
PHYSICAL REVIEW E 92, 062132 (2015)

Diffusion of a massive particle in a periodic potential: Application to adiabatic ratchets
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We generalize a theory of diffusion of a massive particle by the way in which transport characteristics are
described by analytical expressions that formally coincide with those for the overdamped massless case but
contain a factor comprising the particle mass which can be calculated in terms of Risken’s matrix continued
fraction method (MCFM). Using this generalization, we aim to elucidate how large gradients of a periodic
potential affect the current in a tilted periodic potential and the average current of adiabatically driven on-off
flashing ratchets. For this reason, we perform calculations for a sawtooth potential of the period L with an arbitrary
sawtooth length (l < L) instead of the smooth potentials typically considered in MCFM-solvable problems. We
find nonanalytic behavior of the transport characteristics calculated for the sharp extremely asymmetric sawtooth
potential at l → 0 which appears due to the inertial effect. Analysis of the temperature dependences of the
quantities under study reveals the dominant role of inertia in the high-temperature region. In particular, we show,
by the analytical strong-inertia approach developed for this region, that the temperature-dependent contribution
to the mobility at zero force and to the related effective diffusion coefficient are proportional to T −3/2 and T −1/2,
respectively, and have a logarithmic singularity at l → 0.
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I. INTRODUCTION

Diffusion of a massive particle is described by the Klein-
Kramers equation [1,2], the analytical solutions of which are
restricted to the cases of simple potentials corresponding to a
linear coordinate dependence of the force [3]. That is why a
number of results of the reaction-rate theory [4–6] as well as
the calculated particle velocity in a tilted periodic potential [7]
were obtained in the approximation of high potential barriers
(compared to the thermal energy) when the vicinities of
potential extrema are only important and can be considered for
smooth potentials as parabolic. The Klein-Kramers equation
for arbitrary potentials is solvable only by various numerical
methods [8–15], among which the Risken’s matrix continued
fraction method (MCFM) [3,16,17] occupies a particular
place [3,18–21]. This method allows the particle current to be
formally expressed in terms of concentration so that analytical
relations can be found in some particular cases [22].

One of the most exciting applications of diffusion transport
is a Brownian motor which models the drift of a Brownian par-
ticle in a fluctuating periodic potential. It is usually considered
in the overdamped regime when the inertial term is negligible
compared to the damping one [23–25]. A deep insight into
the motion-inducing mechanism was given by Parrondo [26],
who considered, as an elementary act of directed motion, a
particle move resulting from a fast transition (a jump) from one
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periodic potential profile to another. He also calculated the net
fraction of particles crossing some point in a certain direction
over a long period of time (the integrated current) as a pivotal
characteristic of adiabatic transport (Parrondo’s lemma). Some
further development of this overdamped adiabatic approach
can be found in Refs. [27,28]. A generalization of Parrondo’s
lemma to include small inertial corrections has been proposed
recently [29,30]. A notable observation made in these studies
is that even small inertial corrections may help to overcome
some of the symmetry restrictions inherent to the zero-mass
limit and thus to produce otherwise prohibited directed motion.

In the present paper we investigate the effect of large
gradients in a potential profile on the transport of a massive
particle. More specifically, we study Brownian motion in a
periodic sawtooth potential for arbitrary inertia with a special
emphasis on the limiting cases where jumps in the potential
profile make it extremely asymmetric. It is important to note
that, at present, a sawtooth potential is not only a theoretical
idealization, but can be realized experimentally. We exemplify,
following Ref. [31], such a realization by the experimental
scheme of a Brownian ratchet that manipulates charged
components within supported lipid bilayers. One side of the
patterned bilayers was of a sawtooth shape (a planar surface
was the opposite side), the asymmetry of which controlled
the amount of effect. Particularly, the maximum effect was
reached for the extremely asymmetric case of the side of
the pattern. The same regularity for inertialess particles in
a sawtooth potential was found theoretically in Refs. [32–34].

Dynamics of a Brownian particle differs essentially in a
sharp and smooth potential (with and without jumps, respec-
tively), the physics behind this being quite transparent. The
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energy conservation law dictates a strict relationship between
the particle velocities on two sides of the potential jump and
its height. Thus, a discontinuity in the velocity distribution
arises in the vicinity of the jump point. We recall that in the
overdamped regime the velocity distribution is Maxwellian
and the potential jumps are easily taken into account by
the jump conditions for the particle position probability
density [3]. This is why sharp potentials are acceptable in
solving overdamped diffusion problems but make impossible
numerical treatment of underdamped Brownian motion. In
view of this fact, the approach developed here appears uniquely
helpful to study diffusion of a massive particle in a sharp
periodic potential.

Another aim of the paper is to describe inertial adiabatic
transport in terms of equations resembling those in the over-
damped approach. For the stationary current in a tilted periodic
potential and for the integrated current arising from a changing
periodic potential [26], we derive analytical expressions that
formally coincide with those for the overdamped approach.
The expressions contain a factor (accounting for inertia effects)
which can be calculated by MCFM. Applying this approach to
adiabatic ratchets, we obtain explicit formulas for the average
velocity of adiabatically driven on-off flashing and rocking
ratchets with inertial effects included. Thus we suggest a
unified inertia-relevant description of both ratchet types. A
clear mathematical structure of the approach proposed makes
the problem analytically treatable provided the inertia factor
is analytically expressible. This is demonstrated in Sec. VI
by considering the problem at high temperatures when the
potential amplitude is small compared to the thermal energy.

The structure of the paper is as follows. In Secs. II and III
we define the transport characteristics under study and derive
equations containing the above-mentioned inertia-dependent
factor. The scheme for calculating this factor, both in general
operator notation and in terms of matrix Fourier-transformed
equations, is given in Sec. IV. Findings concerning diffusion in
a sawtooth potential are presented and discussed in Sec. V with
the observation that the quantities concerned lose analyticity in
the vicinity of the extremely asymmetric limit of the potential.
The latter fact is corroborated in Sec. VI using the high-
temperature approximation. In addition, the high-temperature
asymptotics for the effective mobility and diffusivity are ob-
tained in this section. The results are summarized in Sec. VII.

II. THE INTEGRATED CURRENT

Consider a Brownian particle moving along x in the
spatially periodic potential V (x) with the period L during
the large time interval T sufficient for the equilibrium
state in this potential to be established. The initial state is
assumed equilibrium in some other potential V0(x). Following
Parrondo [26], we are interested in finding the net fraction of
particles �(x) crossing point x to the right for time T which
determines the main characteristics of adiabatic transport. This
quantity is defined as the reduced current J (x,t) integrated
over the large time interval T ,

�(x) =
∫ T

0
J (x,t)dt. (1)

The continuity equation connecting the reduced probability
density ρ(x,t) and the corresponding current J (x,t),

∂ρ(x,t)

∂t
+ ∂J (x,t)

∂x
= 0, (2)

gives the interrelation between values �(x) at points x and x0,

�(x) = �(x0) −
∫ x

x0

dy[ρ(y) − ρ0(y)], (3)

where ρ(x) = ρ(x,T ) and ρ0(x) = ρ(x,0) are the equilibrium
probability densities in the states with potentials V (x) and
V0(x) [

∫ L

0 dx ρ(x) = 1 and the same for ρ0(x)]. Thus the
difference of �(x) values at two points is simply the difference
of the probabilities to find the particle between these points in
the initial and final distributions.

Note that Eqs. (1)–(3) are valid for both the overdamped
(massless) description and the inertial one. In the first
case, the integration constant �(x0) is easily found since
J (x,t) is directly expressible in terms of ρ(x,t), J (x,t) =
(βζ )−1 exp[−βV (x)](∂/∂x) exp[βV (x)]ρ(x,t), where ζ and
β = (kBT )−1, respectively, denote the friction coefficient and
the inverse thermal energy (kB is the Boltzmann constant and T

is the absolute temperature). This additional equation, together
with Eqs. (1) and (3), leads to Parrondo’s result [26]. In the
second inertial case, the determination of �(x0) requires the
probability density ρ(x,v,t) to find an inertial particle at point
x with the velocity v at time t to be known. This probability
density obeys the Klein-Kramers equation [1,2],

∂

∂t
ρ(x,v,t) =

[
− ∂

∂x
v + 1

m

∂

∂v

(
ζv + V ′(x) + ζ

mβ

∂

∂v

)]

×ρ(x,v,t), (4)

where m is the particle mass and V ′(x) is the first spatial
derivative of the potential V (x). Then the reduced functions
ρ(x,t) and J (x,t) are the zero and first moments of ρ(x,v,t),

ρ(x,t) =
∫ ∞

−∞
dv ρ(x,v,t), J (x,t) =

∫ ∞

−∞
dv vρ(x,v,t).

(5)

These functions, respectively, coincide (up to constant fac-
tors) with the two first coefficients cn(x,t) [ρ(x,t) = c0(x,t),
J (x,t) = vthc1(x,t), where vth = (mβ)−1/2 is the thermal
velocity] of the expansion ρ(x,v,t) over orthogonal Hermitian
polynomials [3]. Equations for cn(x,t) follow from Eq. (4) and
can be written in the form [30](

n + τv

∂

∂t

)
cn(x,t) = ε

√
n Ĵ (x)cn−1(x,t)

− ε
√

n + 1 ∂xcn+1(x,t), (6)

where

Ĵ (x) = −e−βV (x)∂xe
βV (x) = −∂x − βLV ′(x) (7)

is the dimensionless current operator in the overdamped
limit, ∂x = L∂/∂x is the short notation for the dimensionless
differential operator, τv = m/ζ is the velocity relaxation time,
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and the dimensionless parameter ε = √
τv/τD characterizes

the strength of inertia (τD = βζL2 is the diffusion time).
Equation (6) can be easily rewritten for the time-independent
quantities ϕn(x) = ∫ T

0 dt cn(x,t), that gives Eq. (3) at n = 0
[taking into account that �(x) = vthϕ1(x)] and returns us to
Eq. (6) with cn(x,t) substituted by ϕn(x) and without the term
containing ∂/∂t at n � 1.

The MCFM developed in Refs. [3,16,17] (and discussed
in Sec. IV of this paper) allows one to write down the
following recurrent relation: ϕn+1(x) = Ŝn(x)ϕn(x), where the
Ŝn(x) matrix is defined at n = 0 as Ŝ0(x) = εĜ0(x)Ĵ (x) with
Ĝ0(x) as determined by the recursive procedure which can
be properly implemented in the Fourier representation scheme
[see Eqs. (28) and (35) below]. Thus ϕ0(x) and ϕ1(x) are related
by the equation

eβV (x)Ĝ−1
0 (x)ϕ1(x) = −ε ∂xe

βV (x)ϕ0(x). (8)

In view of the periodicity of V (x) and ϕn(x), integration of
Eq. (8) over the spatial period gives∫ L

0
dx eβV (x)Ĝ−1

0 (x)�(x) = 0. (9)

Then, substitution of Eq. (3) into Eq. (9) leads to the equality

�(x0) =
∫ L

0 dx eβV (x)Ĝ−1
0 (x)

∫ x

x0
dy [ρ(y) − ρ0(y)]∫ L

0 dx eβV (x)Ĝ−1
0 (x)

. (10)

Let us define the operator q̂(x) generalizing the quan-
tity q(x) = eβV (x)/

∫ L

0 dx eβV (x) commonly used in the over-
damped case,

q̂(x) = Z−1
in q(x)Ĝ−1

0 (x), Zin =
∫ L

0
dx q(x)Ĝ−1

0 (x). (11)

Then Eq. (10) takes the final form

�(x0) =
∫ L

0
dx q̂(x)

∫ x

x0

dy [ρ(y) − ρ0(y)]. (12)

It is worthy to note that this expression is exact for an
arbitrary particle mass. In the overdamped limit Ĝ0(x) is
the unit operator, so q̂(x) coincides with q(x) and Eq. (12)
reduces to the known Parrondo result [26] [denoted below
as �m=0(x0)] as it should be. It is expedient to introduce an
inertial correction,


� = �(x0) − �m=0(x0)

=
∫ L

0
dx[q̂(x) − q(x)]

∫ x

x0

dy[ρ(y) − ρ0(y)], (13)

since it is position independent due to the identity∫ L

0 dx[q̂(x) − q(x)] = 0 (in accordance with the conclusions
of Ref. [30]). Therefore the position-dependent contribution to
�(x0) is determined solely by the known inertialess expression
�m=0(x0). For further consideration, we can set x0 = 0
without loss of generality and introduce the average value

of �(x),

�̄ = L−1
∫ L

0
�(x)dx = �̄m=0 + 
�,

(14)
�̄m=0 = �m=0(0) + 
x̄/L,

where 
x̄ = x̄ − x̄0 = ∫ L

0 dx x[ρ(x) − ρ0(x)] is the distance
between the average particle positions in the equilibrium
states with potentials V (x) and V0(x). If V0(x) = 0 and hence
ρ0(x) = L−1, the expression for 
x̄/L coincides with the net
fraction of particles �(0) crossing point x = 0 after switching
off the potential V (x). That is why the average velocity 〈v〉
of particle motion arising due to a dichotomic process (with
period τ ) of switching on and switching off the potential
V (x) (so-called on-off ratchet) can be found by the formula
〈v〉 = (L/τ ) �̄, where �̄, introduced in Eq. (14), takes the form

�̄ =
∫ L

0
dx[q̂(x) − L−1]

∫ x

0
dy[ρ(y) − L−1]. (15)

III. STATIONARY CURRENT IN A TILTED
PERIODIC POTENTIAL

Consider a massive Brownian particle in the periodic
potential V (x) that is driven away from equilibrium by a
static force F. At long times, one of the main characteristics
of the particle motion in the tilted periodic potential
U (x) = V (x) − Fx is the stationary current J (F ). The
position independence of this quantity follows from the
time-independent version of Eq. (2). In order to handle
contribution of inertia to J (F ) one typically uses MCFM (see,
e.g., Refs. [3,18–21]). Using the F-dependent Ŝ0(x; F ) matrix
and the identities ρ(x,t) = c0(x,t) and J (x,t) = vthc1(x,t),
we have the equality c0(x) = Ŝ−1

0 (x; F )c1 which, with the

normalization condition
∫ L

0 c0(x)dx = 1 taken into account,
immediately gives the result [3],

J (F ) = vth

[∫ L

0
dx Ŝ−1

0 (x; F )

]−1

. (16)

The aim of this section is to write the current in the form
similar to that known from the studies of the overdamped case,
which allows to calculate the mobility μ at zero external force
using the same matrix Ĝ0(x) as in Sec. II. We start from Eq. (8)
in which ϕ0(x), ϕ1(x), and V (x) should be replaced by c0(x),
c1(x), and U (x), respectively, and Ĝ−1

0 (x) = Ĝ−1
0 (x; F ) is F

dependent. Integration over x of the thus modified Eq. (8) gives

c0(x) = e−βU (x)

[
A − (εL)−1

∫ x

0
dy eβU (y)Ĝ−1

0 (y; F )c1

]
.

(17)

The two constants A and c1 are determined by the normaliza-
tion condition

∫ L

0 c0(x)dx = 1 and the periodicity condition
c0(0) = c0(L). Therefore the resulting expression for J (F )
takes the form

J (F ) = (βζ )−1 1 − e−βFL∫ L

0 dx e−βU (x)
∫ L

0 dx eβU (x)Ĝ−1
0 (x; F ) − (1 − e−βFL)

∫ L

0 dx e−βU (x)
∫ x

0 dy eβU (y)Ĝ−1
0 (y; F )

. (18)
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This expression, just like Eq. (12), is exact for an arbi-
trary particle mass and turns into the known Stratonovich
formula [35] in the overdamped case. The success in obtaining
this generalized expression is provided by introducing the
formal relation between the particle concentration and the
corresponding current which is, together with the continuity
Eq. (2), equivalent to the description in terms of the Klein-
Kramers Eq. (4) [22].

The expansion coefficients of the average velocity 〈v(F )〉 =
J (F )L over F are easily obtainable from Eq. (18), namely,

〈v(F )〉 = μF + χF 2 + · · · , (19)

where

μ = ζ−1L2

[∫ L

0
dx e−βV (x)

∫ L

0
dx eβV (x)

]−1

Z−1
in (20)

is the mobility μ (at zero external force) and

χ = βLμ

{∫ L

0
dx[ρ(x) − L−1]

∫ x

0
dy[q̂(y) − L−1]

+ (βLZin)−1
∫ L

0
dxq (x)

[
∂F G−1

0 (x; F )
]
F=0

}
(21)

is the coefficient (the nonlinear response) which defines the
average velocity of rocking ratchets adiabatically driven by
a small force with zero average value. Note that Eq. (20)
is the generalization to the inertial case of the Lifson-
Jackson formula for the effective diffusion coefficient Deff

of an overdamped Brownian particle in the periodic potential
(related to μ by the Einstein relation Deff = kBT μ) [36].

Using the persymmetry of the matrix corresponding to the
operator q̂(x) in Fourier representation [see Eq. (38) below],
it is possible to change the order of integration,∫ L

0
dx[ρ(x) − L−1]

∫ x

0
dy[q̂(y) − L−1]

= −
∫ L

0
dx[q̂(x) − L−1]

∫ x

0
dy[ρ(y) − L−1] (22)

(where the identity
∫ L

0 dx[q̂(x) − L−1] = 0 has been used),
and we arrive at the following expression:

χ=−βLμ

{
�̄ − (βLZin)−1

∫ L

0
dx q(x)

[
∂F Ĝ−1

0 (x; F )
]
F=0

}
,

(23)

where �̄ is given by Eq. (15) for the on-off ratchet. The quantity
[∂F Ĝ−1

0 (x; F )]F=0 requires additional MCFM calculations
[see Eqs. (30) and (31) below] from which it follows that this
quantity does not contribute to the inertia correction linear in
the particle mass. Thus, for small inertia, the average velocities
of rocking and on-off flashing ratchets are determined by
the same quantity �̄, which is in full agreement with the
conclusions of Refs. [29,30].

IV. APPLICATION OF THE MATRIX CONTINUED
FRACTION METHOD

The MCFM was developed by Risken [3] and Risken
and Vollmer [16,17] on the basis of the theory of continued

fractions considered in Ref. [37] (see also Refs. [38,39]).
Application of this approach to different problems is discussed
in the literature, e.g., in Refs. [18–21,40–43]. The MCFM is
based on the formal solution of a system of equations

−P̂ −
n (x)cn−1(x) + cn(x) + P̂ +

n (x)cn+1(x) = 0,

n = 1,2, . . . , (24)

where P̂ ±
n (x)’s are known differential operators and cn(x)’s

are unknown functions to be found. The solution of Eq. (24)
is looked for in the form

cn+1(x) = Ŝn(x)cn(x). (25)

Substitution of Eq. (25) into (24) gives the recurrence relation,

Ŝn(x) = [1̂ + P̂ +
n+1(x)Ŝn+1(x)]−1P̂ −

n+1(x), (26)

which enables expressing Ŝn(x) through Ŝn+1(x). It is assumed
that one can set ŜN+1(x) = 0 at a sufficiently large value of
n = N so that all Ŝn(x)’s with n � N can be found from
Eq. (26). This allows finding the functions cn(x) from Eq. (25)
if one of them is determined by some additional condition.

By comparison of Eq. (24) with the time-independent
Eq. (6) for cn(x,t) = cn(x) or its analog for ϕn(x) at n � 1, the
explicit forms for P̂ ±

n (x) can be written as

P̂ −
n (x) = 1√

n
εĴ (x), P̂ +

n (x) =
√

n + 1

n
ε∂x. (27)

The insertion of Eq. (27) into (26) and introducing the new
operator Ĝn(x) by the relation Ŝn(x) = Ĝn(x)P̂ −

n+1(x) give the
recurrence relation connecting operators Ĝn−1(x) and Ĝn(x),

Ĝn−1(x) = [1̂ + ε2n−1∂xĜn(x)Ĵ (x)]−1. (28)

In the presence of the biasing force F , V (x) should be
replaced by U (x) = V (x) − Fx. Then, the dimensionless
current operator and the operator Ĝn(x) become F dependent
and equal to Ĵ (x) + βFL [where Ĵ (x) is given by Eq. (7)]
and Ĝn(x; F ), respectively. Thus, the recurrence relation for
the operator Ĝn(x; F ) takes the form

Ĝn−1(x; F ) = [1̂ + ε2n−1∂xĜn(x; F )Ĵ (x)

+ ε2n−1βFL ∂xĜn(x; F )]−1. (29)

This relation is needed for the calculation of Ĝ−1
0 (x; F ) that is

contained in Eq. (18) for J (F ).
It follows from Eq. (29) that:[
∂F Ĝ−1

n−1(x; F )
]
F=0 = ε2n−1{∂x[∂F Ĝn(x; F )]F=0Ĵ (x)

+βL ∂xĜn(x)}, (30)

where Ĝn(x) = Ĝn(x; 0) and [∂F Ĝn(x; F )]F=0 can be found
from the following recurrence relation:

[∂F Ĝn−1(x; F )]F=0 = −ε2n−1Ĝn−1(x){∂x[∂F Ĝn(x; F )]F=0

× Ĵ (x) + βL ∂xĜn(x)}Ĝn−1(x). (31)

Equations (30) and (31) allow the calculation of the quan-
tity [∂F Ĝ−1

0 (x; F )]F=0 needed for determining the nonlinear
response [see Eq. (23)].

Note that the above relations give small-inertia corrections
[taking into account the contributions linear in ε2 and setting
Ĝ1(x) = 1̂] which were derived and discussed in Ref. [30].
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For arbitrary inertia (characterized by the parameter ε), the
recurrence procedure [presented by Eq. (28)] should be limited
to a definite value of n = N at which ĜN (x) = 1̂. The more
inertia, the larger value of N should be taken. At the same
time, the formal solutions obtained in Secs. II and III become
computationally treatable by using the Fourier representation
in which operator equations become matrix ones. Due to the
periodicity of the potential V (x) and, as consequence, all
functions of x in Eqs. (1)–(15) and (20)–(23), we define the
matrix elements of an arbitrary operator Â(x) composed by
the product of the differential operators ∂x and x-dependent
periodic functions as

App′ = L−1
∫ L

0
dx e−ikpxÂ(x)eikp′x,

(32)
p,p′ = 0, ± 1, ± 2, . . . ; kp = 2πL−1p.

With this notation, the matrix elements of the operators
∂x = L∂/∂x and Ĵ (x) [defined by Eq. (7)] take the form

(∂x)pp′ = iLkpδpp′ ,

Jpp′ = −iL
∑
p′′

kp′′ (E−1)p−p′′Ep′′−p′

= −iL(kpδpp′ + βkp−p′Vp−p′ ), (33)

where

Ep = L−1
∫ L

0
dx eβV (x)−ikpx,

(34)

(E−1)p = L−1
∫ L

0
dx e−βV (x)−ikpx .

Thus each recurrence step in Eq. (28) corresponds to solving
the system of linear equations,

∑
p′′

[
δpp′′ + iLε2n−1kp

∑
p′′′

(Ĝn)pp′′′Jp′′′p′′

]
(Ĝn−1)p′′p′ = δpp′ .

(35)

Of course, for computational procedure, the allowed values of
p should be limited by a definite value pm so that p = 0, ±
1, . . . , ± pm and the number of equations in Eq. (35) equals
2pm + 1. Parameters N and pm should be chosen properly to
provide the required accuracy of the results (see Sec. V).

The expression for the main quantity of interest �̄, given
by Eq. (15), contains the integral r(x) = ∫ x

0 dy [ρ(y) − L−1],
which can be expanded into Fourier series due to the periodic-
ity condition r(L) = r(0) = 0. Since the Fourier components
of ρ(x) are given by ρp = (E−1)p/L(E−1)0, the Fourier
components of r(x) equal

rp =
p �=0

−i[L(E−1)0]−1k−1
p (E−1)p,

(36)
r0 = i[L(E−1)0]−1

∑
p �=0

k−1
p (E−1)p.

Thus Eq. (15) takes the form

�̄ = L
∑
p �=0

q0prp = −i(E−1)−1
0

∑
p �=0

q0pk−1
p (E−1)p, (37)

where

qpp′ = (ZinE0L)−1
∑
p′′

Ep−p′′
(
Ĝ−1

0

)
p′′p′ ,

(38)
Zin = (E0)−1

∑
p′′

E−p′′
(
Ĝ−1

0

)
p′′0,

and we have used the equality qp = Ep/LE0 for the Fourier
components of q(x).

Let us now prove the identity (22). The left side of Eq. (22)
contains the integral Q(x) = ∫ x

0 dy [q̂(y) − L−1], the Fourier
components of which are equal to Qp = −iqp0/kp so that∫ L

0
dx[ρ(x) − L−1]

∫ x

0
dy[q̂(y) − L−1]

= i(E−1)−1
0

∑
p �=0

q−p0k
−1
p (E−1)p. (39)

Comparing Eqs. (37) and (39), we conclude that the iden-
tity (22) is true if q−p0 = q0p. The more general equality qpp′ =
q−p′,−p defines a property of persymmetry (the symmetry
with respect to the reverse diagonal) [44]. Thus we need to
prove that the matrix qpp′ really possesses this property. It is
convenient to introduce the operator q̂n(x) = q(x)Ĝ−1

n (x) so
that q̂(x) = Z−1

in q̂0(x). Using Eq. (28), it is easy to show that
q̂n(x) satisfies the following recurrence relation:

q̂n−1(x) = q(x) − ε2n−1q(x)∂x[q̂n(x)]−1∂xq(x), (40)

which corresponds to the following relation for matrix ele-
ments:

(q̂n−1)pp′ = (LE0)−1Ep−p′ − ε2n−1(LE0)−2

×
∑

p′′,p′′′
Ep−p′′kp′′

(
q̂−1

n

)
p′′p′′′kp′′′Ep′′′−p′ . (41)

Since any matrix App′ describing multiplication by periodic
function A(x) is expressed through its Fourier component
Ap−p′ and belongs to persymmetric matrices, the matrix
(q̂N )pp′ = qp−p′ is a persymmetric one. Let us assume that
the matrix (q̂n)pp′ is also persymmetric, and therefore the
same property is true for the matrix (q̂−1

n )pp′ of the reverse
operator q̂−1

n [44]. Substitution of (q̂−1
n )p′′p′′′ = (q̂−1

n )−p′′′,−p′′

to Eq. (41) and changing the summation indices p′′ to −p′′′ and
p′′′ to −p′′ lead to the equality (q̂n−1)pp′ = (q̂n−1)−p′,−p which
completes the proof of persymmetry of the matrix (q̂n)pp′ by
the mathematical induction method. Since qpp′ = Z−1

in (q̂0)pp′ ,
the equality qp0 = q0,−p follows from (q̂n)pp′ = (q̂n)−p′,−p at
n = 0 and p′ = 0. Thus, the identity (22) has been proved.

V. APPLICATION TO A SAWTOOTH POTENTIAL

A sawtooth potential is commonly used in theoretical stud-
ies due to its piecewise-linear structure that allows analytical
calculations. For our purposes, using this potential gives a
possibility to elucidate how a large gradient of a periodic
potential affects the characteristics under study (Secs. II
and III). Besides, this allows us to operate with analytical
expressions for matrix elements entering into the numerical
scheme discussed above. On the other hand, the presence of
large gradients requires the summation over many harmonics
of the potential and a large value of the limiting parameter pm
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(for prescribed accuracy to be reached) unlike, for example,
the simple case of cosine potential where pm can be taken
small enough [3].

It is convenient to choose a coordinate system in which
the Fourier components of the quantities under study have the
simplest form. Of course, such a choice has no influence on
the final results. If Ap is a Fourier component in the initial
coordinate system, the Fourier component Ãp in the new
coordinate system shifted along the x axis by a can be found
by the formula Ãp = exp(ikpa)Ap. One can check that the
factor exp(ikpa) does not contribute to the quantities under
study. We introduce dimensionless units for length and energy
so that the length is measured in units of the potential period L

and the energy in units of the potential barrier V . A sawtooth
potential can be parametrized in the main period by the
following odd function: V (x) = x/l for −l/2 < x < l/2 and
V (x) = (±1/2 − x)/(1 − l) for the intervals l/2 < x < 1/2
and −1/2 < x < −l/2, respectively, where l and 1 − l are
the sawtooth lengths (0 < l < 1). The Fourier components
of the potential gradient f (x) = V ′(x) are written as fp =
sin(πpl)/[πpl(1 − l)]. Figure 1(a) presents the dependence
fp on p for several values of l. The smaller l (or 1 − l), the
more harmonics should be taken into account in the calculation
scheme. The number of sum terms pm required for calculations
can be estimated as pm ∼ l−1 at l → 0. On the other hand,
fp → 1 (for arbitrary p) at l → 0 (or 1 − l → 0) so that we
can expect the singular behavior of quantities of interest in the
case of an extremely asymmetric sawtooth potential.

As pointed out above, the advantage of the sawtooth
potential is that it provides analytical expressions, including
the expression for Ep defined by Eq. (34),

Ep = 2u sinh[(u − ikpl)/2]

u2 + i(1 − 2l)ukp + l(1 − l)k2
p

,

(42)
u = βV, kp = 2πp

The expression for (E−1)p is obtained by the replacement of u

by −u in Eq. (42). The dimensionless parameter u specifies the
ratio of the potential barrier V to the thermal energy kBT and
serves as the dimensionless inverse temperature. In addition to
Ep and (E−1)p, we need the matrix (Ĝ−1

0 )pp′ for the quantities
�̄, Zin, and μ to be calculated from Eqs. (37), (38), and (20).
It can be found from the recurrence procedure,

pm∑
p′′=−pm

⎧⎨
⎩δpp′′ + ε2n−1kp

⎡
⎣kp′′(Ĝn)pp′′

− iu

pm∑
p′′′=−pm

(Ĝn)pp′′′fp′′′−p′′

⎤
⎦

⎫⎬
⎭(Ĝn−1)p′′p′ = δpp′ . (43)

Note that in the overdamped case the explicit analytical
expressions for �̄ and μ (marked with subscript m = 0 below)
are known for a sawtooth potential [29,30],

�̄m=0 = (1/2 − l)[coth(u/2) + (u/2)/sinh2(u/2) − 4/u],
(44)

μm=0 = ζ−1(E−1)−1
0 E−1

0 = ζ−1(u/2)2/sinh2(u/2).
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ξ  = 4,   u  = 1,   l  = 0.1

FIG. 1. (Color online) (a) The Fourier components fp of the
gradient of the sawtooth potential V (x) (depicted in the top right
frame) for several sawtooth lengths l. (b) The dependence of the
inertial correction 
� calculated by MCFM on the limiting parameter
pm for several values N .

Thus the mobility μ (at F = 0) can be calculated as μ =
μm=0/Zin and the correction 
� as �̄ − �̄m=0 from Eq. (14).

It is convenient to characterize inertia by the temperature-
independent parameter,

ξ = ε2u = τv/τL = mV/ζ 2L2, (45)

which is the ratio of the velocity relaxation time τv to the sliding
time τL = ζL2/V on the distance L in the overdamped regime.
Figure 1(b) provides insight into the values of the limiting
parameters N and pm which ensure the required calculation
accuracy. In a wide range of values of ξ , u, and 0.01 < l <

0.99, an accuracy of up to three significant figures can be
reached at N = 100 and pm = 100. It is worthy to mention that
MCFM calculations with the cosine potentials require much
lower values of N and pm (namely, N ≈ 20 and pm ≈ 12 for
the same accuracy) [3].

Figures 2(a) and 2(b) demonstrate the l dependences of �̄

and μ for several values of ξ calculated at u = 1, N = 100,
and pm = 100. The point l = 0.5 is the center of symmetry
for �̄(l) in the interval 0 < l < 1 [so that �̄(l) < 0 at 0.5 <

l < 1] and determines the position of the symmetry axis for
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FIG. 2. (Color online) (a) The l dependences of the average
integrated current after switching on the sawtooth potential and (b)
the shift of the particle mobility μ(l) (at zero external force) relative
to its value μ(0.5) at the central point l = 0.5. The calculations have
been performed by MCFM at u = 1, N = 100, and pm = 100. The
detailed l dependences near the point l = 0 for different pm’s are given
in the corresponding frames. The curves in panel (b) are marked as in
panel (a). The dependence of μ(0.5) on ξ is presented in the bottom
left frame in panel (b).

μ(l) in the same interval. In other words, �̄ and μ are odd
and even functions of the asymmetry parameter κ = 1 − 2l.
These dependences exhibit a jumplike behavior near the point
l = 0 (or l = 1). The more detailed behavior near this point is
depicted in the insets of Fig. 2. The greater the value of pm,
the closer the smooth portion of the curve approaches the y

axis. One can say that there is such a value of pm at which the
calculated value of �̄ or μ belongs to the smooth portion of
the corresponding curve. This is true for an arbitrarily small
but nonzero l. On the other hand, the calculation of �̄ and μ at
l = 0 (when fp = 1 for all p) does not require large values of
pm, and the result can differ from that of l → 0. This means that
the function A(l) (�̄ or μ in our case) satisfies the inequality:
liml→0A(l) �= A(0). An attempt to explain the physical cause
of such a nonanalytic behavior is given in Sec. VI where we
develop an analytical approach valid in the high-temperature
region.

The mobility μm=0 (at F = 0) of an inertialess particle
in a sawtooth potential does not depend on the sawtooth
lengths l and 1 − l [see Eq. (44)]. It is impressive that such

0

0.1

0.2

0.3

0.4

12840
u

0

0.1

0.2

0 4 8 12u

ΔΔΦ

0

0.5

1

0 5 10

μ

Φ

l  = 0.1

FIG. 3. (Color online) The inverse temperature dependences of
the average integrated current after switching on the sawtooth
potential. The corresponding dependences of the inertial correction

� are depicted in the top left frame. The curves, from bottom to top,
are in the order of increasing the inertial parameter ξ from ξ = 0 (the
inertialess case, the dotted curve) to ξ = 0.01,0.05,0.25,1,4, and 25
(the solid curves). The inverse temperature dependences of the
particle mobility μ (at zero external force) are presented in the bottom
right frame. The curves, from top to bottom, correspond to the same
increasing order of ξ values. The calculations have been performed
by MCFM at l = 0.1, N = 100, and pm = 100.

a dependence arises in the inertial case. The dependences
presented in Fig. 2(b) show that the mobility decreases
monotonically with increasing the asymmetry parameter κ for
ξ < 4 with maximum deviation at ξ ∼ 0.1. For strong inertia
(the underdamped case) at ξ > 4, the dependences become
nonmonotonic.

It follows from the inverse temperature dependences pre-
sented in Fig. 3 that inertia has the opposite effect on the
average integrated current �̄ and the particle mobility μ:
The former increases, and the latter decreases with increasing
inertia. In Ref. [29] we have proved such a behavior of μ

for arbitrary periodic potentials but only by consideration of
small inertia corrections linear in ξ . In this approximation,
�̄ increases with the increase in inertia at all temperatures
for a sawtooth potential and, at high temperatures, for simple
periodic potentials described by the first two harmonics. The
high-temperature asymptotics of �̄ is proportional to T −3

for the overdamped case (�̄ = �̄m=0) [34,45–47] and to T −2

when the inertia is small [29,30]. For strong inertia, the
linearlike dependence of �̄ is observed in Fig. 3 at small u (but
not belonging to the very narrow area near u = 0 considered
in Sec. VI) so that �̄ ∝ T −1. Although �̄ dominates �̄m=0 at
high temperatures, the deviation �̄ from �̄m=0 is maximal at
u ∼ 4.

VI. HIGH-TEMPERATURE BEHAVIOR

The high-temperature approximation is a fruitful analytical
approach which allowed us to obtain a number of useful
regularities both for inertialess ratchets [34,45–47] and for
the ratchets with the small inertia [29,30]. That is why it is
reasonable to apply this approximation to the strong-inertia
case considered in this paper. The small parameter is u = βV ,
where V is the maximum potential change on its spatial
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period. At u � 1, the inertia parameter ε can be arbitrarily
chosen (more precise inequalities are given at the end of
this section after the final expressions are derived). With this
approximation, it is convenient to rewrite Eqs. (37) and (38)
for the quantities of interest as follows:

Zin = 1 + uε2(E0)−1
∑

p,p′ �=0

kpkp′E−p(Ĝ1)pp′Vp′ , (46)

�̄=Z−1
in �̄m=0 − iε2Z−1

in (E0)−1(E−1)−1
0

×
[ ∑

p,p′ �=0

kpE−p(E−1)p′ (Ĝ1)pp′

+u
∑

p,p′ �=0,p′′(�=p)

k−1
p kp′kp′′−pE−p′ (E−1)p(Ĝ1)p′p′′Vp′′−p

]
,

(47)

where

�̄m=0 = −i(E0)−1(E−1)−1
0

∑
p �=0

k−1
p E−p(E−1)p (48)

is the inertialess contribution and kp = 2πp. Since Ep and
(E−1)p are of order u at p �= 0, the lowest approximation in
u requires the matrix elements (Ĝ1)pp′ to be independent of u

for Zin and to contain the linear correction in u for �̄. Since
the matrices (Ĝn)pp′ are diagonal at u = 0, the matrix (Ĝ1)pp′

can be written in the approximate form

(Ĝ1)pp′ ≈ g(1)
p δpp′ + ug

(1)
pp′ . (49)

Here g(1)
p and g

(1)
pp′ define diagonal and nondiagonal [see

Eq. (52) below] contributions, respectively.
As follows from Eqs. (28) and (35), the continued fraction

g(1)
p is determined by the recurrence relation,

g(n−1)
p =

[
1 + ε2k2

p

n
g(n)

p

]−1

, n = 2,3, . . . ,N,

(50)
g(N)

p = 1, N  1,

and, in accordance with Ref. [3], is analytically representable,

ξp ≡ g(1)
p

=
p �=0

∫ l

0
dz exp

[−ε2k2
p(z − 1 − ln z)

]

≈
ε>1

√
π

2

1

ε|kp| , g
(1)
0 = 1. (51)

Then, the nondiagonal contribution g
(1)
pp′ can be found by the

following procedure:

g
(1)
pp′ = k−1

p′ kp−p′Vp−p′ξ−p,p′ , ξpp′ =
N∑

n=2

g(n)
p A

(n)
pp′ ,

(52)

A
(n)
pp′ =

n∏
n′=2

a
(n′)
pp′ , a

(n)
pp′ = ε2

n
kpg(n−1)

p kp′g
(n−1)
p′ .

Expanding Ep and (E−1)p in powers of u in Eqs. (46)–(48)
and using Eqs. (49), (51), and (52), we arrive at the following

general relations:

Zin = 1 + u2ε2
∑
p �=0

k2
pξp|Vp|2 + O(u3)

≈
ε>1

1 +
√

2πu2ε

∞∑
p=1

kp|Vp|2 + O(u3), (53)

�̄ = iu3
∑
p,p′ �=0

(p+p′ �=0)

k−1
p [1 + ε2kp′(kp′+pξp′p + kp′+2pξp′)]

×VpVp′V−p−p′ + O(u4). (54)

These relations in the case of small inertial corrections
(ε � 1, ξp = 1, and ξpp′ = 0) are reduced to those obtained
in Ref. [30]. Since u ∝ T −1 and ε ∝ T 1/2, we can see
from Eq. (53) that (Zin − 1) ∝ T −1 for a small inertia and
∝T −3/2 for a strong one. We cannot exactly determine the
high-temperature asymptotics of �̄ since the temperature de-
pendence of ξp′p is unknown in the general case. Nevertheless,
one can state that �̄ ∝ T −α where α ⊂ (2,5/2).

The comparison between the exact and the approximate
l dependences of (Zin − 1)/u2 and �̄/u3 for the sawtooth
potential [when Vp = −ifp/kp in Eqs. (53) and (54)] is given
in Figs. 4(a) and 4(b). The agreement is good when l is not
too small. The cause of the discrepancy lies in the fact that
the expansion of Ep in u depends on whether there is a region
of rapidly changing potential or not. Indeed, the expansion of
Eq. (42) for the sawtooth potential in powers of u (u � 1) is
different for u � |kp|l and u  |kp|l. Since |kp| = 2π |p| �
2π , the inequality u � |kp|l is valid in the wide region of l, l 
u/2π where the expansions (53) and (54) are justified, whereas
the validity of the inequality u  |kp|l at u � 1 depends on
kp. The numerical procedure limits the maximal value of |kp|
(the parameter pm) so that, strictly speaking, the region of
small l values with u  |kp|l and u � 1 is narrowed to the
point l = 0. This is an explanation of the nonanalytic behavior
which we observe at small l.

In the case of the sawtooth potential and strong inertia
(ε > 1), the summation in Eq. (53) can be carried out
analytically [22], which leads to the following expressions
for the quantity Zin and the high-temperature mobility μ (at
zero external force):

Zin ≈
ε>1

1 − 2u2ε√
2πl2(1 − l)2

∫ l

0
dx(l − x) ln(2 sin πx)

→
l→0

1 − u2ε√
2π

[
3

2
+ ln(2πl)

]
,

ζμ ≈ (1 − u2/12)Z−1
in →

l→0(ε>1)
1 + u2ε√

2π

[
3

2
+ ln(2πl)

]
.

(55)

As we mentioned above, the approximation used is valid
for l  u/2π so that the logarithmic divergence at l → 0
must be eliminated by setting 2πl ∼ u in the logarithmic
argument. Thus we obtain the following nonanalytic behavior
at the point l = 0 and at u → 0: Zin → 1 − (2π )−1/2εu2 ln(u)
(ε > 1), which is in qualitative agreement with the exact results
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FIG. 4. (Color online) The comparison of the exact (markers)
and high-temperature approximate (lines) l dependences of the
normalized quantities (a) (Zin − 1)/u2 and (b) �̄/u3 calculated for
the sawtooth potential. The dashed and solid curves as well as the
open and filled markers correspond to ε = 2 and ε = 4, respectively.
The square and triangle markers correspond to u = 0.05 and u = 0.1.

presented in Fig. 4(a): The smaller u, the larger (Zin − 1)/u2

at l = 0. The corresponding high-temperature dimensionless
mobility ζμ decreases from the value of ζμ ≈ 1 − 0.68εu2 at
l = 1/2 to the asymptotic value of ζμ → 1 + 0.40εu2 ln(u) at
l = 0. Since the high-temperature contribution is assumed to
be small, the inertial parameter ε is majorized by the inequality
ε � u−1.

The high-temperature analysis allows us to conclude that
the presence of large gradients in a periodic potential (in the
region of the width l) leads to the nonanalytic behavior of the
quantities of interest at l → 0. For small inertia, the quantities
diverge as l−1 [29,30], whereas for strong inertia they diverge
as − ln l [see Eq. (55)]. One can say that the nonanalytic
area contracts to a point with increasing inertia. In fact, the
smallness of l is limited by the smallness of u so that we
can expect that the quantities of interest have the logarithmic
singularity − ln u at small u. This is true, in particular, for the
effective diffusion coefficient since it is related to the effective
mobility μ (at zero external force) by the Einstein relation.
In addition, we have actually shown that the high-temperature
asymptotics of the inertial contribution to the mobility and the

effective diffusion coefficient are proportional to T −3/2 and
T −1/2, respectively, for strong inertia.

VII. CONCLUSIONS

We have developed a theory of inertial adiabatic transport
in which the main transport characteristics are described
by analytical expressions formally coinciding with known
ones for the overdamped massless case but containing a
factor which just includes all information about inertia and
can be calculated in terms of Risken’s MCFM. One of the
important transport characteristics is the average integrated
current �̄ arising after switching on a periodic potential
which determines the average velocity of an adiabatic on-off
flashing ratchet. The second characteristic is the stationary
current arising in a tilted periodic potential. In contrast to the
traditional computational MCFM scheme [3], our expression
for this current formally coincides with the Stratonovich
formula [35] which is generalized to the case of inertial
particles. Such representation has allowed us to obtain the
coefficients of expansion over the small force, namely, the
mobility μ (at zero external force) and the effective diffusion
coefficient as well as the nonlinear response which deter-
mines the average velocity of adiabatically driven rocking
ratchets.

Unlike the commonly considered in MCFM cosinelike
potentials, the sawtooth potential has been chosen as an
example. This choice has allowed us to elucidate how a
large gradient of a periodic potential affects the characteristics
under study. We have revealed nonanalytic (jump) behavior
of the transport characteristics for a stepwise potential when
the width l of the steps tends to zero. In contrast to the
overdamped case in which the mobility μ (at zero external
force) and the effective diffusion coefficient in a sawtooth
potential do not depend on l, they decrease with increasing the
asymmetry parameter κ = 1 − 2l/L when inertia is not very
strong and have nonmonotonic behavior for strong inertia.
Analysis of the temperature dependencies μ(T ) and �̄(T )
(determining the average particle velocity of the on-off ratchet)
revealed the dominant role of inertia in the high-temperature
region. In this region, we have developed an analytical
approach which allows us to conclude that the temperature-
dependent contribution to the mobility μ is proportional to
T −3/2 for strong inertia and has the logarithmic singularity
− ln l at u < l → 0 changing to the singularity − ln u

at l � u → 0.
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