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Tuning of the electron g factor in defect-free GaAs nanodisks
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We theoretically study the impact of changes in surroundings on the electron ground-state effective g factor in
defect-free GaAs/AlGaAs nanodisks. To perform the study, we formulate and deploy a computational efficient
full three-dimensional model to describe the effective g-factor tensor in semiconductor nano-objects of complex
geometry and material content. This model is based on an effective 2 × 2 conduction-band Hamiltonian which
includes the Rashba and Dresselhaus spin-orbit couplings. The description is suited to clarify the important
question of the controllability of the electron effective g factor in semiconductor nano-objects. The results of
this theoretical study suggest that in the defect-free GaAs/AlGaAs nanodisks, the effective g factor can be tuned
within a wide range by proper design of the nanodisk environment. The zz components of the electron effective
g-factor tensor obtained in our simulation are in good agreement with some recent experimental observations.
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I. INTRODUCTION

Semiconductor nano-objects, such as self-assembled quan-
tum dots, quantum rings, quantum-dot molecules, nanowires,
etc. (see, for instance, Refs. [1–5], and references therein),
offer promising possibilities to control and manipulate electron
spins confined in the objects [5–7]. This can be exploited
in semiconductor-based quantum information processing and,
more widely, in semiconductor-based spintronics [8–16].

Static and dynamic control of isolated electron spins in
semiconductor nano-objects can be achieved through coupling
of the electron momentum to the particle spins, which is
provided by the spin-orbit interaction [17–19]. For instance,
the electron spin control (due to the strong spin-orbit inter-
action) has been demonstrated recently in pure wurtzite InAs
nanowire quantum dots [9] and self-assembled InAs quantum
dots [20,21].

The Zeeman splitting �E for the electron energy states in
semiconductor nano-objects at nonzero magnetic field B is
characterized by the effective Landé factor (g factor), which
can be defined as g = �E/μBB (μB is the Bohr magneton).
Robust spin manipulations and spin-based qubit operations [8]
by an external electric/magnetic field in semiconductor nano-
objects require proper techniques to control the particles’
effective g factors. Hence, it is crucial to develop a microscopic
understanding of the influence of the geometrical and material
parameters of the nano-objects on the spin-orbit coupling
and magnetic response of individual carriers confined in the
objects.

The effective g factor of electrons and holes confined
in semiconductor nanostructures (mainly InAs/GaAs and
GaAs/AlGaAs quantum wells and quantum dots) was recently
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extensively studied both theoretically and experimentally (see,
for instance, Refs. [20–34] and numerous references therein).
It was found that in general in self-assembled semiconductor
quantum dots, the effective g factor becomes anisotropic
and significantly depends on the direction of the magnetic
field in the quantum structures. Hence, it is represented as
a tensor with components gij . The tensor is very sensitive
to the geometrical and material parameters of the nanostruc-
tures. At the same time, utilization of the electron spins in
semiconductor quantum dots requires precise, coherent, and
selective control of single electron spin states in arrays of
the dots. Therefore, robust engineering and controllability of
the g factor of the carriers confined in the quantum dots are
fundamental prerequisites in this research domain.

The newly developed biotemplate and neutral-beam etching
fusion top-down process can immediately provide us with
nanoscale structures of precisely controlled geometrical and
material characteristics [35]. Recently, using this process,
strain- and defect-free high-quality GaAs/AlxGa1−xAs nan-
odisks (NDs) have been fabricated with a precise control
of the disks’ geometrical and material parameters [36–38].
It is known that the effective g factor of electrons in low-
dimensional GaAs/AlxGa1−xAs structures (according to a
structure’s actual geometrical and material parameters) may
change from the small negative value gGaAs ≈ −0.44 to a
positive one of similar absolute value [22,39]. Therefore,
the GaAs-based nanosystems could be potentially useful
in quantum repeaters for large-scale quantum information
networks [33,40]. From this point of view, uniform arrays of
the defect-free NDs can be considered as “test-bed” systems
in which precise selective and coherent control of the electron
(hole) spin states could be ultimately achieved.

Very recently, the electron effective g factor in GaAs
NDs fabricated by damage-free neutral-beam etching using
bionanotemplates was studied by means of time-resolved
Kerr rotation [38] (see Fig. 1). It was suggested that the
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FIG. 1. (Color online) Arrays of the defect-free GaAs NDs as
in Ref. [38]. Two types of the arrays are presented: (a) isotropic
surroundings of a ND and (b) anisotropic surroundings of a ND.

experimentally obtained magnitude of the electron effective
g factor is controlled by the interplay between the vertical
(along the system growth direction, i.e., the z direction) and
lateral confinement of the electron wave function. In addition,
it was assumed that the bulk values of the g factor in the
different material domains can be taken for an evaluation of the
effective g factor. In this very poor approximation, the electron
g factor in semiconductor multidomain nanostructures is
estimated as a material average [39],

gav =
∑

i

gel,ipi, (1)

where gel,i is the electron g factor of bulk material in the
corresponding domain and

pi =
∫

Vi

d3r|�el(r)|2

is the probability to find the electron in the state �el(r)
inside the ith domain with the volume Vi . However, this
estimate neglects changes in the electron and hole energy states
in the confinement regime and cannot explain the anisotropy
of the g-factor tensor in nanosystems.

In general, the electron effective g factor can be determined
accurately by the second-order k · p theory using Roth’s
formula [41,42]. In bulk zinc-blende III-V semiconductors,
only the upper valence bands give the main contribution to the
electron effective g factor. Therefore, within the 8 × 8 k · p
theory, the effective electron bulk g factor is

gB = g0 − 2EP

3

�

Eg(Eg + �)
, (2)

where g0 is the free electron Landé factor, EP is the Kane
interband coupling parameter, Eg is the band gap, and �

is the spin-orbit coupling energy. This expression nearly
reproduces (with a small relative deviation from experimental
data) the electron effective g factor for narrow-gap III-V
semiconductors (InSb, InAs). However, for semiconductors
with relatively wide gaps (e.g., GaAs), Eq. (2) requires
considerable corrections (about 27% for bulk GaAs) due
to all of the remote bands not included in the k · p 8 × 8
Hamiltonian [39,42–44].

For electrons confined in semiconductor nano-objects, the
Roth’s equation is a sum over all energy states including heavy,
light, and spin-off hole excited states. This procedure barely
converges in simulation (or does not converge at all) for most of
the semiconductor nanostructures. In addition, commonly used
for the direct band-gap zinc-blende heterostructures, the k · p
8 × 8 Hamiltonian models may numerically result in spurious
unphysical solutions. The models require renormalizations
and corrections of the material constants for each specific
case (see, for instance, Refs. [19,45–47], and references
therein). This is really troublesome for the physical analysis
in the case of GaAs nano-objects of multidomain complex
geometry and material content, when the actual value of the
electron effective g factor is varying within a neighborhood
of zero. Nevertheless, appropriate and successful simulation
has been performed for the electron g factor in strain-
free semiconductor GaAs/AlxGa1−xAs quantum wells and
quantum dots of relatively simple geometry and material
content. In the simulation, the Kane 8 × 8 Hamiltonian and
2 × 2 conduction-band model were used (see, for instance,
Refs. [22,39,48–50]). Unfortunately, the former approach
cannot guarantee nonspurious solutions for the desirable range
of material parameters and the latter one requires material
parameters that could hardly be verified from the literature.

In this paper, we develop an efficient approach to model
and analyze the effective g factor for electrons confined
in zinc-blende semiconductor complex multidomain nanos-
tructures (such as defect-free GaAs nanodisks of different
configurations). In the approach, we employ an effective 2 × 2
conduction-band Hamiltonian including the Rashba and Dres-
selhaus spin-orbit interactions. We demonstrate the approach
efficiency for simulation and analysis of the electron g-factor
tensor in GaAs/AlxGa1−xAs NDs. This makes it possible to
theoretically investigate the important issue of the geometrical
and material tuning of the effective g factor in the defect-
free NDs. The results of this study clearly show that the
proposed description and simulation data are appropriate for
experiments with uniform arrays of GaAs/AlxGa1−xAs NDs.

II. THEORETICAL MODEL

We describe single electron energy states in III-V semi-
conductor NDs embedded into a III-V semiconductor matrix
in the presence of the external magnetic B field using the
following effective 2 × 2 conduction-band Hamiltonian which
includes the Rashba and Dresselhaus spin-orbit couplings
[17–19,51–57]:

Ĥ = Ĥe + Ĥspin. (3)
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In this Hamiltonian, the spin-independent part is written as

Ĥe =
[
�̂

1

2m(r,E)
�̂ + V (r)

]
Î2, (4)

and

Ĥspin = ĤM + ĤR + ĤD (5)

is the Hamiltonian which is relevant to the electron’s spin. In
Eq. (5),

ĤM = 1
2μBgB(r,E)σ̂ · B (6)

is the material Zeeman term,

ĤR = ∇rβ(r,E) · [σ̂ × �̂] (7)

presents the Rashba spin-orbit interaction, and

ĤD = b6c6c
41 (r)

�3

[
σ̂x�̂x

(
�̂2

y − �̂2
z

) + σ̂y�̂y

(
�̂2

z − �̂2
x

)
+ σ̂z�̂z

(
�̂2

x − �̂2
y

)]
(8)

stands for the Dresselhaus spin-orbit interaction. In the
equations above, Î2 is the identity matrix of size 2, r = (x,y,z)
is the three-dimensional radius vector,

�̂ = −i�∇r + eA(r) (9)

stands for the momentum operator of electrons, ∇r =
(∇x,∇y,∇z) is the spatial gradient, A(r) is the vector potential
of the magnetic field B = ∇r × A(r),

V (r) =
{

0 inside ND
�Ec(r) outside ND (10)

is the electron confinement potential [�Ec(r) represents the
local conduction-band offset in the structure; see Fig. 2],

1

m(r,E)
= 1

3m0

EP (r)[3Ẽg(r,E) + 2�(r)]

Ẽg(r,E)[Ẽg(r,E) + �(r)]
(11)

and

gB(r,E) = g0 − 2

3

EP (r)�(r)

Ẽg(r,E)[Ẽg(r,E) + �(r)]
(12)

are the electron energy- and position-dependent effective mass
and bulk Landé factor,

β(r,E) = �

4m0
[g0 − gB(r,E)] (13)

is the Rasba spin-orbit coupling parameter [19,52,53,56], and

Ẽg(r,E) =
{

E + Ein
g inside ND

E + Ein
g + �Ev(r) outside ND (14)

is the effective band gap in the structure [�Ev(r) stands for the
local valence-band offset; see Fig. 2]. The position-dependent
spin-orbit splitting for the valence bands is taken to be �(r),
Ep(r) is the position-dependent Kane interband coupling
parameter, b6c6c

41 (r) is the Dresselhaus coefficient [19], σ̂ is the
vector of the Pauli matrices, and m0 and e are the free electron
mass and elementary charge, respectively. In this paper,
we consider symmetrical and asymmetrical environment for
the NDs (see below). Therefore, we adopt a gauge-origin-
independent definition for the vector potential (see Ref. [58],
and references therein): A(r) = B × (r − r̄)/2, where r̄ stands

FIG. 2. (Color online) Schematic of the conduction- and valence-
band profiles in the structures involving ND1 and ND2 (ρ =√

x2 + y2).

for the expectation value of the position of the electron in the
ground state. Using this gauge and Eqs. (5)–(8) for a weak
external magnetic field (B → 0), the spin-dependent part of
the electron Hamiltonian (after some algebra for the linear
approximation, keeping only the first order of the magnetic
field B, and including corrections due to all of the remote
bands) can be written in the following form [39]:

Ĥspin ≈ ĤB=0
spin + 1

2
μB

∑
i,j=x,y,z

ĝij (r,E)σ̂iBj , (15)

where

ĤB=0
spin = −i�∇rβ(r,E) · [σ̂ × ∇r]

+ b6c6c
41 (r)

[
σ̂x∇x

(∇2
y − ∇2

z

) + σ̂y∇y

(∇2
z − ∇2

x

)
+ σ̂z∇z

(∇2
x − ∇2

y

)]
, (16)

and the components of the effective g-factor tensor are defined
as

ĝij (r,E) = [gB(r,E) + δgB(r)]δij + gR
ij (r,E) + gD

ij (r,E).

(17)

In Eq. (17), δgB(r) stands for the position-dependent correction
due to all of the remote bands. The Rashba and Dresselhaus
couplings bring correspondingly the components gR

ij and gD
ij

to the g tensor:

ĝR(r,E) =
⎛
⎝	yy + 	zz −	yx −	zx

−	xy 	xx + 	zz −	zy

−	xz −	yz 	xx + 	yy

⎞
⎠,

(18)
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ĝD
xx(r) = 2γ (r)(Rz∇x∇y + Ry∇x∇z),

ĝD
xy(r) = γ (r)

(−Rz∇2
y − 2∇z − 2Rx∇x∇z + 2Rz∇2

z

)
,

ĝD
xz(r) = γ (r)

(−Ry∇2
z − 2∇y − 2Rx∇x∇y + Ry∇2

y

)
,

ĝD
yx(r) = γ (r)

(−Rz∇2
x − 2∇z − 2Ry∇y∇z + Rz∇2

z

)
,

ĝD
yy(r) = 2γ (r)(Rx∇y∇z + Rz∇y∇x),

ĝD
yz(r) = γ (r)

(−Rx∇2
z − 2∇x − 2Ry∇y∇x + Rx∇2

x

)
,

ĝD
zx(r) = γ (r)

(−Ry∇2
x − 2∇y − 2Rz∇z∇y + Ry∇2

y

)
,

ĝD
zy(r) = γ (r)

(−Rx∇2
y − 2∇x − 2Rz∇z∇x + Rx∇2

x

)
,

ĝD
zz(r) = 2γ (r)(Ry∇z∇x + Rx∇z∇y), (19)

where

	ij (r,E) = 1
2∇igB(r,E) · Rj , (20)

Rj = (r − r̄)j , and γ (r) = m0�
−2b6c6c

41 (r).
For the effective 2 × 2 Hamiltonian (3), an electron energy

state is presented by the two-component spinor,

�{2}
n,s(r) =

(
Fn,s,↑
Fn,s,↓

)
,

where n stands for the main quantum number and s refers to
the spin polarization. The envelope wave functions Fn,s,↑↓ are
satisfying the following Schrödinger equation:

Ĥ
(

Fn,s,↑
Fn,s,↓

)
= En,s

(
Fn,s,↑
Fn,s,↓

)
. (21)

Now one can solve the system of nonlinear equations (21)
numerically and obtain the dependence of the electron energy
(including excited states) on the magnetic field [32,48].
Alternatively, in this paper, to analyze the electron effective
g-factor properties at the weak magnetic field, we deploy
the advantage of the simulation of the expectation values of
the g-tensor components when B → 0 [58–60]. Therefore,
to simulate and analyze the g-factor tensor for the ground
state of the electron confined in the NDs, we first solve
the nonlinear Schrödinger equation with the Hamiltonian
presented by Eq. (3) without spin and magnetic field,[

−∇r
�

2

2m(r,E0)
∇r + V (r)

]
�E0 (r) = E0�E0 (r), (22)

and obtain the ground-state wave function �E0 (r) and ground-
state energy E0 of the electron confined in NDs. We use this
solution to calculate the principal energy-dependent parameter
of the system, Ẽg(r,E0). Thus, we are able to retrace all
information relevant to ĝ(r,E). The expectation value of a
quantity f̂ (r) in the electron ground state with the wave
function �E0 (r) is conventionally defined as

f̄ ≡ 〈f 〉 =
∫

�∗
E0

(r)f̂ (r) �E0 (r)dr. (23)

Therefore, for a weak magnetic field within the linear approxi-
mation, we can simulate and analyze the expectation values of
all components of the electron ground-state effective g-factor
tensor gij = 〈ĝij (r,E0)〉 [59,60] and the tensor anisotropy ratio
Pij = (gii − gjj )/(gii + gjj ).

III. SIMULATION RESULTS AND DISCUSSION

First we simulate the electron ground-state wave function
and energy for two types of GaAs/AlxGa1−xAs nanodisks:
ND1 and ND2 (see Fig. 1). The electron effective g factor
in arrays of these disks were investigated experimentally
in Ref. [38] for the magnetic field parallel to the system
growth direction, which is chosen to be the z direction in our
simulation. Both NDs are suggested to be perfect cylinders
with the base radius rD = 7.5 nm and height hD = 8 nm [38].
We put the origin of the coordinate system in the center of the
cylinder.

The lateral distance between NDs in the arrays can vary
from 20 to 30 nm and the distance between layers is
12 nm [38]. Therefore, in our simulation, we consider the
NDs as individually isolated GaAs nano-objects. The main
difference in these two kinds of NDs is the disks’ material
surroundings: isotropic for the ND1 and anisotropic (different
in the z and radial directions) for the ND2 (see Figs. 1 and 2).

The principal material parameters for GaAs/AlGaAs het-
erostructures, which we use in our simulation, are presented in
Table I. In addition, we take 60% of the heterostructure local
gap difference to be the local conductance-band offset and
40% to be the local valence-band offset in the NDs (Fig. 2).

The energy and wave functions of the electrons confined
in the NDs are obtained numerically from a self-consistent
solution of Eq. (22) by the iterative method [62,63] using
the COMSOL multiphysics package [64]. We use the simulated
wave functions and energies to calculate the expectation values
of all components of the g-factor tensor for the ground state
of the electron confined in the NDs.

Figure 3 shows the three-dimensional distribution of the
probability density for the ground state and the ground-state
energy of the electron confined in the NDs at zero magnetic
field. As the ND environment is changing from the structure of
the ND1 to the structure of the ND2 (see Fig. 1), the distribution
is transforming from a nearly spherical one (slightly deformed
at the edges of the disk) to a considerably squeezed one in the
radial direction. This is followed by a substantial increase of
the confinement energy (and the effective band gap in the ND).

TABLE I. Material parameters.a

Parameter GaAs AlAs Al0.15Ga0.85As Al0.3Ga0.7As

Eg (eV) 1.519 3.099 1.686 1.873
EP (eV) 28.80 21.10 27.65 26.49
� (eV) 0.341 0.280 0.332 0.323
�Ec (eV) 0.100 0.213
�Ev (eV) 0.067 0.142
b6c6c

14 (eV Å3) 27.58 18.53 26.22 24.87
gel

b −0.445 2.0 0.057 0.475
δB

c −0.128 −0.144 −0.140

aThe parameters are taken from [19,25,44,61]. The energy gap Eg

of bulk AlxGa1−xAs is interpolated as [25] Eg = 1.519 + 1.04x +
0.47x2. The parameters EP , �, and b6c6c

41 of bulk AlxGa1−xAs are
linearly interpolated as Dx = xDAlAs + (1 − x)DGaAs.
bThe electron effective g factor of bulk AlxGa1−xAs is interpolated
as [25] gel ≈ −0.445 + 3.38(Eg − 1.519) − 2.21(Eg − 1.519)2.
cThis corrects gB from Eq. (2) to the actual value gel .
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FIG. 3. (Color online) Probability density distribution for the
electron ground states in the ND1 and ND2. The electron ground-state
energies are presented correspondingly.

For a better understanding of the impact of the
environmental changes on the electron wave-function
confinement in different directions and overall confinement,
we consider the expectation value of the electron characteristic
extension (mean) length in the z direction, dz = 〈(z − z̄)2〉1/2,

expectation value of the mean lateral electron radius, dρ =
〈(x − x̄)2 + (y − ȳ)2〉1/2, and overall characteristic length of
the electron in the structure, d = (d2

z + d2
ρ)1/2. We note that

according to the cylindrical and reflection (in the x-z and
y-z planes) symmetry of the ND1 and ND2, the expectation
value of the position of the electron in the ground state is
r̄ = (0,0,0). The computed values of the characteristic lengths
are listed in Table II. The changes in the ND’s surroundings
cause transformations of the electron wave-function extension
both in the z and lateral directions, which leads to the overall
squeeze of the wave function in the ND2. This is a clear
demonstration of the nonseparable (“nonadiabatic”) fully
three-dimensional behavior of the electron wave function in
small nano-objects [65]. The overall squeeze of the wave
function is a contradiction to the assumptions made in Ref. [38]
and itself can only generate a decrease of the material average
of the effective g tensor. Indeed, according to Eq. (1), we
obtain gND1

av = −0.289 and gND2
av = −0.317. However, in this

estimation, two major factors (and their interplay) are ignored:
(a) the wave-function transformation is coupled to the electron
confinement energy change (see Fig. 3), which leads to a
change of the gB(r,E); (b) the spin-orbit coupling in the highly
nonhomogeneous nanostructures can considerably modify the
overall effective g factor. The factors are natural consequences
of the electron-hole band coupling in the k · p theory. Both
factors are incorporated in our model and into expressions for
the expectation value of the g-factor tensor in Eqs. (17)–(23).

TABLE II. Electron characteristic lengths in ND1 and ND2 (all
in nanometers).

Length ND1 ND2

dz 3.3 3.1
dρ 5.7 4.6
d 6.6 5.5

TABLE III. Electron effective g factor and anisotropy ratio in
ND1 and ND2.

Parameter ND1 ND2

ḡB −0.184 −0.175
gzz −0.063 0.037
gxx −0.051 0.038
gexp

a −0.05 0.1
Pzx 0.105 −0.013

aExperimental data for B || ẑ from Ref. [38].

In the GaAs/AlxGa1−xAs NDs (according to our calculation
experience), the Dresselhaus spin-orbit contribution to the
electron effective g factor is insignificant and can be ignored.
Therefore, the spin-orbit coupling for the NDs is presented
in the g-factor tensor only by ĝR(r,E0). In addition, owing
to the NDs’ cylindrical symmetry: gxx = gyy (Pzx = Pzy ,
Pxx = Pyy = 0) and all expectation values of the off-diagonal
components of the g-factor tensor are obviously zero.

Now we show in Table III the expectation values of
the material term in the electron effective g factor, ḡB =
〈gB(r,E0) + δgB(r)〉, diagonal components of the electron
effective g-factor tensor, and the tensor anisotropy ratio Pij ,
when both factors (a) and (b) stated above are taken into
consideration. First of all, we have to emphasize a noticeable
change in ḡB from the ND1 to ND2, which is a clear
demonstration of the factor (a) impotency. We note that our
simulation results of the gzz are in a good agreement with
experimental data [38], which confirms a strong impact of the
Rashba spin-orbit coupling [the factor (b)]. In addition, we see
that within our model, the spin-orbit interaction is responsible
for an anisotropy of the electron effective g factor. This is
illustrated in Table III. Furthermore, our theoretical model
predicts the gxx (gyy) component with a larger value than that
of gzz. We also note that the anisotropy ratio in the ND1 and
ND2 has a different sign.

The effective g factor for the cylindrical NDs as a
function of the magnetic field orientation can be conventionally
expressed by its components along the tensor principal axes as
the following [66]:

g =
√

(gxxBx)2 + (gyyBy)2 + (gzzBz)2/|B|. (24)

The g-factor tensors of the electron ground state for the NDs
are shown by contour plots in Fig. 4. More details on the
anisotropy can be assessed by cuts through the contours along
particular planes, also presented in Fig. 4. Notably, the g factor
of the ND2 (ND with the noticeable anisotropic electron wave-
function distribution; see Fig. 3) is nearly isotropic, while the
ND1 g factor still shows some anisotropy.

These findings can be clarified from the expression for the
expectation value of the Rashba part to the effective g-factor
tensor. According to Eqs. (18) and (20), the averaged 	ii(r,E0)
reads

〈	ii(r,E)〉 = 1

2

∫
V

d3r
∣∣�E0 (r)

∣∣2∇igB(r,E0) · Ri. (25)

For the hard-wall confinement, all material parameters of
the NDs possess a steplike change at the boundaries of
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FIG. 4. (Color online) The ground-state electron g-factor tensor
as a function of the magnetic field direction: (a),(b) three-dimensional
polar plots for ND1 and ND2; (c),(d) cross sections of the three-
dimensional plots by the z-x(y) and y-x planes.

the NDs. Therefore, we can suggest that ∇igB(r,E0) =
[gB(r+

Si
,E0) − gB(r−

Si
,E0)]δ(ξi − ξSi

), where ξi = {x,y,z}, and
the index Si refers to the appropriate surface of the ND’s
boundary. Actually, for the steplike changes of the parameters,
the derivative is not zero only at the boundary surfaces.
Therefore, the averaged 	ii(r,E0) also can be presented as an
average over the boundary surfaces when the gB has steplike
jumps along the ξi direction:

〈	ii(r,E0)〉 = 1

2

∫
Si

d2r
∣∣�E0

∣∣2[
gB

(
r+
Si
,E0

)

− gB

(
r−
Si
,E0

)] · (r − r̄)i . (26)

It follows from Eq. (26) that the actual impact of the Rashba
spin-orbit coupling on the g factor is a result of the interplay
between the near-surface change of the gB(r) and the actual
distribution of the electron ground-state probability density in
the moment integral (26).

For the ND1, the neighborhood is isotropic. However, the
xx and zz moment integrals are different because the ND has
obviously different effective sizes in the lateral and vertical
directions (see Table II). This causes an anisotropy in the
effective g factor for the ND1. Now we can see that for the ND2
(unlike for the ND1), the change in the material parameters at
the boundaries in the z direction is considerably smaller then
that in the lateral direction (see Fig. 1 and Table I). At the
same time, the electron wave-function extension is distinctly
less in the lateral direction than that in the z direction (see
Table II). These two values interplay in the moment integral,
which finally forms an almost isotropic g factor in the ND2.

Based on our model and findings above, we are now
able to give useful insight into a possible range of engi-
neering of the electron effective g factor in the high-quality
GaAs/AlxGa1−xAs NDs. In a line with the ND1 and ND2,
we further propose and explore ND3–ND6 structures (see

FIG. 5. (Color online) Schematic of the structures ND3–ND6
(left panels) and corresponding probability density distribution for
the electron ground state (right panels). The electron ground-state
energies are presented correspondingly.

Fig. 5). In this set, two structures (ND3 and ND6) are reflection
nonsymmetrical (with respect to reflections in the x-z and y-z
planes). This asymmetry in the confinement potential obvi-
ously deforms the electron ground-state probability density
distribution along the z direction (see Fig. 5), which shifts
the expectation value of the position of the electron in the
ground state from the center of the NDs: r̄ = (0,0,z̄ �= 0). In
the following, we will show that our model can also give clear
hints of the possible impact of the structural asymmetry on the
g-factor anisotropy.

Table IV presents all relevant characteristics for this study
of the aforementioned set ND3–ND6. The variations of the
electron energy in the ground state within the set are confirmed

TABLE IV. Characteristics of ND3–ND6.

Parameter ND3 ND4 ND5 ND6

z̄ (nm) −0.7 0.0 0.0 +0.8
dz (nm) 2.8 2.4 2.6 3.1
dρ (nm) 4.6 4.6 6.0 5.8
d (nm) 5.4 5.2 6.5 6.6
ḡB −0.164 −0.152 −0.157 −0.171
gzz 0.055 0.081 0.023 −0.004
gxx 0.075 0.127 0.135 0.105
Pzx −0.153 −0.221 −0.709 −1.079
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FIG. 6. (Color online) g-factor tensor as a function of the mag-
netic field direction for the set of ND3–ND6: three-dimensional polar
plots (left panels) and cross sections by the z-x(y) and y-plane (right
panels; we omit the y-x plane cross sections since the g factor
possesses the axial symmetry).

by the variation of the characteristic lengths in the NDs. The
reflection asymmetry in the structure with the ND3 generates
a reduction of dz (and, consequently, of d) in respect to that in
the ND2 (and, in addition, the relocation of the electron mean
position). This is followed by an increase of the electron energy
(Fig. 5) and ḡB (Table IV). Finally, including the Rashba
spin-orbit interaction, we arrive at a larger (than that in the
ND2) gxx(zz). Following the general properties of the moment
integrals in Eq. (26), the asymmetry ratio in the ND3 is larger
than that in the ND1 and ND2.

Within the set, the largest electron confinement energy is
in the ND4. Therefore, it is not surprising that this ND has
the largest gB in the set (and in this study as well). The
interplay of the extension of the electron wave function and
material parameters in the structure leads to the largest in the
set gzz and a considerable asymmetry ratio (as it was discussed
above).

The ND5 properties follow the main tendency in the set. The
anisotropy in the material surroundings (which is clear from

Fig. 5) leads to an anisotropic transformation in the electron
probability distribution (a large difference between dz and dρ)
and increase of the asymmetry ratio Pzx .

The relatively large asymmetry of the ND6 in the z direction
has a clear impact on the ND’s characteristics. This ND
structure has a very large anisotropy ratio. In addition, we have
to note that among all NDs considered in this study, only in
the ND6, the gzz and gxx components of the electron effective
g-factor tensor have different signs.

Figure 6 clearly illustrates the above-described transforma-
tions in the effective g-factor tensor of the electron ground
state for the set of NDs. This transformation is presented
by contour plots and by cuts of the plots along particular
planes. We can observe a strong sensitivity of the tensor to the
structural changes in the system. Furthermore, from the results
presented in Table II, Table IV, Fig. 4, and Fig. 6, it is clear that
the electron effective g-factor tensor components’ magnitudes
and signs can be tuned by a proper environment design.

IV. CONCLUSION

In this paper, using the effective 2 × 2 conduction-band
Hamiltonian which includes the Rashba and Dresselhaus
spin-orbit couplings, we simulated the electron ground-state
effective g factor for defect-free GaAs nanodisks with different
surroundings. We have systematically investigated the impact
of the nanodisks’ environmental changes on the electron
ground-state wave-function extension, energy, and effective
g-factor tensor components. Two types of nanodisks known
from experimental works were considered first: with isotropic
environment and with non-isotropic environment. Using our
theoretical model, we are able to explain how changes in the
nanodisk environment lead to the noticeable transformation
of the effective g-factor tensor. The transformation is mainly
controlled by the electron confinement energy change and
Rashba spin-orbit interaction. The Rashba spin-orbit inter-
action is also responsible for the anisotropy of the electron
g factor. The actual values of the effective g-factor tensor
components and anisotropy ratio are shown to be results of
the interplay between the material parameters’ changes near
the nanodisks’ boundary surface and the actual extension of
the electron ground-state wave function. Our model reveals
this interplay in a very clear and natural manner. Therefore,
the model can characterize general physical tendencies which
are useful for further engineering and advanced simulation of
the electron effective g factor. We note that our simulation
results for the nanodisks in the isotropic and anisotropic
structures are in a good agreement with experimental
observations.

In addition, in this paper, we proposed a set of defect-free
nanodisk structures that can be investigated using the same
experimental technique. We demonstrated that the control of
symmetry and anisotropy of the nanodisks’ environment in
the defect-free structures can give us a unique opportunity for
advancement in the tuning of the electron effective g factor of
the nanodisks. Extra flexibility can be achieved by variation
of the actual sizes of the nanodisks themselves. This makes
the defect-free GaAs nanodisk structures very interesting and
promising objects for investigation of the controllability of the
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electron small g factor in massive arrays of the semiconductor
nano-objects.

We emphasize that using our model, we are able to
clarify the important question of the material and geometrical
parameter interplay in the formation of the electron effective
g factor in semiconductor nano-objects. More generally, our
model can be applied to the realistic and efficient modeling
of the magnetic response of semiconductor nano-objects with
nonsymmetric and anisotropic geometry and material content.
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