IEEE Photonics Journal

An IEEE Photonics Society Publication

3

-l

eOpen Access

Liquid-Crystal Terahertz Quarter-Wave
Plate Using Chemical-Vapor-Deposited
Graphene Electrodes

Volume 7, Number 6, December 2015

Chan-Shan Yang
Chun Kuo
Chiu-Chun Tang
J. C. Chen
Ru-Pin Pan
Ci-Ling Pan

Fused silica

Polyimide

Liquid Crystals
(MDA-00-3461)

Graphene layer I‘V

5 10 1I5 20
Driving voltage (V)

DOI: 10.1109/JPHOT.2015.2504960
1943-0655 © 2015 IEEE

Bhotonics & IEEE

SOCIETY



IEEE Photonics Journal Liquid-Crystal Terahertz Quarter-Wave Plate

Liquid-Crystal Terahertz Quarter-Wave
Plate Using Chemical-Vapor-Deposited
Graphene Electrodes

Chan-Shan Yang,' Chun Kuo,? Chiu-Chun Tang,' J. C. Chen,"*
Ru-Pin Pan,® and Ci-Ling Pan'*

'Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
2Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
SDepartment of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
“Frontier Research Center on Fundamental and Applied Science of Matter, Hsinchu 30013, Taiwan

DOI: 10.1109/JPHOT.2015.2504960
1943-0655 © 2015 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Manuscript received October 16, 2015; revised November 23, 2015; accepted November 24, 2015.
Date of publication December 4, 2015; date of current version December 9, 2015. This work was
supported in part by the Ministry of Science Technology of Taiwan under Grant 104-2221-E-007-093-
MY3, by the Academic Top University Program of the Ministry of Education of Taiwan, and by the U.S.
Air Force Office of Scientific Research under Grant FA2386-13-1-4086. Corresponding author: C.-L.
Pan (e-mail: clpan @ phys.nthu.edu.tw).

Abstract: Quarter-wave operation or a phase shift of more than =/2, which is approxi-
mately ten times greater than that reported in previous works using liquid crystals (LCs)
and graphene electrodes, was demonstrated. The device is transparent to the terahertz
(THz) wave, and the driving voltage required was as low as approximately 2.2 V (rms),
which is also unprecedented. Experimental results supported a theoretical formalism
adapted for LC cells with THz wavelength-scale thickness. The scattering rate, DC mo-
bility, and carrier mean free path of bilayer graphene were also determined using THz
spectroscopic techniques; the parameters were inferior to those of monolayer graphene.
This observation can be attributed to the higher density of charged impurities in the bi-
layer graphene. The device performances of LC phase shifters using monolayer and bi-
layer graphene as electrodes were essentially identical.

Index Terms: Far infrared or terahertz, phase shift, liquid crystals, nanomaterials, liquid-
crystal devices, birefringence, spectroscopy.

1. Introduction

Over the past few decades, remarkable progress has been made in terahertz (THz) technology,
which has applications in high-data-rate wireless communications [1], biomedicine, 3-D imaging,
tomography, and material characterization [2]. Functional quasi-optical components, therefore, are
in high demand. In particular, numerous tunable THz devices employing liquid crystals (LCs),
such as phase shifters [3]-[10], filters [11], phase gratings [12], and polarizers [13], have
been developed. Early studies in the field of tunable THz devices have mostly focused on mag-
netically tuned components [3]. Although these devices can fulfill their intended functions, their
bulky and heavy design poses obvious problems. Electrically tuned components with a compact
size are expected to aid in overcoming this problem [4]. Furthermore, indium tin oxide (ITO)
films, which are widely used as transparent electrodes in LC devices operating in the visible
wavelength range, are opaque in the THz frequency range [14], [15]. Therefore, the lack of
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transparent electrodes in the THz frequency region continues to pose a challenge in the field
of electrically tuned components based on LCs, leading to tunable THz devices having low
transmittance and requiring a high driving voltage. In 2011, a self-polarizing THz phase shifter
capable of a phase shift of 7/3 at 2 THz with high transmittance was demonstrated using a
subwavelength metallic grating. However, the operating voltage, approximately 130 V (rms),
was high [5]. Recently, we found that ITO nanowhiskers (NWhs) not only exhibit outstanding
transmittance in the terahertz region but show high DC mobility and conductivity comparable
to those of ITO thin films as well [14]-[16]. Furthermore, we demonstrated quarter-wave plates
(w/2) operating at 1.0 THz; they contained ITO NWhs, used as transparent electrodes [8], [9],
and also as an alignment layer [9]. The quarter-wave plates exhibited the desirable character-
istics of high transmittance (approximately 78%) and a low operation voltage (5.66 V (rms))
and were compatible with complementary-metal-oxide-semiconductor (CMOS) and thin-film-
transistor (TFT) technologies.

Graphene, a kind of two-dimensional materials, is characterized by high conductivity, mobil-
ity, and chemical stability. In view of its optoelectronic applications, numerous studies have ex-
amined the electrical transport properties of graphene layers such as hot electron transport
[17], charged-impurity-induced scattering [18], and substrate-induced effects [19]. Moreover,
graphene shows high transmittance not only in the visible [20], [21] but the THz frequency
range as well [7], [10], [20]. Such unique properties make graphene an attractive material for
optoelectronic devices in the THz frequency range. In a previous study, a THz phase shifter
based on transparent graphene conductors was demonstrated and achieved a maximal phase
shift of 10.8° at an operating voltage of 5 V [7]. Subsequently, Sasaki et al. presented a
polarization-independent THz phase controller, containing a randomly aligned LC cell with
graphene electrodes [10]. That could achieve a maximal phase shift of 0.10 rad. However,
reported phase shifts in these works are too small for most THz applications [7], [10]. Fur-
thermore, theoretical models used cannot accurately describe the behavior of phase shifters
operating at low bias voltages [7].

In this study, by applying THz time-domain spectroscopy (THz-TDS), the THz transmittance
and complex conductivities of monolayer and bilayer graphene sheets were thoroughly exam-
ined in the frequency range of 0.3-1.4 THz. The electrical properties of the two types of gra-
phene sheets, such as scattering rate, DC mobility, and carrier mean free path, were
determined and compared to that of ITO NWhs. Monolayer and bilayer graphene were success-
fully used in electrically tunable LC phase shifters as transparent electrode. Quarter-wave oper-
ation was demonstrated. The voltage- and frequency-dependent characteristics of the THz
phase shifters are presented. The experimental results are in good agreements with theoretical
predictions made by considering the minimum free energy condition and correction of LC thick-
ness in the scale of THz wavelengths.

2. Theory and Experiment

2.1. Theoretical Analysis

The theoretical model of the phase shifter is based on the electro-optical distortion model for
of a LC cell of thickness d, traversed by THz waves. In the absence of an external field, LC mol-
ecules are assumed to be initially in a stable state and oriented parallel to the rubbed direction
set as the x-direction in this work. This implies that the director of orientation 6(z) must satisfy
the boundary condition, 6(0) = 6(d) =0, on internal surfaces of substrates for the LC cell.
Assuming the maximum tilt angle, 6max, Occurs at the center of the cell z = d/2, the depen-
dence of Omax and on the strength of the applied voltage can be derived [8], [9], [22]. When the
applied voltage exceeds the threshold voltage, Vi, = Enl = [kt /(co - Ac)]/?L/d, the LC mole-
cules are reoriented toward the external field, where Ey, is the corresponding threshold electric
field, o =8.854 x 107"2F.m™', Ae =112, k=126 x 1072 N, L, and d are the free-space
permittivity, dielectric anisotropy, splay elastic constants, distance between two electrodes, and
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thickness of the LCs layer, respectively. After calculating 6max at every applied voltage, the dis-
tribution of director tilt angle 6(z) at every position z can then be obtained [22]. The effective bi-
refringence, Ane(z), experienced by the THz wave passing through the LC cell can be written
as, [cos20(z)/n2 + sin2¢9(z)/n§]’1/2 — no, Where n, and n, are extraordinary and ordinary indices
of refraction of the LC, respectively [8], [9]. Finally, the phase shift is given by

" onf " onf cos?0 sin2g\
vy vy
@ O/CO Nt (Z)dz /Co [( 2 + ng> no:| dz (1)

where f and ¢; are the frequency and speed of propagation of the THz wave in vacuum, respec-
tively. The aforementioned model is ordinarily used for a thin LC cell (approximately 20 um or
less) operating in the visible frequency range. However, the LC THz phase shifter is much thick-
er due to the operation wavelength. In this study, the thickness of the LC layer was approxi-
mately 0.55 mm. In such a thick sample, LC molecules more than a few tens of microns away
from the cell walls will not be perfectly parallel to the rubbed direction in the absence of the ex-
ternally applied electric field. On the other hand, when applying a driving voltage, almost all the
LC molecules will be easily orientated in the direction which is parallel to the external field. In or-
der to describe this behavior, we first need to achieve the e-ray mode without bias for a thick LC
cell. Secondly, after applying a sufficiently high voltage, we can get the o-ray mode for the cell.
From the measured phase difference of these two modes, the maximum relative phase retarda-
tion, ¢(Vmax), can be determined. Then, by considering the total relative phase shift in the ideal
case, 2nf(ne — no)d/c, with the experimentally measured relative phase shifts for the thick LC
cells operating in the o-ray mode (cell biased at Vinax = 70 V) and the e-ray mode (cell without
bias), we can define a correction factor,

o 2nf(ne — ny)d/ ¢y
- #(Vmax)

to compensate for effects of the thick LC cell, Finally, the effective phase shift can be expressed
as a x ¢. For thin LC cell « =1, we have the case of ordinary thin LC cells. For the case of
a > 1, the LC molecules in the middle of cell are not aligned well along the rubbed direction be-
cause of the weak ability of alignment in a thick LC device. The total relative phase retardation
observed experimentally is smaller than theoretical one.

)

2.2. Preparation and Characterization of Graphene

Graphene was grown by chemical vapor deposition and transferred to fused silica substrates.
Details of the growth parameters and transfer procedures can be found in our previous publica-
tion [23]. Bilayer graphene samples were obtained by repeating the transfer processes twice.
Subsequently, Cr/Au (5 nm/20 nm) gate electrodes were deposited to establish Ohmic contact
with the graphene. Previously, we have demonstrated this Ohmic contact and described the pro-
cess in detail [18], [23]. The contact resistance of graphene-Cr/Au contacts for is around 103 ~
10% Q um [24]. We used Raman spectroscopy (632 nm wavelength) to examine the quality of
monolayer graphene transferred onto the silica substrates. The G and 2D peaks shown in the
inset of Fig. 1(a) are at approximately 1580 and 2650 cm™', respectively. The intensity ratio
hp/lg of approximately 1.8 indicated that the quality of monolayer graphene on the fused silica
substrate was comparable to that reported previously [23]. To obtain the complex THz conduc-
tivities and transmission coefficients of the graphene samples, we employed THz-TDS based on
photoconductive antenna and laser-induced air plasma, as described in a previous study [15].
During measurements, both types of THz-TDS systems were purged with nitrogen at a relative
humidity of 4.5 + 0.5%.

In the thin-film approximation, the complex transmission coefficient t and complex conductivity
(o(w)) of a graphene sample were related through, t = (1 + nsup)/(1 + Nsup + Zoo(w) D), where
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Fig. 1. Real (blue squares) and imaginary (red triangles) parts of the conductivity of (a) monolayer
and (b) bilayer graphene sheets. The solid and dashed lines indicate the fitting results yielded using
the Drude model. (c) THz transmittance of monolayer graphene, bilayer graphene, and ITO nano-
whiskers, respectively. Table 1 lists the parameters obtained.

Zy is the impedance of free space, nsy, is the refractive index of the substrate, and D is the gra-
phene sheet thickness [25]. In this work, the thicknesses of monolayer and bilayer graphene are
estimated as 0.3 nm, and 0.6 nm, respectively. We fit experimental data to the Drude free-electron
conductivity, i.e., o(w) = oo/(1 + iwT), where oo and 7 are the DC conductivity and scattering time
of graphene, respectively. The complex THz conductivities of the monolayer and bilayer graphene
thus obtained are shown in Fig. 1(a) and (b), respectively. From which, we can calculate the mobil-
ity (1) and plasma frequency (wp) of the graphene samples using the expressions (1 = er/m*
and wf, = oo/ (eo7) [14], respectively, where e, m*, and ¢y are the electron charge, effective elec-
tron mass of single-layer graphene [26], and vacuum permittivity, in this order. In the frequency
range of 0.2~1.4 THz, the transmittance of monolayer graphene, bilayer graphene, and ITO nano-
whiskers are approximately frequency-independent with average values of 0.82 + 0.03, 0.73 £ 0.
01, and 0.70 + 0.01, respectively (see Fig. 1(c)).

The optical and electrical characteristics of monolayer and bilayer graphene sheets, deduced
from THz-TDS are summarized and compared to those of ITO NWhs in Table 1. For example,
the carrier scattering times of mono- and bi-layer graphene samples were 30 and 50 fs while
the corresponding mobilities were 4400 and 2000 cm?/V - s, respectively. We estimated the in-
elastic mean free path (MFP), Ly, associated with the scattering between electrons by using
Ly = VeT, where Ve and 7 are the Fermi velocity and carrier scattering time [27], respectively.
The parameter V¢ was calculated for the monolayer graphene as 1.77 x 10 m/s, close to the
1.1 x 10% m/s reported previously [28], and for the bilayer graphene as 0.58 x 108 m/s; the cor-
responding MFPs were 53.2 and 29.1 nm, respectively. The difference can be attributed to the
effect of higher charged impurity density in the bilayer graphene. Thus, the mobility and MFP
were considerably lower in the bilayer sample. The conductivities of the two samples, however,
are comparable. Notably, the transmittances of devices containing the monolayer and bilayer
graphene in the THz frequency range were very high, approximately 82% and 73%, respec-
tively, comparable or somewhat higher than ITO NWhs studied previously and employed as

Vol. 7, No. 6, December 2015 2200808



IEEE Photonics Journal Liquid-Crystal Terahertz Quarter-Wave Plate

TABLE 1

Electrical and optical parameters of monolayer, bilayer graphene sheets, and indium-tin-oxide (ITO)
nanowhiskers (NWhs)

wp(rad-Hz) 1(fs) 0o (Q7) U (cm*/Vs) Transmittance
(0.2~1.4 THz)
Monolayer graphene
3.42x10" 30 3.07x10* 4400 82+3%
Bilayer graphene
2.35x10"® 50 2.44x10* 2000 73+ 1%
ITO NWhs (long NWhs ~ 1 pm) [15]
8.53x10" 13.2 221 20.3 70+1%
0.6
(b)
(@
Q
Q
Fused silica | é
Polyimide \ %
&
Liquid Crystals e-ray (Device w/ Monolayer)
(MDA-00-3461) 0.1} - - - o-ray (Device w/ Monolayer)
e-ray (Device w/ Bilayer)
Graphene layer 0.0 —- oray (Deviee w/ Builuyer) )
i 02 0.4 0.6 0.8 1.0 12
X Frequency (THz)

Fig. 2. (a) Schematic diagram of an LC THz phase shifter containing transparent graphene elec-
trodes. (b) THz transmittance of the phase shifters with monolayer and bilayer graphene as trans-
parent electrodes for e-rays and o-rays.

transparent electrodes in the THz frequency range [15]. On the other hand, the DC conductivity
(~10* versus ~102 Q') and mobility (~ 103 versus ~10' cm?/Vs) of graphene sheets are sig-
nificantly higher than those of ITO NWhs.

3. Results and Analysis

Phase shifters were constructed by sandwiching a nematic LC (MDA-00-3461 by Merck) layer
between two fused silica substrates with transferred graphene and spin-coated polyimide layers,
which were used as electrodes and alignment layers, respectively. Fig. 2(a) depicts the configu-
ration of a phase shifter; the thickness of the substrate and an LC layer was approximately 1.033
and 0.55 mm for the cell with monolayer and bilayer graphene, respectively. The extraordinary
and ordinary refractive indices of MDA-00-3461 are approximately constant and equal to n, =
1.74 and n, = 1.54 at 25 °C from 0.3 to 1.4 THz [29]. The cells were biased with sinusoidal sig-
nals at 1 kHz. The photoconductive antenna-based THz-TDS, described in our previous studies,
was used to characterize the characteristics of devices in the frequency range between 200 GHz
and 1.4 THz [14], [15]. Fig. 2(b) plots the frequency-dependent transmittances of devices with the
monolayer and bilayer graphene substrates for extraordinary (e-ray) and ordinary rays (o-ray). In
general, for the devices with monolayer and bilayer graphene, the e-ray transmittance was always
higher than the o-ray transmittance, and it decreased from 55% to 20% between frequencies of 0.2
and 1.2 THz. The loss is mainly contributed by the LC itself and the fused silica substrates.

Fig. 3 compares the experimentally observed THz phase shifts with the current theoretical
model and those employed in previous studies [4], [7], [9]. In order to describe the difference be-
tween the experimental data and the theoretical results quantitatively and check which theoreti-
cal method is better, we divide the range of driving voltage of 0 ~ 20 Vs into 20 points, and
define an error function as 7 = X|P;eo — Piexp|, Where i equals 1,2,...,20. The parameters,
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Fig. 4. Phase shift as a function of the frequency for phase shifters containing (a) monolayer and
(b) bilayer graphene electrodes at several driving voltages.

Piteo and P;exp, represent the theoretical and experimental phase shift when a bias voltage, V;,
was applied. Employing the theoretical method described in [4], [7], [9], and this work, 1 were
found to be 2.75, 2.89, 1.97, and 1.79, respectively. This clearly demonstrated that the theoreti-
cal formulism presented in this work fits the experimental data better. For the phase shifters
with monolayer and bilayer graphene as transparent electrodes, a ~ 1.064, corresponding to
the case of weak LC alignment in thick THz LC cells.

In Fig. 4, we plot the phase shifts as a function of frequency from 0.2 to 1.0 THz for several
applied voltages. A linear frequency dependence can be seen, as expected.

In Fig. 5, the phase shift is shown as a function of the driving voltage. The fitting curves agree
with the theoretical predictions according to (1) and (2). The experimental results of phase
shifters are in good agreement with the theoretical predictions. The operating voltage for achiev-
ing a phase shift of 7/2 at 1.0 THz of the monolayer and bilayer graphene-based phase shifters
are about 2.6 and 2.2 V (rms), respectively. These are substantially lower than that reported in
our previous work using ITO NWhs as transparent electrodes, i. e., 5.66 V (rms). We have ten-
tatively attributed this observation to the superior electrical properties, e.g., the DC conductivity
(~10* versus ~10% Q') and mobility (~103% versus ~10' cm?/Vs) of graphene versus that of
ITO NWhs. Theoretically, the voltage drop is proportional to the impedance, which is the inverse
of DC conductivity. Therefore, if conductivity of the electrode material is higher, we should ex-
pect lower driving voltage for the device. Furthermore, the average transmittance of the two LC
cells is as high as 38.1% and 36.6%, respectively.
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Fig. 5. Plots of phase shift versus driving voltage for phase shifters with (a) monolayer and (b) bi-
layer graphene electrodes.

4. Conclusion

The mono- and bi-layer graphene sheets, which exhibit outstanding properties such as high
transparency in the far-infrared and high electrical conductivity, were determined using THz-
TDS. The complex conductivities of the graphene samples were fitted well with the Drude free-
electron model. The electrical properties of the samples, such as the plasma frequency (wp),
scattering time (7), DC mobility (), and DC conductivity (og), were obtained for both samples.
The mean free paths (MFPs) of monolayer and bilayer graphene were found to be 53.2 and
29.1 nm, respectively. These values can be attributed to the presence of a higher density of
charged impurities in the bilayer graphene. As a result, the mobility and MFP of the graphene
bilayer were considerably lower. Performance of phase shifters using either type of graphene
samples is compared with that using ITO NWhs as transparent electrodes. The monolayer gra-
phene was shown to exhibit high transmittance (80%), DC conductivity (~3 x 10* Q~'), and
mobility (~4000 cm?/Vs). Furthermore, quarter-wave operation or a phase shift of more than
/2, approximately 10 times greater than the phase shift achieved previously in graphene-
based devices, was demonstrated. The driving voltage required was as low as approximately
2.2 V (rms), which is also a new record. The experimental results supported a theoretical for-
malism adapted for super-thick THz LC devices.
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