

(
σ2 (z)

σ2 (z0)
− 1

)
, (3.13)

where

σ (z) =
e2A(z)

√
g (z)

z2
. (3.14)

The distance r between the quark-antiquark pair can be calculated as,

r =

∫ r
2

− r
2

dx = 2

∫ z0

0
dz

1

z′
= 2

∫ z0

0
dz

[
g (z)

(
σ2 (z)

σ2 (z0)
− 1

)]− 1
2

, (3.15)

where z0 is the maximum depth that the string can reach. The dependence of the distance

r on z0 at two different horizons are plotted in figure 7.

We see that for a small black hole (large zH), there exist a dynamical wall at zm < zH
where r′ (zm)→∞. The open string can not go beyond this dynamical wall, i.e. z0 ≤ zm,

even when the distance r between the quark-antiquark pair goes to infinity as showed in

(a) of figure 8. While for a large black hole (small zH), the open string can reach arbitrary

close to the horizon, but there is a maximum value for the distance at r = rM . If the
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Figure 7. Separate distance r between quark and antiquark v.s. z0 at µ = 0.5 GeV.

Small black hole

z = 0

z = zH

z = zm

z = ∞

(a)

z = 0

z = zH

Large black hole

z = ∞

rM

(b)

Figure 8. (a) For a small black hole, open strings can not exceed the dynamical wall at z = zm
and are always in the U-shape. (b) For a large black hole, an open string will break to two straight

strings if the distance between its two ends is larger than zM .

distance between the quark and antiquark is larger than rM , there is no stable U-shape

solution for open strings so that the open string of U-shape will break to two straight open

strings connecting the boundary at z = 0 and the horizon at z = zH as showed in (b) of

figure 8.

In summary, for a small black hole, open strings are always in the U-shape; while for

a large black hole, an open string is in the U-shape for short separate distance r < rM and

is in the straight shape for long separate distance r > rM . Thus when a large black hole

shrinks to a small one, we expect that a dynamical wall will appear when the black hole

horizon equal to a critical value zHµ for each chemical potential µ, showed in figure 9.

Since each horizon is associated to a temperatures for black holes, we define the trans-

formation temperature Tµ corresponding to the critical black hole horizon zHµ, at which

the dynamical wall appears/disappears, for each chemical potential µ. The dependence of

Tµ on µ is plotted in figure 10.

When there is dynamical wall, open strings are always in the U-shape. This means

that quarks and antiquarks are always connected by an open string to form a bound state,

– 11 –
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z = 0

z = zHl < zHµ

z = zHs > zHµ

z = zm

z = zHµ

z = ∞

Figure 9. When a large black hole with horizon zHl < zHµ shrinks to a small black hole with

horizon zHs > zHµ, the dynamical wall at z = zm appears when zH = zHµ.

Figure 10. The temperature Tµ corresponding to zHµ, at which the dynamical wall ap-

pears/disaapears, for each chemical potential µ.

i.e. the meson state in QCD. It is natural to interpret this case as the confinement phase in

the dual holographic QCD. On the other hand, when the dynamical wall disappears, an U-

shape open string could break up to two strings if the distance between its two ends is large

enough. This means that a meson state could break to a pair of free quark and antiquark

in QCD. We interpret this case as the deconfinement phase in the dual holographic QCD.

Therefore, the transformation temperature Tµ is associated to the transformation between

the confinement and the deconfinement phases in the dual holographic QCD.2

3.3 Heavy quark potential

When the black hole horizon zH > zHµ, there exists a dynamical wall at z = zm < zH .

Open strings are always in the U-shape and the heavy quark potential can be calculated as

V = TSon−shell =

∫ r
2

− r
2

dxL = 2

∫ z0

0
dz

σ (z)√
g (z)

[
1− σ2 (z0)

σ2 (z)

]− 1
2

. (3.16)

2This transformation between confinement and deconfinement phases is not necessary a phase transition,

it could be a smooth crossover as we will show later.
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In short separate distance limit r → 0, i.e. z0 → 0, we expand the distance and the heavy

quark potential at z0 = 0,

r = 2

∫ z0

0
dz

[
g (z)

(
σ2 (z)

σ2 (z0)
− 1

)]− 1
2

= r1z0 +O(z20), (3.17)

V = 2

∫ z0

0
dz

σ (z)√
g (z)

[
1− σ2 (z0)

σ2 (z)

]− 1
2

=
V−1
z0

+O(1), (3.18)

where

r1 = 2

∫ 1

0
dv

(
1

v4
− 1

)− 1
2

=
1

2
B

(
3

4
,

1

2

)
, (3.19)

V−1 = 2

∫ 1

0

dv

v2
(
1− v4

)− 1
2 =

1

2
B

(
−1

4
,

1

2

)
. (3.20)

This gives the expected Coulomb potential at short separate distance,

V = −κ
r
, (3.21)

where

κ = −1

4
B

(
3

4
,

1

2

)
B

(
−1

4
,

1

2

)
' 1.44. (3.22)

In long separate distance r → ∞, i.e. z0 → zm, we make a coordinate transformation

z = z0 − z0w2. The distance r and the heavy quark potential V become

r = 2

∫ 1

0
fr (w) dw, (3.23)

V = 2

∫ 1

0
fV (w) dw, (3.24)

where

fr (w) = 2z0w

[
g
(
z0 − z0w2

)(σ2 (z0 − z0w2
)

σ2 (z0)
− 1

)]− 1
2

, (3.25)

fV (w) = 2z0w
σ
(
z0 − z0w2

)√
g (z0 − z0w2)

[
1− σ2 (z0)

σ2 (z0 − z0w2)

]− 1
2

. (3.26)

We learn from figure 7 that the distance r is divergent at z0 = zm, and the same happens

for the heavy quark potential. By carefully analysis, we find that this divergence is due to

the integrands fr (w) and fr (w) are divergent near the lower limit w = 0, i.e. z = z0 → zm.

To study the behaviors of the distance and the heavy quark potential at z0 = zm, we

expand fr (w) and fV (w) at w = 0,

fr (w) = 2z0

[
−2z0g (z0)

σ′ (z0)

σ (z0)

]− 1
2

+O (w) , (3.27)

fV (w) = 2z0σ (z0)

[
−2z0g (z0)

σ′ (z0)

σ (z0)

]− 1
2

+O (w) . (3.28)
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Figure 11. String tension v.s. temperature at µ = 0.5, 0.678, 0.714 GeV. (a) The string tension

decreases with temperature growing in the confinement phase, and suddenly drops to zero at T = Tµ.

The region closes to the transition temperatures is enlarged in (b).

The integrals (3.23) and (3.24) can be approximated by only consider the leading terms of

fr (w) and fr (w) near z0 = zm. This leads to

r (z0) ' 4z0

[
−2z0g (z0)

σ′ (z0)

σ (z0)

]− 1
2

, (3.29)

V (z0) ' 4z0σ (z0)

[
−2z0g (z0)

σ′ (z0)

σ (z0)

]− 1
2

= σ (z0) r (z0) . (3.30)

From the above expression, we obtain the expected linear potential V = σsr at long distance

with the string tension,

σs =
dV

dr

∣∣∣∣
z0=zm

=
dV/dz0
dr/dz0

∣∣∣∣
z0=zm

=
σ′ (z0) r (z0) + σ (z0) r

′ (z0)

r′ (z0)

∣∣∣∣
z0=zm

= σ (zm) . (3.31)

The temperature dependence of the string tension for various chemical potentials is plotted

in figure 11. We see that the string tension decreases when the temperature increases. At

the confinement-deconfinement transformation temperature Tµ, the system transform to

the deconfinement phase and the string tension suddenly drops to zero as we expected [38].

The behaviors of the heavy quark potential at short distance and long distance agrees

with the form of the Cornell potential,

V (r) = −κ
r

+ σsr + C, (3.32)

which has been measured in great detail in lattice simulations

Next, we would like to look at the r dependence of the heavy quark potential by

evaluating the integral in eq. (3.16), which is divergent due to its integrand blows up at

z = 0. We simply regularize the integral by subtracting the divergent part of the integrand,

VR = C (z0) + 2

∫ z0

0
dz

[
σ (z)√
g (z)

[
1− σ2 (z0)

σ2 (z)

]− 1
2

− 1

z2
[
1 + 2A′ (0) z

]]
, (3.33)
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Figure 12. (a) V v.s. r at µ = 0.5 GeV for zH > zHµ, zH = zHµ and zH < zHµ. (b) The sketch

diagram for heavy quark potentials at various temperatures at a fixed chemical potential µ > µc.

where

C (z0) = − 2

z0
+ 4A′ (0) ln z0. (3.34)

After the regularization, we are able to calculate the heavy quark potential. The result is

plotted in (a) of figure 12. For short separate distance, the potential is proportional to 1/r

as expected. While for long separate distance, there exists a critical horizon zHµ for each

chemical potential µ. For small black hole with zH > zHµ, the potential is linear to r for

r → ∞. While for large black hole with zH < zHµ, the potential ceases at a maximum

distance rM . Beyond rM , the U-shape open string will break to two straight shape open

strings.

It is helpful to use a sketch to describe the heavy quark potential and the phases

transformation with temperature changing. We plot the heavy quark potentials at various

temperatures at a fixed chemical potential3 µ > µc in (b) of figure 12. For T ≤ Tµ, i.e.

zH > zHµ, the heavy quark potential is linear at large separate distance r with the slopes

decrease with the temperature increasing. The linear potential implies that the system is

in the confinement phase. While for T > Tµ, i.e. zH < zHµ, the heavy quark potential

admits a maximum separate distance rM , beyond which the open string breaks up to two

straight strings and the total energy of strings becomes constant. The constant potential

implies that the system is in the deconfinement phase. The confinement-deconfinement

phase transform happens at T = Tµ.

4 Phase diagram

In the previous sections, we have studied the thermodynamics of the black hole background.

We obtained two black hole phases and studied the phase transition between them. We also

added probe open strings in the background and studied their configurations of U-shape

and straight shape, which correspond to confinement and deconfinement phases in the dual

3For µ < µc, the picture is similar but more complicated due to the black holes phase transition in

the background. Here we just illustrate the general properties for the heavy quark potential and leave the

details of the phase transition to the next section.
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Black hole String configurations for r →∞ Phase in QCD

Small (zH > zHµ) U-shape Confinement

Large (zH < zHµ) Straight Deconfenment

Table 1. Black hole phases, open string configurations and QCD phases.

holographic QCD. In [20], we interpreted the black hole to black hole phase transition in

the background as the confinement-deconfinement phase transition in the dual holographic

QCD, leaving a puzzle that a black hole background does not correspond to the confinement

phase in QCD in the original AdS/QCD correspondence. In this paper, we argued that

the U-shape and straight shape of open strings should correspond to confinement and

deconfinement phases in QCD, but the transformation between the two phases seems always

smooth without phase transition. In this section, by combining these two phenomena, we

are ready to discuss the full phase structure for the system of the open strings in the black

hole background, corresponding to the confinement-deconfinement phase diagram in the

dual holographic QCD.

4.1 Confinement-deconfinement phase diagram

Let us consider the configurations of the probe open strings first. We have found that

for a small black hole with zH > zHµ, open strings can not exceed a dynamical wall at

z = zm even the distance r between the quark-antiquark pair goes to infinity. This means

that both ends of the open strings have to touch the boundary at z = 0, and the quark-

antiquark pair is always connected by an open string in the U-shape to form a bound state,

which corresponds to a meson state in the dual holographic QCD, as in (a) of figure 8. We

interpret this phase as the confinement phase in QCD. On the other hand, for a large black

hole with zH < zHµ, the two ends of the open strings could also contact the horizon instead

of the boundary. If the distance r between the quark-antiquark pair is large enough with

r > rM , an open string of U-shape would break to two straight open strings as showed in

(b) of figure 8. Thus the meson state would decay to a pair of free quark and antiquark.

We interpret this phase as the deconfinement phase in QCD. We should remark that for

a small black hole with zH > zHµ, it is impossible for an open string to break up due to

the dynamical wall at z = zm. Thus even in the black hole background, the holographic

QCD could still be in the confinement phase. This clarifies the puzzle in [20] that a black

hole background does not correspond to the confinement phase in QCD in the original

AdS/QCD correspondence. The black hole phases, open string configurations and QCD

phases are summarized in table 1.

For each chemical potential µ, we have calculated the transformation temperature Tµ
corresponding to the critical black hole horizon zHµ. The result of Tµ v.s. µ is plotted in

figure 10. On the other hand, the phase transition temperature TBB of black hole to black

hole phase transition in the background was plotted in (b) of figure 4. To investigate the

relationship between Tµ and TBB, we plot both of them together in (a) of figure 13. We see

that the two lines are close to each other but not exactly the same. The two lines intersect
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(a) (b)

Figure 13. (a) The phase diagrams from the pure black hole background (red line for TBB) and

from the configurations of open strings (blue line for Tµ). The two lines intersect at the critical

point locates at µc = 0.678 GeV and Tc = 0.536 GeV. (b) The final confinement-deconfinement

phase diagram. For µ < µc, there is a phase transition between confinement and deconfinement

phases (red solid line); while for µ > µc, the phase transition becomes a crossover (blue dashed line).

at (µc, Tc) = (0.678GeV, 0.536GeV ), where we define as the critical point.4 For µ < µc,

when the temperature increases from zero, the black hole grows with the temperature and

a phase transition eventually happens at T = TBB(µ) < Tµ, where a small black hole

with horizon zHs > zHµ suddenly jumps to a large black hole with horizon zHl < zHµ as

showed in figure 9. In the dual QCD, this implies that the confinement phase transform

to the deconfinement phase by a phase transition. While for µ > µc, when the tempera-

ture increases from zero, the black hole horizon increases gradually with the temperature

and continuously passes zHµ at T = Tµ < TBB(µ). It means that the confinement phase

will smoothly transform to the deconfinement phase as a crossover. Putting everything

together, we obtain the final phase diagram for the confinement-deconfinement phase tran-

sition in QCD, plotted in (b) of figure 13. For the chemical potential less than the critical

point µ < µc, we have confinement-deconfinement phase transition. While for the large

chemical potential µ > µc, the confinement-deconfinement phase transition reduces to a

smooth crossover. The critical point is located at µc = 0.678 GeV and Tc = 0.536 GeV.

This result is consistent with the conclusion from the lattice QCD for the heavy quarks [37].

4.2 Meson melting in hot plasma

In the confinement phase, open strings are always connected in the configuration of U-

shape, so that the quark-antiquark pair always form a bound state, i.e. a meson state in

QCD. In the deconfinement phase, an open string could be in the configuration of either

U-shape or straight-shape. For short separate distance r < rM , the open string is still in

the U-shape. While for the long separate distance r > rM , the energy of the two straight

4We have defined (µc, Tc) = (0.714GeV, 0.528GeV ) as the critical values of the background phase tran-

sition in section 2.2, here we redefined them as the true critical values of the confinement-deconfinement

phase transition.
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(a) (b)

Figure 14. The ‘melting lines’ for various screening lengths are plotted in (a) with rM =

0.13, 0.15, 0.18, 0.20, 0.22, 0.24 fm from above. In (b), the region closed to the phase transition

line is enlarged.

strings is less than the free energy of an open string in the U-shape and the U-shape open

string will break up to two straight strings, corresponding to that a meson state melts to a

pair of free quark and antiquark. The phenomenon of mesons melting has been previously

studied in [38–41]. In this work, we define the screening length as the maximum length rM ,

achieved by a pair of quark and antiquark in the bound state at a temperature T > TBB(µ)

for µ ≤ µc or T > Tµ for µ > µc. The screening length at a fixed chemical potential and

temperature can be determined by the equation V − 2Fq = 0, where V is the heavy quark

potential energy defined in (3.16) and Fq is the free energy of a straight string defined as

Fq =

∫ zH

0
dz
e2A

z2
. (4.1)

We plot the ‘melting lines’ of screening length versus chemical potential in figure 14. The

screening length is a possible signal form Quark Gluon Plasma (QGP). Right after the

collision QGP is formed and the temperature is high enough to be in the deconfinement

phase. As temperature decreases, heavy quarks form bound states at melting temperatures

higher than the deconfinement temperature. This means heavy quark bound sates can

coexist with QGP.

5 Conclusion

In this paper, we considered an Einstein-Maxwell-scalar system. We solved the equations

of motion to obtain a family of black hole solutions by potential reconstruction method.

We studied the thermodynamical properties of the black hole background and found black

hole to black hole phase transitions at the temperature TBB for the backgrounds. We then

added open strings in these backgrounds and identified the two ends of an open string

as a quark and antiquark pair in the dual holographic QCD. By solving the equations

of motion of the open strings, we got two configurations for the open strings, i.e. U-

shape and straight-shape. When the temperature is low enough, the black hole is small,

there exists a dynamical wall at z = zm which the open strings can not exceed even the
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separation of the quark and antiquark goes to infinite. From the view of the dual QCD, the

quark and antiquark pair is always connected by an open string to form a bounded state,

corresponding to the confinement phase in QCD. On the other hand, when the temperature

is high enough, the black hole becomes large so that an open string could break up to two

straight open strings connecting the boundary and the black hole horizon, corresponding

to the deconfinement phase in QCD. We obtained the confinement-deconfinement phase

transformation temperature Tµ.

Our main conclusion is that, to study the confinement-deconfinement phase structure

in holographic QCD models, we need to combine two phase phenomena in the bulk gravity

theory at the same time, namely the black hole to black hole phase transition in the

background and the various configurations for the probe open strings. We found that, when

the chemical potential is less than the critical value µc, the background undergoes a small

black hole to a large black hole phase transition with temperature increasing from zero. The

horizon suddenly blows up to pass the critical horizon zHµ so that the confinement phase

transform to the deconfinement phase by a phase transition. While when the chemical

potential is greater than the critical value µc, the black hole horizon grows gradually and

continuously pass the critical horizon zHµ so that the confinement phase transform to the

deconfinement phase by a smooth crossover. The final confinement-deconfinement phase

diagram is showed in (b) of figure 13.

We also studied meson melting in this paper. When the temperature is higher than

the phase transition temperature, QCD is in the deconfinement phase. However, it is

known that the meson could still be thermodynamically stable in the deconfinement phase

if the separate distance between the quark and antiquark is short enough. Only when

the separate distance is longer than the screening length rM , the meson becomes unstable

and break up to a pair of free quark and antiquark. We showed the ‘melting lines’ for

various separation distance in figure 14. We conclude that, with increasing temperature,

the mesons of larger size will break up earlier and the mesons of smaller size will be more

stable and break up latter. Inversely, when QGP is cooling down, the mesons of smaller

size will reunite earlier than the ones of larger size. This will help us to understand the

process of the QGP cooling down.
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