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Analysis and Application of a Nonlocal Hessian∗

Jan Lellmann†, Konstantinos Papafitsoros†, Carola Schönlieb†, and Daniel Spector‡

Abstract. In this work we introduce a formulation for a nonlocal Hessian that combines the ideas of higher-
order and nonlocal regularization for image restoration, extending the idea of nonlocal gradients
to higher-order derivatives. By intelligently choosing the weights, the model allows us to improve
on the current state of the art higher-order method, total generalized variation, with respect to
overall quality and preservation of jumps in the data. In the spirit of recent work by Brezis et
al., our formulation also has analytic implications: for a suitable choice of weights it can be shown
to converge to classical second-order regularizers, and in fact it allows a novel characterization of
higher-order Sobolev and BV spaces.
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1. Introduction and context. The total variation model of image restoration due to
Rudin, Osher, and Fatemi [ROF92] is now classical—the problem of being given a noisy
image g ∈ L2(Ω) on an open set Ω ⊆ R

2 and selecting a restored image via minimization of
the energy

E(u) :=

ˆ
Ω
(u− g)2 dx+ αTV(u).

Here, α > 0 is a regularization parameter at our disposal and TV(u) := |Du|(Ω) is the
total variation of the measure Du (the distributional derivative of u, which has finite total
mass when one assumes u is of bounded variation [AFP00]). Among the known defects of
the model is the staircasing effect, where affine portions of the image are replaced by flat
regions and newly created artificial boundaries, stemming from the use of the TV term in
regularization. It is then natural to investigate the replacement of the total variation with
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2162 LELLMANN, PAPAFITSOROS, SCHÖNLIEB, AND SPECTOR

another regularizer, for instance a higher-order term (see [Sch98, LLT03, LT06, HS06, CEP07,
PS14] for the bounded Hessian framework, [CL97, BKP10, SST11] for infimal convolution and
generalizations, and [LBL13] for anisotropic variants) or a nonlocal term (see, for example,
the work of Buades, Coll, and Morel [BCM05], Kinderman, Osher, and Jones [KOJ05], and
Gilboa and Osher [GO08]). In this work, we introduce and analyze a regularizer that is both
higher-order and nonlocal—a nonlocal Hessian—and utilize it in a model for image restoration.
Our numerical experiments demonstrate that using this regularization with a suitable choice
of weights enables us to derive specialized models that compete with current state of the
art higher-order methods such as the total generalized variation [BKP10]. Meanwhile, our
analysis justifies the nomenclature nonlocal Hessian through its connection with recent work
on nonlocal gradients [MS15]. In particular, we perform rigorous localization analysis which
parallels the first-order case.

Background on higher-order regularization. The use of nonsmooth regularization terms
such as the total variation in image reconstruction results in a nonlinear smoothing of recon-
structed images. As a consequence, one observes a greater degree of smoothing in homoge-
neous areas of the image domain while preserving characteristic structures such as edges. In
particular, total variation regularization performs well if the reconstructed image is piecewise
constant. The drawback of such a regularization procedure becomes apparent as soon as im-
ages or signals (in one dimension) are considered which not only consist of flat regions and
jumps but also possess slanted regions, i.e., piecewise linear parts. The artifact introduced
by total variation regularization in this case is called staircasing. One possible approach to
improve total variation minimization is the introduction of higher-order derivatives in the
regularizer, whose literature we now briefly review.

In [CL97] Chambolle and Lions propose a higher-order method by means of an infimal
convolution of two convex regularizers. Here, a noisy image is decomposed into three parts
g = u1 + u2 + n by solving

(1.1) min
(u1,u2)

1

2

ˆ
Ω
(u1 + u2 − g)2dx+ αTV(u1) + βTV2(u2),

where TV2(u2) := |D2u2|(Ω) is the total variation of the distributional Hessian of u2. Then,
u1 and u2 are the piecewise constant and the piecewise affine parts of g, respectively, and
n the noise (or texture). For recent modifications of this approach in the discrete setting,
see also [SS08, SST11]. Other approaches combining first and second regularization origi-
nate, for instance, from Chan, Marquina, and Mulet [CMM01], who consider total variation
minimization together with weighted versions of the Laplacian, the Euler-elastica functional
[MM98, CKS02], which combines total variation regularization with curvature penalization,
and many more [LT06, LTC13, PS14, PSS13, Ber14]. Recently, Bredies, Kunisch, and Pock
have proposed another interesting higher-order total variation model called total generalized
variation (TGV) [BKP10]. The TGV regularizer of order k is of the form
(1.2)

TGVk
α(u) = sup

{ˆ
Ω
u divkξ dx : ξ ∈ Ck

c (Ω,Sym
k(RN )), ‖divlξ‖∞ ≤ αl, l = 0, . . . , k − 1

}
,

where Symk(RN ) denotes the space of symmetric tensors of order k with arguments in R
N ,
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and αl are fixed positive parameters. For the case k = 2, its formulation for the solution of
general inverse problems was given in [BV11].

The idea of pure bounded Hessian regularization is considered by Lysaker, Lundervold, and
Tai [LLT03], Scherzer [Sch98], Hinterberger and Scherzer [HS06], Lefkimmiatis, Bourquard,
and Unser [LBU12], and Bergounioux and Piffet [BP10]. In these works the considered model
has the general form

min
u

1

2

ˆ
Ω
(u− g)2 dx+ α|D2u|(Ω).

In [CEP07], Chan, Esedoglu, and Park use the squared L2 norm of the Laplacian as a reg-
ularizer also in combination with the H−1 norm in the data fitting term. Further, in [PS08]
minimizers of functionals which are regularized by the total variation of the (l−1)st derivative,
i.e.,

|D∇l−1u|(Ω),
are studied. Properties of such regularizers in terms of diffusion filters are further studied
in [DWB09]. Therein, the authors consider the Euler–Lagrange equations corresponding to
minimizers of functionals of the general type

J (u) =

ˆ
Ω
(u− g)2dx+ α

ˆ
Ω
f

⎛
⎝∑

|k|=p

|Dku|2
⎞
⎠ dx

for different nonquadratic functions f . There are also works on higher-order PDE methods
for image regularization; see, e.g., [CS01, LLT03, BG04, BEG08, BHS09].

Confirmed by all of these works on higher-order total variation regularization, the in-
troduction of higher-order derivatives can have a positive effect on artifacts like staircasing
inherent to total variation [Rin00].

Higher-order nonlocal regularization. One possible approach to a higher-order extension
of nonlocal regularization has been proposed recently in the work [RBP14], with optical flow
being the main application. The authors start with the cascading formulation of (second-
order) TGV,

TGV(u) = inf
w:Ω→RN

α1

ˆ
Ω
|Du− w|+ α0

ˆ
Ω
|Dw|,

which reduces the higher-order differential operators that appear in the definition of TGV to
a special type of infimal convolution of two terms involving only first-order derivatives [BV11].
These can then be replaced by classical first-order nonlocal derivatives, and one obtains an
energy of the form

inf
w:Ω→RN

ˆ
Ω

ˆ
Ω
α1(x, y)|u(x)−u(y)−w(x)�(x−y)|dydx+

2∑
i=1

ˆ
Ω

ˆ
Ω
α0(x, y)|wi(x)−wi(y)| dydx.

This formulation takes into account the higher-order differential information via the second
term in the minimization, and the weighting parameters α0 and α1 are now spatially depen-
dent. Even though this approach can be adapted for other imaging tasks, e.g., denoising, it
is not clear how to choose these weighting functions.
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2164 LELLMANN, PAPAFITSOROS, SCHÖNLIEB, AND SPECTOR

In this paper we define a different type of higher-order nonlocal regularizer, providing as
well a rule for choosing the corresponding weighting functions for optimal results. Before we
proceed we recall some basic facts about nonlocal gradients.

Background on nonlocal gradients. In the first-order setting, the analysis of nonlocal
gradients and their associated energies finds its origins in the 2001 paper of Bourgain, Brezis,
and Mironescu [BBM01]. In their paper, Bourgain, Brezis, and Mironescu introduce energies
of the form

(1.3) Fnu :=

ˆ
Ω

(ˆ
Ω

|u(x)− u(y)|pq
|x− y|pq ρn(x− y)dx

) 1
q

dy,

where Ω is a smooth bounded domain in R
N and 1 ≤ p < ∞, and in the special case q = 1.

Here, the functions ρn are radial mollifiers that are assumed to satisfy the following three
properties for all n ∈ N:

ρn(x) ≥ 0,(1.4) ˆ
RN

ρn(x)dx = 1,(1.5)

lim
n→∞

ˆ
|x|>γ

ρn(x)dx = 0 ∀γ > 0.(1.6)

An example of such a family of mollifiers are the standard Gaussian kernels that converge
to a Dirac δ as n tends to infinity. Let us here remark that a perhaps more appropriate
terminology for these functionals in image processing is semilocal, since asymptotically there is
no possibility of nonlocality, in contrast to the genuine nonlocality allowed in image processing.

The work [BBM01] connects the finiteness of the limit as n → ∞ of the functional (1.3)
with the inclusion of a function u ∈ Lp(Ω) in the Sobolev space W 1,p(Ω) if p > 1 or BV(Ω)
if p = 1. As in the beginning of the introduction, the space BV(Ω) refers to the space of
functions of bounded variation, and it is no coincidence that the two papers [BBM01, ROF92]
utilize this energy space. Indeed, Gilboa and Osher [GO08] in 2008 independently introduce
an energy similar to (1.3), terming it a nonlocal total variation, while the connection of the
two and the introduction of the parameter q is due to Leoni and Spector [LS11]. In particular,
they show in [LS14] that for p = 1 the functionals (1.3) Γ-converge to a constant times the
total variation. This result extends previous work by Ponce [Pon04b] in the case q = 1 (see
also the work of Aubert and Kornprobst [AK09] for an application of these results to image
processing).

Gilboa and Osher [GO08] in fact introduced two forms of nonlocal total variations, and for
our purposes here it will be useful to consider the second. This alternative involves introducing
a nonlocal gradient operator, defined by

(1.7) Gnu(x) := N

ˆ
Ω

u(x)− u(y)

|x− y|
x− y

|x− y|ρn(x− y)dy, x ∈ Ω,

for u ∈ C1
c (Ω). Then, one defines the nonlocal total variation as the L1 norm of (1.7). The

localization analysis of the nonlocal gradient (1.7) has been performed by Mengesha and
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Spector in [MS15], where a more general (and technical) distributional definition is utilized.
Their first observation is that the definition of the nonlocal gradient via the Lebesgue integral
(1.7) extends to spaces of weakly differentiable functions. In this regime they discuss the
localization of (1.7). They prove that the nonlocal gradient converges to its local analogue
∇u in a topology that corresponds to the regularity of the underlying function u. As a
result, they obtain yet another characterization of the spaces W 1,p(Ω) and BV(Ω). Of notable
interest for image processing purposes is their result on the Γ-convergence of the corresponding
nonlocal total variation energies defined via nonlocal gradients of the form (1.7) to the local
total variation.

One way to extend the results of Mengesha and Spector to the higher-order case is to
simply study the functional that results after substituting u with ∇u in (1.7). Then a nonlocal
Hessian could be defined via

(1.8) Gn(∇u)(x) = N

ˆ
Ω

∇u(x)−∇u(y)
|x− y| ⊗ x− y

|x− y|ρn(x− y)dy,

where ⊗ denotes the standard tensor multiplication of vectors. While one can obtain some
straightforward characterization of W 2,p(RN ) and BV2(RN ) in this way, we find it advanta-
geous to utilize a nonlocal Hessian that is derivative-free and therefore pursue an alternative
approach.

A nonlocal Hessian tuned for imaging tasks. We define an implicit nonlocal gradient
Gu(x) ∈ R

N and Hessian Hu(x) ∈ Sym(RN×N ) that best explain u around x in terms of a
quadratic model :
(1.9)

(G′
u(x),H

′
u(x)) = argmin

Gu∈RN ,Hu∈Sym(RN×N )

1

2

ˆ
Ω−{x}

(
u(x+ z)− u(x)−G�

u z −
1

2
z�Huz

)2

σx(z)dz,

where Ω − {x} = {y − x : y ∈ Ω} and σx is an appropriate weight function for each x ∈ Ω.
Such a definition has the advantage of the freedom to choose the weights σx as one sees fit.
Of primary interest to our work are two questions: How does the nonlocal Hessian perform in
comparison to the known state of the art methods? And in what way is it connected to the
classical Hessian?

To answer the first question, the model depends on the choice of weights, and of practical
relevance is the question of how to choose them for a particular purpose. The first point
to mention in this regard is that as the objectives of the minimization problems (1.9) are
quadratic, their solutions can be characterized by linear optimality conditions. Thus func-
tionals based on the implicit nonlocal derivatives can be easily included in usual convex solvers
by adding these conditions. Moreover, the weights σx(z) between any pair of points x and
y = x + z can be chosen arbitrarily, without any restrictions on symmetry. In particular,
in this work we develop a method of choosing weights to construct a regularizer that both
favors piecewise affine functions while allowing for jumps in the data. Our motivation stems
from the recent discussion of “amoeba” filters in [LDM07, WBV11, Wel12], which combine
standard filters such as median filters with nonparametric structuring elements that are based
on the data; that is, in long thin objects they would extend along the structure and thus
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Input TGV Non-local Hessian

Figure 1. Illustration of the capability of the proposed nonlocal Hessian regularization to obtain true piece-
wise affine reconstructions in a denoising example.

prevent smoothing perpendicular to the structure. In amoeba filtering, the shape of a struc-
turing element at a point is defined as a unit circle with respect to the geodesic distance on a
manifold defined by the image itself. In a similar manner, we utilize the geodesic distance to
set the weights σx. This allows us to get a very close approximation to true piecewise affine
regularization, in many cases improving on the results obtained using TGV; see Figure 1 for
a proof of concept. We present several experiments in section 4.3 that show the performance
of this choice against the state of the art.

As to the second question, in the general form of (1.9), the problem is considerably harder
to treat analytically, and so we will restrict ourselves to the special case of radial weights.
In particular, assuming some mild regularity assumptions on u and considering the problem
(1.9) with weights ρn(z)/|z|4,
(1.10)

(G′
u(x),H

′
u(x)) = argmin

Gu∈RN ,Hu∈Sym(RN×N )

1

2

ˆ
RN

(
u(x+ z)− u(x)−G�

u z −
1

2
z�Huz

)2 ρn(z)

|z|4 dz,

we will show in Theorem 4.1 that H ′
u agrees with the following natural explicit definition of

nonlocal Hessian.

Definition 1.1. Suppose u ∈ C2
c (R

N ). Then we define the explicit nonlocal Hessian as the
Lebesgue integral
(1.11)

Hnu(x) :=
N(N + 2)

2

ˆ
RN

u(x+ z)− 2u(x) + u(x− z)

|z|2

(
z ⊗ z − |z|2

N+2IN

)
|z|2 ρn(z)dz, x ∈ R

N ,

where here IN is the N ×N identity matrix and ρn is a sequence satisfying (1.4)–(1.6).

We note here that the presence of the constantN(N+2)/2 as well as the term z⊗z− |z|2
N+2IN

ensure that (1.11) has the right localization properties; see section 3 for more details. The
assertion of Theorem 4.1 is that with the preceding choice of weights one has the equivalence

H ′
u(x) ≡

N(N + 2)

2

ˆ
RN

u(x+ z)− 2u(x) + u(x− z)

|z|2

(
z ⊗ z − |z|2

N+2IN

)
|z|2 ρn(z)dz.
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Results concerning the explicit nonlocal Hessian. From the standpoint of analysis, the
explicit version of nonlocal Hessian (1.11) is more natural, for which we are able to prove a
number of results analogous to the first-order case studied by Mengesha and Spector [MS15].
Let us first extend the definition to functions which are not necessarily smooth and compactly
supported, as typical for operators acting on spaces of weakly differentiable functions.

Definition 1.2. Suppose u ∈ Lp(RN ). Then we define the distributional nonlocal Hessian
componentwise as

〈Hij
n u, ϕ〉 :=

ˆ
RN

uH ij
n ϕ dx(1.12)

for ϕ ∈ C∞
c (RN ), where H ij

n φ denotes the i, jth element of the nonlocal Hessian matrix (1.11).
A natural question is then whether these two notions agree. The following theorem shows

that this is the case, provided the Lebesgue integral exists.
Theorem 1.3 (nonlocal integration by parts). Suppose that u ∈ Lp(RN ) for some 1 ≤ p <

+∞ and |u(x+z)−2u(x)+u(x−z)|q
|z|2q ρn(z) ∈ L1(RN × R

N ) for some 1 ≤ q ≤ +∞. Then the

distribution Hnu can be represented by the function Hnu, i.e., for any ϕ ∈ C2
c (R

N ) and
i, j = 1, . . . , N ,

〈Hij
n u, ϕ〉 =

ˆ
RN

H ij
n u(x)ϕ(x) dx,(1.13)

and also Hnu ∈ L1(RN ,RN×N ).
We will see in section 3, in Lemmas 3.1 and 3.4, that the Lebesgue integral even makes

sense for u ∈W 2,p(RN ) or BV2(RN ), and therefore the distributional definition Hnu coincides
with the Lebesgue integral for these functions.

Then the main analysis we undertake in this paper are the following results, proving
localization results in various topologies and characterizations of higher-order spaces of weakly
differentiable functions. Our first result is the following theorem concerning the localization
in the smooth case.

Theorem 1.4. Suppose that u ∈ C2
c (R

N ). Then for any 1 ≤ p ≤ +∞,

Hnu→ ∇2u in Lp(RN ,RN×N ) as n→ ∞.

When less smoothness is assumed on u, we have analogous convergence theorems, where
the topology of convergence depends on the smoothness of u. When u ∈ W 2,p(RN ), we have
the following.

Theorem 1.5. Let 1 ≤ p <∞. Then for every u ∈W 2,p(RN ) we have that

Hnu→ ∇2u in Lp(RN ,RN×N ) as n→ ∞.

In the setting of BV2(RN ) (see section 2 for a definition), we have the following theorem
on the localization of the nonlocal Hessian.

Theorem 1.6. Let u ∈ BV2(RN ) and μn := HnLN be a sequence of RN×N -valued measures.
Then

μn → D2u, weakly∗ in the space of Radon measures;
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i.e., for every φ ∈ C0(R
N ,RN×N ),

(1.14) lim
n→∞

ˆ
RN

Hnu(x) · φ(x)dx =

ˆ
RN

φ(x) · dD2u.

We have seen that the nonlocal Hessian is well-defined as a Lebesgue integral and localizes
for spaces of weakly differentiable functions. In fact, it is sufficient to assume that u ∈ Lp(RN )
is a function such that the distributions Hnu are in Lp(RN ,RN×N ) with a uniform bound of
their Lp norms, in order to deduce that u ∈ W 2,p(RN ) if 1 < p < +∞ or u ∈ BV2(RN ) if
p = 1. Precisely, we have the following theorems characterizing the second-order Sobolev and
BV spaces.

Theorem 1.7. Let u ∈ Lp(RN ) for some 1 < p <∞. Then

(1.15) u ∈W 2,p(RN ) ⇐⇒ lim inf
n→∞

ˆ
RN

|Hnu(x)|pdx <∞.

Now let u ∈ L1(RN ). Then

(1.16) u ∈ BV2(RN ) ⇐⇒ lim inf
n→∞

ˆ
RN

|Hnu(x)|dx <∞.

Note that when we write
´
RN |Hnu(x)|pdx we mean that the distribution Hnu is repre-

sentable by an Lp function.
Finally, let us mention an important localization result from the perspective of variational

image processing, the following theorem asserting the Γ-convergence [DM93, Bra02] of the
nonlocal Hessian energies to the energy of the Hessian.

Theorem 1.8. Let u ∈ L1(RN ). Then

ΓL1(RN )- lim
n→∞

ˆ
RN

|Hnu| dx = |D2u|(RN ),

where the Γ-limit is taken with respect to the strong convergence un → u in L1(RN ).
The relevance of this theorem in the context of variational problems comes from the fact

that Γ-convergence of the objective functions of a sequence of minimization problems, com-
bined with an equicoercivity assumption, implies convergence of the minimizers in a suitable
topology [Bra02, Chap. 1.5]. Assuming equicoercivity, Theorem 1.8 then guarantees that un-
der a suitable choice of weights, the solutions of a class of nonlocal Hessian-based problems
converges to the solution of the local Hessian-regularized problem, and thus our notion of
“nonlocal Hessian” is justified. Note that because Theorem 4.1 connects the implicit and
explicit definitions of nonlocal Hessian, these results equivalently read that for radial weights
that concentrate to a Dirac mass our nonlocal Hessian experiments concentrate to the bounded
Hessian framework.

Organization of the paper. The paper is organized as follows: In section 2 we recall some
preliminary notions and we fix our notation. Section 3 deals with the analysis of the nonlocal
Hessian functional (1.11). After a justification of the introduction of its distributional form,
we proceed in section 3.1 with the localization of (1.11) to the classical Hessian for smooth
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ANALYSIS AND APPLICATION OF A NONLOCAL HESSIAN 2169

functions u. The localization of (1.11) to its classical analogue for W 2,p(RN ) and BV2(RN )
functions is shown in sections 3.2 and 3.3, respectively. In section 3.4 we provide the nonlocal
characterizations of the spaces W 2,p(RN ) and BV2(RN ) in the spirit of [BBM01]. The Γ-
convergence result, Theorem 1.8, is proved in section 3.5. The introduction of the implicit
formulation of nonlocal Hessian (1.9), along with its connection to the explicit one, is presented
in section 4.1. In section 4.2 we describe how we choose the weights σx in (1.9) in order to
achieve jump preservation in the restored images. Finally, in section 4.3 we present our
numerical results, comparing our method with TGV.

2. Preliminaries and notation. For the reader’s convenience we recall here some impor-
tant notions that we are going to use in the following sections and we also fix some notation.

As far as our notation is concerned, whenever a function space has two arguments, the
first always denotes the domain of the function, while the second denotes its range. Whenever
the range is omitted, it is assumed that the functions are real valued. When a function space
is in the subscript of a norm, only the domain is specified for the sake of better readability.

We use dx, dy, dz for various integrations with respect to Lebesgue measure on R
N , while

in section 3 we will have occasion to use the more succinct notation LN2
to denote integration

with respect to the Lebesgue measure in the product space R
N × R

N .
The reader should not confuse the different forms of the letter “H”. We denote by H the

one-dimensional Hausdorff measure (HN for theN -dimensional), whileH denotes the nonlocal
Hessian when this is a function. As we have already seen, H denotes the distributional form
of the nonlocal Hessian.

It is also very convenient to introduce the following notation:

d 2u(x, y) := u(y)− 2u(x) + u(x+ (x− y)),

which can be interpreted a discrete second-order differential operator in x at the direction
x− y.

We denote by | · | the Euclidean norm (vectors) and Frobenius norm (matrices).
As usual, we denote by BV(Ω) the space of functions of bounded variation defined on an

open Ω ⊆ R
N . This space consists of all real valued functions u ∈ L1(Ω) whose distributional

derivative Du can be represented by a finite Radon measure. The total variation TV(u) of
a function u ∈ BV(Ω) is defined to be the total variation of the measure Du, i.e., TV(u) :=
|Du|(Ω). The definition is similar for vector valued functions. We refer the reader to [AFP00]
for a full account of the theory of BV functions.

We denote by BV2(Ω) the space of functions of bounded Hessian. These are all the
functions that belong to the Sobolev spaceW 1,1(Ω) such that∇u is an R

N -valued BV function,
i.e., ∇u ∈ BV(Ω,RN ), and we setD2u := D(∇u). We refer the reader to [Dem85, BP10, PS14]
for more information about this space. Let us, however, state a theorem that will be useful
for our purposes. It is the analog result to the strict approximation by smooth functions for
the classical BV case; see [AFP00].

Theorem 2.1 (BV2 strict approximation by smooth functions [Dem85]). Let Ω ⊆ R
N be open,

and let u ∈ BV2(Ω). Then there exists a sequence (un)n∈N ∈W 2,1(Ω)∩C∞(Ω) that converges
to u strictly in BV2(Ω); that is,

un → u in L1(Ω) and |D2un|(Ω) → |D2u|(Ω) as n→ ∞.
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2170 LELLMANN, PAPAFITSOROS, SCHÖNLIEB, AND SPECTOR

We recall also the two basic notions of convergence regarding finite Radon measures. We
note that M(Ω,R�) denotes the space of R�-valued finite Radon measures in Ω. If (μn)n∈N
and μ are real valued finite Radon measures defined on an open Ω ⊆ R

N , we say that the
sequence μn converges weakly∗ to μ if for all φ ∈ C0(Ω) we have

´
Ω φdμn → ´

Ω φdμ as n
goes to infinity. Here φ ∈ C0(Ω) means that φ is continuous on Ω and that for every ε > 0
there exists a compact set K ⊂ Ω such that supx∈Ω\K |φ(x)| ≤ ε. Note that from the Riesz

representation theorem the dual space (C0(Ω,R
�), ‖ · ‖∞)∗ can be identified with M(Ω,R�).

We say that the convergence is strict if in addition to that we also have that |μn|(Ω) → |μ|(Ω);
i.e., the total variations of μn converge to the total variation of μ. The definition is similar
for vector and matrix valued measures with all the operations regarded componentwise.

We now remind the reader about some basic facts concerning Γ-convergence. Let (X, d)
be a metric space, and let F,Fn : X → R ∪ {+∞} for all n ∈ N. We say that the se-
quence of functionals Fn Γ-converges to F at x ∈ X in the topology of X, and we write
ΓX- limn→∞ Fn(x) = F (x) if the following two conditions hold:

1. For every sequence (xn)n∈N converging to x in (X, d) we have

F (x) ≤ lim inf
n→∞ Fn(xn).

2. There exists a sequence (xn)n∈N converging to x in (X, d) such that

F (x) ≥ lim sup
n→∞

Fn(xn).

It can be proved that ΓX- limn→∞ Fn(x) = F (x) if the Γ-lower and Γ-upper limits of Fn at x,
denoted by ΓX- lim infn→∞ Fn(x) and ΓX- lim supn→∞ Fn(x), respectively, are equal to F (x),
where

ΓX- lim inf
n→∞ Fn(x) = min

{
lim inf
n→∞ Fn(xn) : xn → x in (X, d)

}
,

ΓX- lim sup
n→∞

Fn(x) = min

{
lim sup
n→∞

Fn(xn) : xn → x in (X, d)

}
.

Finally, if F : X → R ∪ {+∞}, we denote by sc−XF the lower semicontinuous envelope of
F , i.e., the greatest lower semicontinuous function majorized by F . We refer the reader to
[DM93, Bra02] for further details regarding Γ-convergence and lower semicontinuous envelopes.

3. Analysis of the nonlocal Hessian. The precise form we have chosen for the nonlocal
Hessian can be derived from the model case of nonlocal gradients—the fractional gradient—
which has been developed in [SS14]. Here we prove several results analogous to the first-order
case, as in [MS15], for the generalizations involving generic radial weights that satisfy (1.4)–
(1.6). Of primary importance is to first establish that the distributional nonlocal Hessian
defined by (1.12) is, in fact, a distribution. Here we observe that if u ∈ L1(RN ), then

|〈Hnu, ϕ〉| ≤ C‖u‖L1(RN )‖∇2ϕ‖L∞(RN ),

so that Hnu is a distribution. Also observe that if u ∈ Lp(RN ) for some 1 < p <∞, then from
the estimate (3.15) below together with the fact that ϕ is of compact support we have

|〈Hnu, ϕ〉| ≤ C‖u‖Lp(RN )‖∇2ϕ‖Lq(RN ) ≤ C‖u‖Lp(RN )‖∇2ϕ‖L∞(RN ),

D
ow

nl
oa

de
d 

11
/2

5/
15

 to
 1

37
.1

89
.1

70
.2

31
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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where 1/p + 1/q = 1, and thus Hnu is indeed again a distribution. One observes that the
definition is in analogy to the theory of Sobolev spaces, where weak derivatives are defined in
terms of the integration by parts formula. Because the Hessian is composed of two derivatives,
we observe that there is no change in sign in the definition, preserving some symmetry that
will be useful for us in what follows.

The second important item to address is the agreement of the distributional nonlocal
Hessian with the nonlocal Hessian. The necessary and sufficient condition is the existence of
the latter, which is the assertion of Theorem 1.3. We now substantiate this assertion.

Proof of Theorem 1.3. Let 1 ≤ p < +∞, and suppose that u ∈ Lp(RN ) and
|u(x+z)−2u(x)+u(x−z)|q

|z|2q ρn(z) ∈ L1(RN × R
N ) for some 1 ≤ q ≤ +∞. Let ϕ ∈ C2

c (R
N ), and

fix i, j ∈ {1, . . . , N}. Then it is a consequence of Fubini’s theorem and Lebesgue’s dominated
convergence theorem that

ˆ
RN

H ij
n u(x)ϕ(x)dx

=
N(N + 2)

2
lim
ε→0

ˆ
RN

ˆ
RN\B(x,ε)

d 2u(x, y)

|x− y|2

(
(xi − yi)(xj − yj)− |x−y|2

N+2 δij

)
|x− y|2 ρ(x− y)ϕ(x)dydx

=
N(N + 2)

2
lim
ε→0

ˆ
dNε

d 2u(x, y)

|x− y|2

(
(xi − yi)(xj − yj)− |x−y|2

N+2 δij

)
|x− y|2 ρ(x− y)ϕ(x)d(LN )2(x, y),

where dNε := R
N ×R

N \ {|x− y| < ε}. Similarly we have

ˆ
RN

u(x)H ij
n ϕ(x)dx

=
N(N + 2)

2
lim
ε→0

ˆ
RN

ˆ
RN\B(x,ε)

u(x)
d 2ϕ(x, y)

|x− y|2
(xi − yi)(xj − yj)− δij

|x−y|2
N+2

|x− y|2 ρ(x− y)dydx

=
N(N + 2)

2
lim
ε→0

ˆ
dNε

u(x)
d 2ϕ(x, y)

|x− y|2
(xi − yi)(xj − yj)− δij

|x−y|2
N+2

|x− y|2 ρ(x− y)d(LN )2(x, y),

where, for notational convenience, we used the standard convention

δij =

{
1 if i = j,

0 if i �= j.

Thus, it suffices to show that for every i, j and ε > 0 we have

ˆ
dNε

d 2u(x, y)

|x− y|2
(xi − yi)(xj − yj)− δij

|x−y|2
N+2

|x− y|2 ρ(x− y)ϕ(x)d(LN )2(x, y)(3.1)

=

ˆ
dNε

u(x)
d 2ϕ(x, y)

|x− y|2
(xi − yi)(xj − yj)− δij

|x−y|2
N+2

|x− y|2 ρ(x− y)d(LN )2(x, y).
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In order to show (3.1), it suffices to prove

ˆ
dNε

u(y)ϕ(x)

|x− y|2
(xi − yi)(xj − yj)− δij

|x−y|2
N+2

|x− y|2 ρ(x− y)d(LN )2(x, y)(3.2)

=

ˆ
dNε

u(x)ϕ(y)

|x− y|2
(xi − yi)(xj − yj)− δij

|x−y|2
N+2

|x− y|2 ρ(x− y)d(LN )2(x, y)

and

ˆ
dNε

u(x+ (x− y))ϕ(x)

|x− y|2
(xi − yi)(xj − yj)− δij

|x−y|2
N+2

|x− y|2 ρ(x− y)d(LN )2(x, y)(3.3)

=

ˆ
dNε

u(x)ϕ(x + (x− y))

|x− y|2
(xi − yi)(xj − yj)− δij

|x−y|2
N+2

|x− y|2 ρ(x− y)d(LN )2(x, y).

Equation (3.2) can be easily shown by alternating x and y and using the symmetry of the
domain. Finally, (3.3) can be proved by employing the substitution u = 2x− y, v = 3x− 2y,
noting that x − y = v − u and that the determinant of the Jacobian of this substitution is
−1.

Having established that the notion of distributional nonlocal Hessian and nonlocal Hessian
agree whenever the latter exists, it is a natural question to ask when this is the case. It is
a simple calculation to verify that the Lebesgue integral (1.11) exists whenever u ∈ C2

c (R
N ).

However, this is also the case for functions in the spacesW 2,p(RN ) and BV2(RN ); see Lemmas
3.1 and 3.4.

3.1. Localization–smooth case. We are now ready to prove the localization of Hnu to
∇2u for smooth functions.

Proof of Theorem 1.4.
Case 1 ≤ p < +∞. Let us assume that we have shown the case p = +∞. Then we

must show that the uniform convergence Hnv → ∇2v for v ∈ C2
c (R

N ) implies convergence in
Lp(RN ,RN×N ) for any 1 ≤ p < +∞. We claim that this will follow from the following uniform
estimate on the tails of the nonlocal Hessian. Suppose supp v ⊂ B(0, R), where supp v denotes
the support of v. Then for any 1 ≤ p < +∞ and ε > 0 there exists a L = L(ε, p) � 1 such
that

sup
n

ˆ
B(0,LR)c

|Hnv(x)|p dx ≤ ε.(3.4)

If this were the case, we would estimate the Lp-convergence as follows:
ˆ
RN

|Hnv(x)−∇2v(x)|p dx =

ˆ
B(0,LR)

|Hnv(x)−∇2v(x)|p dx+

ˆ
B(0,LR)c

|Hnv(x)|p dx,

from which (3.4) implies

lim sup
n→∞

ˆ
RN

|Hnv(x)−∇2v(x)|p dx ≤ lim sup
n→∞

ˆ
B(0,LR)

|Hnv(x)−∇2v(x)|p dx+ ε.
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The conclusion then follows, since the first term vanishes from the uniform convergence as-
sumed, after which ε > 0 is arbitrary. We will therefore show the estimate (3.4). We have, by
Jensen’s inequality with respect to the measure ρn, which has

´
RN ρn(x)dx = 1, that

ˆ
B(0,LR)c

|Hnv(x)|p dx ≤ N(N + 2)

2

ˆ
B(0,LR)c

ˆ
RN

|v(y)− 2v(x) + v(x+ x− y)|p
|x− y|2p ρn(x− y)dydx

=
N(N + 2)

2

ˆ
B(0,LR)c

ˆ
y∈B(0,R)

|v(y)|p
|x− y|2p ρn(x− y)dydx

+
N(N + 2)

2

ˆ
B(0,LR)c

ˆ
x+x−y∈B(0,R)

|v(x+ x− y)|p
|x− y|2p ρn(x− y)dydx.

Letting z = x+ x− y (which means that x− y = z − x), we obtain

ˆ
B(0,LR)c

ˆ
x+x−y∈B(0,R)

|v(x + x− y)|p
|x− y|2p ρn(x− y)dydx =

ˆ
B(0,LR)c

ˆ
z∈B(0,R)

|v(z)|p
|z − x|2p ρn(z − x)dzdx,

and therefore by symmetry of ρn we have

ˆ
B(0,LR)c

|Hnv(x)|p dx ≤ 2
N(N + 2)

2

ˆ
B(0,LR)c

ˆ
y∈B(0,R)

|v(y)|p
|x− y|2p ρn(x− y)dydx

≤ N(N + 2)

2

2

(R(L− 1))2p

ˆ
B(0,LR)c

ˆ
y∈B(0,R)

|v(y)|pρn(x− y)dydx

≤ N(N + 2)

2

2

(R(L− 1))2p
‖ρn‖L1(RN )‖v‖pLp(RN )

.

Again using
´
RN ρn(x)dx = 1, the claim, and therefore the case 1 ≤ p < +∞, then follows by

choosing L sufficiently large.
Case p = +∞. It therefore remains to show that the convergence in L∞(RN ,RN×N ) is

true. Precisely, we will show that∣∣Hnu−∇2u
∣∣→ 0 uniformly,

for which it suffices to prove the convergence componentwise, i.e.,
∣∣(Hnu−∇2u

)
(i0,j0)

∣∣→ 0 by

considering two cases i0 �= j0 and i0 = j0. Before we proceed, let us mention some useful facts.
Observe first that Proposition 5.1 in the appendix and the assumption that

´
RN ρn(x)dx = 1

for all n ∈ N can be used to deduce that

ˆ
RN

z2i0z
2
j0

|z|4 ρn(z)dz =

ˆ ∞

0
ρn(t)t

N−1 dt

ˆ
SN−1

ν2i0ν
2
j0dHN−1(x)(3.5)

=
1

N(N + 2)
·
{

1, i0 �= j0,
3, i0 = j0.

Moreover, utilizing the radial symmetry of ρn, we have that the following integrals vanish:

i0 = j0 :

ˆ
RN

ziz
3
j0

|z|4 ρn(z)dz = 0 for i �= j0,(3.6)
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i0 = j0 :

ˆ
RN

zizjz
2
j0

|z|4 ρn(z)dz = 0 for i �= j0, j �= j0, i �= j,(3.7)

i0 �= j0 :

ˆ
RN

zizjzi0zj0
|z|4 ρn(z)dz = 0 for i �= i0, j �= j0.(3.8)

Subcase i0 �= j0. Using (3.5), for the case that i0 �= j0, we have
∣
∣
∣∣
(
Hnu−∇2u

)
(i0,j0)

(x)

∣
∣
∣∣

=
N(N + 2)

2

∣
∣
∣
∣

ˆ
RN

d 2u(x, y)

|x− y|2
(xi0 − yi0)(xj0 − yj0)

|x− y|2 ρn(x− y)dy − 2
∂u

∂xi0∂xj0

(x)

ˆ
RN

z2i0z
2
j0

|z|4 ρn(z)dz

∣
∣
∣
∣ .

Moreover, (3.6)–(3.7) imply that

N∑
i,j=1

∂u

∂xi∂xj
(x)

ˆ
RN

zizi0zjzj0
|z|4 ρn(z)dz = 2

∂u

∂xi0∂xj0
(x)

ˆ
RN

z2i0z
2
j0

|z|4 ρn(z)dz.

Thus, introducing these factors of zero and writing in a more compact way, we have that∣∣∣∣(Hnu−∇2u
)
(i0,j0)

(x)

∣∣∣∣
=
N(N + 2)

2

∣∣∣∣
ˆ
RN

d 2u(x, y)− (x − y)T∇2u(x)(x − y)

|x− y|2
(xi0 − yi0)(xj0 − yj0)

|x− y|2 ρn(x− y)dy

∣∣∣∣ .
We want to show that the right-hand side tends to zero as n → ∞, and therefore we define
now the following quantity for δ > 0:
(3.9)

Qδu(x) =

∣∣∣∣∣
ˆ
B(x,δ)

d 2u(x, y)− (x− y)T∇2u(x)(x− y)

|x− y|2
(xi0 − yi0)(xj0 − yj0)

|x− y|2 ρn(x− y)dy

∣∣∣∣∣ .
We then claim that we can make Qδu(x) as small as we want, independently of x and n, by
choosing sufficiently small δ > 0. If this is the case, then the case i0 �= j0 would be completed,
since we would then have that∣∣∣(Hnu−∇2u

)
(i0,j0)

(x)
∣∣∣ ≤ N(N + 2)

2
Qδ(x) +

N(N + 2)

2

ˆ
|z|≥δ

|u(x+ z)− 2u(x) + u(x− z)|
|z|2 ρn(z)dz

+
N(N + 2)

2

∣∣∇2u(x)
∣∣ ˆ

|z|≥δ

ρn(z)dz

≤ N(N + 2)

2
ε+

N(N + 2)

2

(
4‖u‖∞
δ2

+ ‖∇2u‖L∞(Ω)

) ˆ
|z|≥δ

ρn(z)dz

< N(N + 2)ε

for n large enough, and the result follows from sending ε→ 0.
We therefore proceed to make estimates for (3.9). Since we have assumed u ∈ C2

c (R
N ),

we have that given ε > 0, there is a δ > 0 such that for every i, j = 1, . . . , N we have∣∣∣∣ ∂u

∂xi∂xj
(x)− ∂u

∂xi∂xj
(y)

∣∣∣∣ < ε whenever |x− y| < δ.
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Using (3.12) we can estimate

Qδu(x) =

∣∣∣∣∣
ˆ
B(x,δ)

d 2u(x, y)− (x− y)T∇2u(x)(x− y)

|x− y|2
(xi0 − yi0)(xj0 − yj0)

|x− y|2 ρn(x− y)dy

∣∣∣∣∣
(3.10)

=

∣∣∣∣∣
ˆ
B(x,δ)

(x− y)T
( ´ 1

0

´ 1
0 ∇2u(x+ (s + t− 1)(y − x))−∇2u(x)dsdt

)
(x− y)

|x− y|2(3.11)

× ((xi0 − yi0)(xj0 − yj0)

|x− y|2 ρn(x− y)dy

∣∣∣∣∣
≤ N

ˆ
B(x,δ)

|x− y|ε|x− y|
|x− y|2

|xi0 − yi0 ||xj0 − yj0 |
|x− y|2 ρn(x− y)dy

≤ εN.

Here, we have used the mean value theorem for scalar and vector valued functions to write

(3.12) d 2u(x, y) = (x− y)T
(ˆ 1

0

ˆ 1

0
∇2u(x+ (t+ s− 1)(y − x))dsdt

)
(x− y),

and the fact that
´
RN ρn(x)dx = 1 for all n ∈ N. This completes the proof in the case i0 �= j0.

Subcase i0 = j0. Let us record several observations before we proceed with this case. In
fact, the same argument shows that for a single i ∈ {1, . . . , N},

Ini (x) :=

∣∣∣∣
ˆ
RN

d 2u(x, y)− (x− y)T∇2u(x)(x− y)

|x− y|2
(xi − yi)

2

|x− y|2 ρn(x− y)dy

∣∣∣∣→ 0(3.13)

uniformly in x as n→ ∞, and therefore by summing in i we deduce that

∣∣∣∣
ˆ
RN

d 2u(x, y) − (x− y)T∇2u(x)(x − y)

|x− y|2 ρn(x− y)dy

∣∣∣∣→ 0.(3.14)

Moreover, we observe that the same formula from Proposition 5.1 and cancellation of odd
powers imply that

ˆ
RN

(x− y)T∇2u(x)(x − y)(xi0 − yi0)
2

|x− y|4 ρn(x − y)dy =

N∑
j=1

∂2u

∂x2j
(x)

ˆ
RN

z2j z
2
i0

|z|4 ρn(z)dz

=
1

N(N + 2)
Δu+

2

3

∂2u

∂x2i0
(x)

ˆ
RN

z4i0
|z|4 ρn(z)dz

=
2

N(N + 2)

(
1

2
Δu +

∂2u

∂x2i0
(x)

)
,

while we also have that
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2176 LELLMANN, PAPAFITSOROS, SCHÖNLIEB, AND SPECTOR

ˆ
RN

(x− y)T∇2u(x)(x− y)

|x− y|2 ρn(x− y)dy =

N∑
j=1

∂2u

∂x2j
(x)

ˆ
RN

z2j
|z|2 ρn(z)dz

=
1

N
Δu(x).

Thus, we can estimate

∣∣∣∣(Hnu−∇2u
)
(i0,i0)

(x)

∣∣∣∣ ≤ Ini0(x) +

∣∣∣∣N2
ˆ
RN

d 2u(x, y)

|x− y|2 ρn(x− y)dy −
ˆ
RN

Δu(x)

2
ρn(x− y)dy

∣∣∣∣
= Ini0(x) +

∣∣∣∣N2
ˆ
RN

d 2u(x, y)− (x− y)T∇2u(x)(x− y)

|x− y|2 ρn(x− y)dy

∣∣∣∣ ,
and the proof is completed by invoking the convergences established in (3.13) and
(3.14).

3.2. Localization–W 2,p(RN) case. The objective of this section is to show that if u ∈
W 2,p(RN ), 1 ≤ p <∞, then the nonlocal Hessian Hnu converges to ∇2u in Lp. The first step
is to show that indeed in that case Hnu is indeed an Lp function. This follows from Lemma
3.1, which we prove next.

Lemma 3.1. Suppose that u ∈ W 2,p(RN ), where 1 ≤ p < ∞. Then Hnu is well-defined as
a Lebesgue integral, Hnu ∈ Lp(RN ,RN×N ), and

(3.15)

ˆ
RN

|Hnu(x)|pdx ≤M‖∇2u‖p
Lp(RN )

,

where the constant M depends only on N and p.

Proof. Let us begin by making estimates for a function v ∈ C∞(RN ) ∩W 2,p(RN ). From
the definition of the nonlocal Hessian and utilizing Jensen’s inequality, (3.12), and Fubini’s
theorem, we have the following successive estimates (the constant is always denoted with
M(N, p)):

ˆ
RN

|Hnv(x)|pdx

(3.16)

=

(
N(N + 2)

2

)p ˆ
RN

∣∣∣∣∣∣
ˆ
RN

d 2v(x, y)

|x− y|2

(
(x− y)⊗ (x− y)− |x−y|2

N+2 IN

)
|x− y|2 ρn(x− y)dy

∣∣∣∣∣∣
p

dx

≤M(N, p)

ˆ
RN

(ˆ
RN

|d 2v(x, y)|
|x− y|2 ρn(x− y)dy

)p

dx,
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≤M(N, p)

ˆ
RN

(ˆ
RN

|d 2v(x, y)|p
|x− y|2p ρn(x− y)dy

)
dx

(3.17)

≤M(N, p)

ˆ
RN

(ˆ
RN

´ 1
0 |∇v(x+ t(y − x))−∇v(x+ (t− 1)(y − x))|pdt

|x− y|p ρn(x− y)dy

)
dx

=M(N, p)

ˆ 1

0

ˆ 1

0

ˆ
RN

(ˆ
RN

(∣∣∇2v(x+ (t+ s− 1)(y − x))
∣∣p) ρn(x− y)dy

)
dxdsdt

=M(N, p)

ˆ 1

0

ˆ 1

0

ˆ
RN

(ˆ
RN

(∣∣∇2v(x+ (t+ s− 1)ξ)
∣∣p) ρn(ξ)dξ) dxdsdt,

=M(N, p)

ˆ 1

0

ˆ 1

0

ˆ
RN

ρn(ξ)‖∇2v‖p
Lp(RN )

dξdsdt

=M(N, p)‖∇2v‖p
Lp(RN )

.

Consider now a sequence (vk)k∈N in C∞(RN )∩W 2,p(RN ) approximating u in W 2,p(RN ). We
already have from above that
(3.18)̂

RN

(ˆ
RN

|vk(x+ z)− 2vk(x) + vk(x− z)|p
|z|2p ρn(z)dz

)
dx ≤M‖∇2vk‖Lp(RN ) ∀k ∈ N.

Since vk converges to u in Lp(RN ), we have that there exists a subsequence vk� converging to
u almost everywhere.

If we can establish thatHnu is well-defined as a Lebesgue integral, then Jensen’s inequality
and Fatou’s lemma imply that

ˆ
RN

∣∣∣∣
ˆ
RN

u(x+ z)− 2u(x) + u(x− z)

|z|2 ρn(z) dz

∣∣∣∣p dx
≤
ˆ
RN

ˆ
RN

|u(x+ z)− 2u(x) + u(x− z)|p
|z|2p ρn(z)dzdx

≤ lim inf
�→∞

ˆ
RN

ˆ
RN

|vk�(x+ z)− 2vk�(x) + vk�(x− z)|p
|z|2p ρn(z)dzdx

≤M lim inf
�→∞

‖∇2vk�‖Lp(RN )

=M‖∇2u‖Lp(RN ).

This argument, along with Jensen’s inequality, allows us to conclude that the conditions of
Theorem 1.3 are satisfied, in particular that Hnu is well-defined as a Lebesgue integral, so
that the estimate (3.17) holds for W 2,p functions as well, thus completing the proof.

Finally, the Gagliardo–Nirenberg inequality

‖∇2u‖L1 ≤ C‖∇2u‖θLp‖u‖1−θ
Lp

implies that for u ∈ W 2,p, ∇2u ∈ L1, which by the preceding display yields that Hnu is
well-defined as a Lebesgue integral.
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2178 LELLMANN, PAPAFITSOROS, SCHÖNLIEB, AND SPECTOR

We now have the necessary tools to prove the localization for W 2,p functions.
Proof of Theorem 1.5. The result holds for functions v ∈ C2

c (R
N ), since from Theorem 1.4

we have that Hnv → ∇2v in Lp(RN ,RN×N ). We now use the fact that C∞
c (RN ), and hence

C2
c (R

N ), is dense in W 2,p(RN ); see, for example, [Bre83]. Let ε > 0; then from density we
have that there exists a function v ∈ C2

c (R
N ) such that

‖∇2u−∇2v‖Lp(RN ) ≤ ε.

Thus using also Lemma 3.1 we have

‖Hnu−∇2u‖Lp(RN ) ≤ ‖Hnu−Hnv‖Lp(RN ) + ‖Hnv −∇2v‖Lp(RN ) + ‖∇2v −∇2u‖Lp(RN )

≤ Cε+ ‖Hnv −∇2v‖Lp(RN ) + ε.

Taking limits as n→ ∞ we get

lim sup
n→∞

‖Hnu−∇2u‖Lp(RN ) ≤ (C + 1)ε,

and thus we conclude that

lim
n→∞ ‖Hnu−∇2u‖Lp(RN ) = 0.

3.3. Localization–BV2(RN) case. Analogously with the first-order case in [MS15], we
can define a second-order nonlocal divergence that corresponds to Hn, and we can also derive
a second-order nonlocal integration by parts formula which is an essential tool for the proofs
of this section. The second-order nonlocal divergence is defined for a function φ = (φij)

N
i,j=1

as
(3.19)

D2
nφ(x) =

N(N + 2)

2

ˆ
RN

φ(y)− 2φ(x) + φ(x + (x− y))

|x− y|2 ·
(
(x− y)⊗ (x− y)− |x−y|2

N+2 IN

)
|x− y|2 ρn(x− y)dy,

where A·B =
∑N

i,j=1AijBij for two N×N matrices A and B. Notice that (3.19) is well-defined

for φ ∈ C2
c (R

N ,RN×N ).
Theorem 3.2 (second-order nonlocal integration by parts formula). Suppose that u ∈ L1(RN )

and |d 2u(x,y)|
|x−y|2 ρn(x− y) ∈ L1(RN × R

N ), and let φ ∈ C2
c (R

N ,RN×N ). Then

(3.20)

ˆ
RN

Hnu(x) · φ(x)dx =

ˆ
RN

u(x)D2
nφ(x)dx.

In fact, this theorem can be deduced as a consequence of Theorem 1.3 through a com-
ponent by component application and collection of terms. The following lemma shows the
convergence of the second-order nonlocal divergence to the continuous analogue div2φ, where
φ ∈ C2

c (R
N ,RN×N ) and

div2φ :=
N∑

i,j=1

∂φij
∂xi∂xj

.
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Lemma 3.3. Let φ ∈ C2
c (R

N ,RN×N ). Then for every 1 ≤ p ≤ ∞ we have

(3.21) lim
n→∞ ‖D2

nφ− div2φ‖Lp(RN ) = 0.

Proof. The proof follows immediately from Theorem 1.4.

The following lemma shows that the nonlocal Hessian (1.11) is well-defined for u ∈
BV2(RN ). It is the analogue of Lemma 3.1 for functions in BV2(RN ) this time.

Lemma 3.4. Suppose that u ∈ BV2(RN ). Then Hnu ∈ L1(RN ,RN×N ) with

(3.22)

ˆ
RN

|Hnu(x)|dx ≤M |D2u|(RN ),

where the constant M depends only on N .

Proof. Let (uk)k∈N be a sequence of functions in C∞(RN ) that converges strictly in
BV2(RN ). By the same calculations as in the proof of Lemma 3.1 we have for every k ∈ N,

ˆ
RN

|Hnuk(x)|dx ≤M(N, 1)‖∇2uk‖L1(RN ).

Using Fatou’s lemma in a way similar to how it was used in Lemma 3.1, we can establish that
Hnu is well-defined as a Lebesgue integral, along with the estimate

ˆ
RN

|Hnu(x)|dx ≤M(N, 1) lim inf
k→∞

|D2uk|(RN )

=M(N, 1)|D2u|(RN ),

where above we employed the strict convergence of D2uk to D2u. Thus the result has been
demonstrated.

We can now proceed to prove the localization result for BV2 functions. Recall that we
defined μn to be the R

N×N -valued finite Radon measures μn := HnuLN .

Proof of Theorem 1.6. We first proceed to prove (1.14) for C∞
c functions, and then we con-

clude with a density argument. From the estimate (3.22) we have that (|μn|)n∈N is bounded;
thus there exist a subsequence (μnk

)k∈N and an R
N×N -valued Radon measure μ such that μnk

converges to μ weakly∗. This means that for every ψ ∈ C∞
c (RN ,RN×N ) we have

lim
k→∞

ˆ
RN

Hnk
u(x) · ψ(x)dx =

ˆ
RN

ψ(x) · dμ.

On the other hand, from the integration by parts formula (3.20) and Lemma 3.3 we get that

lim
k→∞

ˆ
RN

Hnk
u(x) · ψ(x)dx = lim

k→∞

ˆ
RN

u(x)D2
nk
ψ(x)dx

=

ˆ
RN

u(x)div2ψ(x)dx

=

ˆ
RN

ψ(x) · dD2u.
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2180 LELLMANN, PAPAFITSOROS, SCHÖNLIEB, AND SPECTOR

This means that μ = D2u. Observe now that since we actually deduce that every subsequence
of (μn)n∈N has a further subsequence that converges to D2u weakly∗, the initial sequence
(μn)n∈N converges to D2u weakly∗.

Now we let φ ∈ C0(R
N ,RN×N ) and ε > 0. From the density of C∞

c (RN ,RN×N ) in
C0(R

N ,RN×N ) we can find a ψ ∈ C∞
c (RN ,RN×N ) such that ‖φ− ψ‖∞ < ε. Then, using also

the estimate (3.22), we have∣∣∣∣
ˆ
RN

Hnu(x) · φ(x)dx −
ˆ
RN

φ(x) dD2u

∣∣∣∣ ≤
∣∣∣∣
ˆ
RN

Hnu(x) · (φ(x) − ψ(x))dx

∣∣∣∣
+

∣∣∣∣
ˆ
RN

Hnu(x) · ψ(x)dx −
ˆ
RN

ψ(x) dD2u

∣∣∣∣
+

∣∣∣∣
ˆ
RN

(φ(x) − ψ(x)) dD2u

∣∣∣∣
≤ ε

ˆ
RN

|Hnu(x)|dx +

∣∣∣∣
ˆ
RN

Hnu(x) · ψ(x)dx −
ˆ
RN

ψ(x) dD2u

∣∣∣∣
+ ε|D2u|(RN )

≤Mε|D2u|(RN ) +

∣∣∣∣
ˆ
RN

Hnu(x) · ψ(x)dx −
ˆ
RN

ψ(x) dD2u

∣∣∣∣
+ ε|D2u|(RN ).

Taking the limit n→ ∞ from both sides of the above inequality we get that

lim sup
n→∞

∣∣∣∣
ˆ
RN

Hnu(x) · φ(x)dx −
ˆ
RN

φ(x) dD2u

∣∣∣∣ ≤ M̃ε,

and since ε is arbitrary, we have (1.14).
Let us note here that in the case N = 1 we can also prove strict convergence of the

measures μn to D2u; that is, in addition to (1.14) we also have

|μn|(R) → |D2u|(R).

Theorem 3.5. Let N = 1. Then the sequence (μn)n∈N converges to D2u strictly as mea-
sures, i.e.,

μn → D2u weakly∗, and(3.23)

|μn|(R) → |D2u|(R).(3.24)

Proof. The weak∗ convergence was proven in Theorem 1.6. Since in the space of finite
Radon measures the total variation norm is lower semicontinuous with respect to the weak∗

convergence, we also have

(3.25) |D2u|(R) ≤ lim inf
n→∞ |μn|(R).

Thus it suffices to show that

(3.26) lim sup
n→∞

|μn|(R) ≤ |D2u|(R).
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Note that in dimension one the nonlocal Hessian formula is

(3.27) Hnu(x) =

ˆ
R

u(y)− 2u(x) + u(x+ (x− y))

|x− y|2 ρn(x− y)dy.

Following the proof of Lemma 3.1, we can easily verify that for v ∈ C∞(R)∩BV2(R) we have
ˆ
R

|Hnv(x)|dx ≤ ‖∇2v‖L1(R),

i.e., the constant M that appears in the estimate (3.15) is equal to 1. Using Fatou’s lemma
and the BV2 strict approximation of u by smooth functions we get that

|μn|(R) =
ˆ
R

|Hnu(x)|dx ≤ |D2u|(R),

from where (3.26) straightforwardly follows.

3.4. Characterization of higher-order Sobolev and BV spaces. Characterization of Sobo-
lev and BV spaces in terms of nonlocal, derivative-free energies has been done so far only in
the first-order case; see [BBM01, Pon04b, Men12, MS15]. Here we characterize the spaces
W 2,p(RN ) and BV2(RN ) using our definition of nonlocal Hessian.

Proof of Theorem 1.7. First, we prove (1.15). Suppose that u ∈W 2,p(RN ). Then, Lemma
3.1 gives

lim inf
n→∞

ˆ
RN

|Hnu(x)|pdx ≤M‖∇2u‖p
Lp(RN )

<∞.

Suppose now conversely that

lim inf
n→∞

ˆ
RN

|Hnu(x)|pdx <∞.

This means that up to a subsequence, the sequence Hnu is representable (up to a subse-
quence) by a sequence of functions bounded in Lp(RN ,RN×N ); thus there exists a subsequence
(Hnk

u)k∈N and v ∈ Lp(RN ,RN×N ) such that Hnk
u ⇀ v weakly in Lp(RN ,RN×N ). Thus, using

the definition of Lp weak convergence together with the definition of Hnu, we have for every
ψ ∈ C∞

c (RN ),
ˆ
RN

vij(x) · ψ(x)dx = lim
k→∞

ˆ
RN

Hij
nk
u(x) · ψ(x)

= lim
k→∞

ˆ
RN

u(x)H ij
nk
ψ(x)

=

ˆ
RN

u(x)
∂2ψ(x)

∂xi∂xj
dx,

something that shows that v = ∇2u is the second-order weak derivative of u. Now since
u ∈ Lp(RN ) and the second-order distributional derivative is a function, mollification of u and
the Gagliardo–Nirenberg inequality (see [Nir59, p. 128, eq. 2.5])

(3.28) ‖∇u‖Lp(RN ) ≤ C‖∇2u‖
1
2

Lp(RN )
‖u‖

1
2

Lp(RN )
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2182 LELLMANN, PAPAFITSOROS, SCHÖNLIEB, AND SPECTOR

implies that the first distributional derivative belongs to Lp(RN ,RN ), and thus u ∈W 2,p(RN ).
We now proceed in proving (1.16). Again supposing that u ∈ BV2(RN ) we have that

Lemma 3.4 gives us

lim inf
n→∞

ˆ
RN

|Hnu(x)|dx ≤ C|D2u|(RN ).

Suppose now that

lim inf
n→∞

ˆ
RN

|Hnu(x)|dx <∞.

Considering again the measures μn = HnuLN we have that there exist a subsequence (μnk
)k∈N

and a finite Radon measure μ such that μnk

∗
⇀ μ weakly∗. Then for every ψ ∈ C∞

c (RN ) we
have, similarly as before,

ˆ
RN

ψdμij = lim
k→∞

ˆ
RN

Hij
nk
u(x) · ψ(x)dx

= lim
k→∞

ˆ
RN

u(x)H ij
nk
ψ(x)dx

=

ˆ
RN

u(x)
∂2ψ(x)

∂xi∂xj
dx,

something that shows that μ = D2u. Again, by first mollifying and then passing the limit,
the inequality (3.28) implies that Du ∈ M(RN ,RN ). However, Du ∈ M(RN ,RN ) and D2u ∈
M(RN ,RN×N ) imply that Du is an L1(RN ,RN ) function (which is a simple consequence of
the Sobolev inequality; but see also [AFP00, Exerc. 3.2]), and we therefore conclude that
u ∈ BV2(RN ).

3.5. Γ-convergence. For notational convenience we define the functional

(3.29) Fn(u) :=

{´
RN |Hnu| dx if Hnu is representable by an L1 function,

∞ otherwise.

Proof of Theorem 1.8. The computation of the Gamma limit consists of two inequalities.
For the lower bound, we must show that

|D2u|(RN ) ≤ lim inf
n→∞ Fn(un)

for every sequence un → u in L1(RN ). Without loss of generality we may assume that

C := lim inf
n→∞ Fn(un) < +∞,

which implies that

sup
ϕ

lim inf
n→∞

∣∣∣∣
ˆ
RN

Hij
n unϕ dx

∣∣∣∣ ≤ C,

where the supremum is taken over ϕ ∈ C∞
c (RN ) such that ‖ϕ‖L∞(RN ) ≤ 1. Now, the definition

of the distributional nonlocal Hessian and the convergence un → u in L1(RN ) imply that
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lim
n→∞

ˆ
RN

Hij
n unϕ dx = lim

n→∞

ˆ
RN

unH
ij
n ϕ dx

=

ˆ
RN

u
∂2ϕ

∂xi∂xj
dx.

We thus conclude that

sup
ϕ

∣∣∣∣
ˆ
RN

u
∂2ϕ

∂xi∂xj
dx

∣∣∣∣ ≤ C,

which, arguing as in the previous section, says that u ∈ BV2(RN ), in particular that D2u ∈
M(RN ,RN×N ) and

|D2u|(RN ) ≤ ΓL1(RN )- lim inf
n→∞ Fn(u)

for every u ∈ L1(RN ).
For the upper bound we observe that if u ∈ C2

c (R
N ), we have by the uniform convergence

of Theorem 1.4 and the fact that u is sufficiently smooth with compact support that

lim
n→∞Fn(u) = |D2u|(RN ).

Then choosing un = u we conclude that

ΓL1(RN )- lim sup
n→∞

Fn(u) ≤ lim
n→∞Fn(u)

= |D2u|(RN ).

Now, taking the lower semicontinuous envelope with respect to L1(RN ) strong convergence,
using that both the ΓL1(RN )- lim sup and the mapping u �→ |D2u|(RN ) are lower semicontinu-

ous on L1(RN ) (for the Γ- lim sup see [DM93, Prop. 6.8]), we deduce that

ΓL1(RN )- lim sup
n→∞

Fn(u) ≤ sc−
L1(RN )

|D2u|(RN )

= |D2u|(RN )

for all u ∈ L1(RN ).

4. Extensions and applications.

4.1. An asymmetric extension. In the previous sections we have shown that our nonlocal
definition of Hn as in (1.11) localizes to the classical distributional Hessian for a specific
choice of the weights ρn and thus can be rightfully called a nonlocal Hessian. In numerical
applications, however, the strength of such nonlocal models lies in the fact that the weights
can be chosen to have nonlocal interactions and model specific patterns in the data. A classic
example is the nonlocal total variation [GO08]:

(4.1) JNL−TV (u) =

ˆ
Ω

ˆ
Ω
|u(x)− u(y)|

√
w(x, y)dydx.

A possible choice is to choose w(x, y) large if the patches (neighborhoods) around x and y
are similar with respect to a patch distance da, such as a weighted �2 norm, and small if they
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2184 LELLMANN, PAPAFITSOROS, SCHÖNLIEB, AND SPECTOR

are not. In [GO08] this is achieved by setting w(x, y) = 1 if the neighborhood around y is
one of the K ∈ N closest to the neighborhood around x in a search window, and w(x, y) = 0
otherwise. In effect, if the image contains a repeating pattern with a defect that is small
enough to not throw off the patch distances too much, it will be repaired as long as most
similar patterns do not show the defect.

Computing suitable weights is much less obvious in the case of H. We can formally extend
(1.11) using arbitrary pairwise weights ρ : Rn × R

n → R,

(4.2) Hρu(x) = C

ˆ
RN

u(x+ z)− 2u(x) + u(x− z)

|z|2

(
zz� − |z|2

N+2IN

)
|z|2 ρx(z)dz,

and use it to create nonlocal generalizations of functionals such as TV2, for example to mini-
mize the nonlocal L2-TV2 model

(4.3) f(u) :=

ˆ
RN

|u− g|2dx+ α

ˆ
RN

|Hρ|dx.

However, apart from being formulated on R
N instead of Ω, formulation (4.2) has an important

drawback compared to the first-order formulation (4.1): while the weights are defined between
two points x and y, the left part of the integrand uses the values of u not only at x and y but
also at the “mirrored” point x+ (x− y). In fact we can replace the weighting function by the
symmetrized version 1

2{ρx(y − x) + ρx(x− y)}, which in effect relates three points instead of
two and limits the choice of possible weighting functions.

In this section we therefore introduce a more versatile extension of (1.11) that allows for
full nonsymmetric weights. We start with the realization that the finite-difference integrand
in (4.2) effectively comes from canceling the first-order differences in the Taylor expansion of
u around x, which couples the values of u at x, y, and x+ (x− y) into one term. Instead, we
can avoid this coupling by directly defining the nonlocal gradient G′

u(x) and Hessian looking
for a nonlocal gradient Gu(x) ∈ R

N and Hessian Hu(x) ∈ Sym(RN×N ) that best explain u
around x in terms of a quadratic model, i.e., that take the place of the gradient and Hessian
in the Taylor expansion:
(4.4)

(G′
u(x),H

′
u(x)) := argmin

Gu∈RN ,Hu∈Sym(RN×N )

1

2

ˆ
Ω−{x}

(
u(x+ z)− u(x)−G�

u z −
1

2
z�Huz

)2

σx(z)dz.

Here the variable x+ z takes the place of y in (1.11). We denote definition (4.4) the implicit
nonlocal Hessian, as opposed to the explicit formulation (4.2).

The advantage is that any terms involving σx(z) are now only based on the two values
of u at x and y = x + z, and (in particular bounded) domains other than R

N are naturally
dealt with, which is important for a numerical implementation. We also note that this ap-
proach allows us to incorporate nonlocal first-order terms as a side-effect, and can be naturally
extended to third- and higher-order derivatives, which we leave to further work.

With respect to implementation, the implicit model (4.4) does not add much to the
overall difficulty: it is enough to add the nonlocal gradient and Hessian G′

u(x) ∈ R
N and

H ′
u(x) ∈ R

N×N as additional variables to the problem and couple them to u by adding the
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optimality conditions for (4.4) to the problem. Since (4.4) is a finite-dimensional quadratic
minimization problem, the optimality conditions are linear, i.e., of the form Au,xH

′
u(x) = bu,x.

Such linear constraints can be readily added to most solvers capable of solving the local prob-
lem. Alternatively the matrices Au,x can be inverted explicitly in a precomputation step;
however, we did not find this to increase overall performance.

While the implicit and explicit models look different at first glance, from the considerations
about the Taylor expansion we expect them to be closely related, and in fact this is true, as
shown in the following theorem.

Theorem 4.1. Let ρ be a radially symmetric function satisfying the conditions (1.4)–(1.6),
let u ∈ BV2(RN ), with ∇u being Lipschitz, let x ∈ R

N , and let
(4.5)

(G′
u(x),H

′
u(x)) = argmin

Gu∈RN ,Hu∈Sym(RN×N )

1

2

ˆ
RN

(
u(x+ z)− u(x)−G�z − 1

2
z�Hz

)2 ρ(z)

|z|4 dz.

Then the optimal H ′
u(x) is given by the explicit nonlocal Hessian, i.e.,

H ′
u(x) = Hu(x) =

N(N + 2)

2

ˆ
RN

u(x+ z)− 2u(x) + u(x− z)

|z|2
z ⊗ z − |z|2

N+2IN

|z|2 ρ(z)dz.

This means that by setting Ω = R
N , assuming some extra regularity for u, and substituting

the weights σx(z) with ρ(z)/|z|4 the implicit nonlocal Hessian coincides with the explicit one.
In order to prove Theorem 4.1 we need first the following lemma, whose only difference is that
we are integrating over RN \B(0, ε) in order to deal with the introduced singularity 1/|z|4 at
the origin.

Lemma 4.2. Let ρ be a radially symmetric function satisfying the conditions (1.4)–(1.6),
let u ∈ BV2(RN ), let x ∈ R

N , and let
(4.6)

(G′,H ′) = argmin
G∈RN ,H∈Sym(RN×N )

1

2

ˆ
RN\B(0,ε)

(
u(x+ z)− u(x)−G�z − 1

2
z�Hz

)2 ρ(z)

|z|4 dz.

Then the optimal H ′ is given by

H ′
ij = Cε

ˆ
RN\B(0,ε)

u(x+ z)− 2u(x) + u(x− z)

|z|2
zizj
|z|2 ρ(z)dz, i �= j,

where Cε is a constant depending only on ε, ρ, N and satisfying Cε
ε→0−−→ N(N + 2)/2. For

the case i = j,

(H ′
ii)i=1,...,N = Dε ·

(ˆ
RN\B(0,ε)

u(x+ z)− 2u(x) + u(x− z)

|z|2
z2i0
|z|2 ρ(z)dz

)
i0=1,...,N

holds, where Dε
ε→0−−→ N(N+2)

2 (I − 1
N+2E) and E is the all-ones matrix. Here “·” denotes

matrix-vector multiplication.
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Proof. The optimality conditions for (4.6) in terms of G and H areˆ
RN\B(0,ε)

(
u(x+ z)− u(x)−G�z − 1

2
z�Hz

)
z
ρ(z)

|z|4 dz = 0,(4.7)

ˆ
RN\B(0,ε)

(
u(x+ z)− u(x)−G�z − 1

2
z�Hz

)
zz�

ρ(z)

|z|4 dz = 0(4.8)

under the constraint H ∈ Sym(RN×N ). Note that from a nonsymmetric solution H0 we can
always construct a symmetric solution H ∈ Sym(RN×N ) by letting H = 1

2 (H0 +H�
0 ), as the

equations are invariant under transposition of H. The above conditions correspond to the
following sets of N and N2 equations, respectively:ˆ

RN\B(0,ε)
zi(u(x+ z)− u(x))

ρ(z)

|z|4 dz

=

〈ˆ
RN\B(0,ε)

ziz
ρ(z)

|z|4 dz,G
〉

+

〈ˆ
RN\B(0,ε)

zi

(
1

2
zz�

)
ρ(z)

|z|4 dz,H
〉
, i = 1, . . . , N,

andˆ
RN\B(0,ε)

zizj(u(x+ z)− u(x))
ρ(z)

|z|4 dz

=

〈ˆ
RN\B(0,ε)

zizjz
ρ(z)

|z|4 dz,G
〉

+

〈ˆ
RN\B(0,ε)

zizj

(
1

2
zz�

)
ρ(z)

|z|4 dz,H
〉
, i, j = 1, . . . , N.

Note that G and H are elements of RN and R
N×N , and both sides of the inner products are

finite-dimensional vectors (respectively, matrices).
If we collect the entries of G and F in a vector p = (pG, pH), these two sets of equations

can be rewritten as a linear system with an m×m block matrix,(
A V �

V B

)
p =

(
a
b

)
.

The entries in the submatrices V are all of the formˆ
RN\B(0,ε)

zizjzk
ρ(z)

|z|4 dz, i, j, k ∈ {1, . . . , N}.

No matter what the choice of i, j, k is, there is always one index with an odd power, so every
one of these integrals is zero due to symmetry and the fact that ρ is even, i.e., ρ(z) = ρ(−z).
This means that the conditions on the gradient and the Hessian parts of p decouple, i.e., the
problem is

(4.9) ApG = a, BpH = b.

We can therefore look at the isolated problem of computing the Hessian part pH , or equiva-
lently H, without interference from the gradient part. The matrix B is of the form

1

2

ˆ
RN\B(0,ε)

zizjzi0zj0
ρ(z)

|z|4 dz.
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Again due to symmetry, the only way that this integral is nonzero is if there are no odd
powers, so either all indices are the same or there are two pairs:

1

2

ˆ
RN\B(0,ε)

z4k
|z|4 ρ(z)dz for some k

or
1

2

ˆ
RN\B(0,ε)

z2kz
2
l

|z|4 ρ(z)dz for some k �= l.

The right-hand side vector b in (4.9) is

bij =

ˆ
RN\B(0,ε)

(u(x+ z)− u(x))
zizj
|z|4 ρ(z)dz

=
1

2

ˆ
RN\B(0,ε)

(u(x+ z)− 2u(x) + u(x− z))
zizj
|z|4 ρ(z)dz.

Thus in the end we obtain the following N2 equations for pH = (pij)i,j=1...N :

(4.10)
∑
i,j

pij

ˆ
RN\B(0,ε)

zizjzi0zj0
|z|4 ρ(z)dz =

ˆ
RN\B(0,ε)

(u(x+z)−2u(x)+u(x−z))zi0zj0|z|4 ρ(z)dz,

where i0, j0 = 1, . . . , N .
We consider the different cases for i0, j0 separately.
Case i0 �= j0. All the terms in the left-hand side of (4.10) vanish except for (i, j) =

(i0, j0) and (i, j) = (j0, i0). Since we also require H = pij to be symmetric, we get the
condition

2pi0j0

ˆ
RN\B(0,ε)

z2i0z
2
j0

|z|4 ρ(z)dx =

ˆ
RN\B(0,ε)

u(x+ z)− 2u(x) + u(x− z)

|z|2
zi0zj0
|z|2 ρ(z)dz.

Then we are done for this case by simply observing that

C−1
ε := 2

ˆ
RN\B(0,ε)

z2i0z
2
j0

|z|4 ρ(z)dx
ε→0−−→ 2

ˆ
RN

z2i0z
2
j0

|z|4 ρ(z)dx =
2

N(N + 2)
,

where the last equality follows from (3.5).
Case i0 = j0. All the terms in the left-hand side of (4.10) vanish apart for i = j; i.e., we

have

∑
i

pii

ˆ
RN\B(0,ε)

z2i z
2
i0

|z|4 ρ(z)dz︸ ︷︷ ︸
M

i,i0
ε

=

ˆ
RN\B(0,ε)

(u(x+ z)− 2u(x) + u(x− z))
z2i0
|z|4 ρ(z)dz,

where i0 = 1, . . . , N . Again from (3.5) it follows that

Mε
ε→0−−→ 1

N(N + 2)
(E + 2I),
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2188 LELLMANN, PAPAFITSOROS, SCHÖNLIEB, AND SPECTOR

where E is the all-ones matrix. Thus

Dε :=M−1
ε

ε→0−−→ N(N + 2)

2

(
I − 1

N + 2
E

)
,

and the lemma has been shown.

Remark 4.3. Note that we did not have to explicitly compute the optimal gradient G in
the lemma above. However, we can bound G uniformly in ε. For that we assume that ∇u is
Lipschitz, say with constant L. Indeed, the gradient part in (4.9) reads as

Gi

ˆ
RN\B(0,ε)

z2i
|z|4 ρ(z)dz =

ˆ
RN\B(0,ε)

(u(x+ z)− u(x))
zi
|z|4 ρ(z)dz, i = 1, . . . , N.

By symmetry we have

ˆ
RN

z2i
|z|4 ρn(z) dz =

1

N

ˆ
RN

1

|z|2 ρn(z) dz;

therefore from the first equation we conclude the bound

|Gi|
ˆ
RN\B(0,ε)

ρ(z)

|z|2 dz = N

∣∣∣∣∣
ˆ
RN\B(0,ε)

u(x+ z)− u(x)

|z|
zi
|z|
ρ(z)

|z|2 dz
∣∣∣∣∣

≤ LN

ˆ
RN\B(0,ε)

ρ(z)

|z|2 dz

⇒ |Gi| ≤ LN.

We are now ready to prove Theorem 4.1, which is based on Lemma 4.2, Remark 4.3, and
a Γ-convergence argument.

Proof of Theorem 4.1. Let F and Fε be the functions mapping a point x to the minimizers
of (4.5) and (4.6). From Fatou’s lemma the functionals Fε are lower semicontinuous. Also

Fε → F, increasingly, pointwise,

and thus from [DM93, Rem. 5.5] we have that the functionals Fε Γ-converge to F as ε → 0.
Finally, from the fact that u ∈ BV2(RN ) and Remark 4.3 the minimizers of Fε are bounded
uniformly in ε. Then [DM93, Thm. 7.4], we have that F attains its minimum and

argminF = lim
ε→0

argminFε = Hu(x),

where the argmin here refers to the Hessian part of the minimizers.

Note that while Theorem 4.1 requires radial symmetry of ρ, this symmetry was generally
assumed throughout section 3. Therefore section 3 can also be seen as providing localization
results for implicit models of the form (4.5).
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Figure 2. Adaptive choice of the neighborhood for the image of a disc with constant slope and added
Gaussian noise. Left: A standard discretization of the second-order derivatives at the marked point uses all
points in a 3 × 3 neighborhood. Center: With a suitable choice of the weights σx, the discretization of the
(nonlocal) Hessian at the marked point only (or mostly) involves points that are likely to belong to the same
affine region, here the inside of the disc. This allows one to use a straightforward second-order regularizer such
as the norm of the Hessian ‖H ′

u‖, while preserving jumps. Right: Geodesic distance dM from the marked point
x in the lower right. Points that are separated from x by a strong edge have a large geodesic distance to x and
are therefore not included in the neighborhood of x that is used to define the nonlocal Hessian at x.

4.2. Choosing the weights for jump preservation. A characteristic of nonlocal models is
that they are extremely flexible due to the many degrees of freedom in choosing the weights.
In this work we will focus on improving on the question of how to reconstruct images that
are piecewise quadratic but may have jumps. The issue here is that one wants to keep the
Hessian sparse in order to favor piecewise affine functions, but doing it in a straightforward
way, such as by adding |D2u|(Ω) as a regularizer, enforces too much first-order regularity
[Sch98, LLT03, LT06, HS06].

There have been several attempts to overcome this issue, most notably approaches based
on combined first- and higher-order functionals (see [PS14] and the references therein), infimal
convolution [CL97], and TGV [BKP10, SST11]. Here we propose another strategy, making
use of the nonlocal formulation (4.4). Note that for general fixed weights ρ, even in the
implicit model, finiteness of

´
Ω |Hρ|dx does not require existence of |D2u|, as Theorem 1.7

only concerns (specific) sequences of ρ.
We draw our motivation for choosing the weights partly from a recent discussion of nonlocal

“amoeba” filters [LDM07, WBV11, Wel12]. Amoeba filters use classical techniques such as
iterated median filtering, but the structuring element is chosen in a highly adaptive local
way that can follow the image structures, instead of being restricted to a small parametrized
set of shapes. In the following we propose extending this idea to the higher-order energy
minimization framework (Figure 2).

Given a noisy image g : Ω → R, we first compute its (equally noisy) gradient image ∇g
(in all of this section we consider only the discretized problem, so we can assume that the
gradient exists). We then define the Riemannian manifoldM on the points of Ω with the usual
Riemannian metric, weighted by ϕ(∇g) for some function ϕ : RN → R+. In our experiments
we used

ϕ(∇g) := |∇g|2 + γ(4.11)

for small γ > 0, but other choices are equally possible. The choice of γ controls how strongly
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2190 LELLMANN, PAPAFITSOROS, SCHÖNLIEB, AND SPECTOR

the edge information is taken into account: for γ = 0 the weights are fully anisotropic, while
for large γ the magnitude of the gradient becomes irrelevant, and the method will reduce to an
isotropic regularization. With these definitions, the geodesic distance dM between two points
x, y ∈ Ω now has a powerful interpretation: If dM(x, y) is large, this indicates that x and y
are separated by a strong edge and should therefore not appear in the same regularization
term. On the other hand, small dM(x) indicates that x and y are part of a more homogeneous
region, and it is reasonable to assume that they should be part of the same affine part of the
reconstructed image.

For a given point x ∈ Ω, we sort the neighbors y1, y2, . . . in order of ascending distance,
i.e., dM(x, y1) ≤ dM(x, y2) ≤ · · · . We choose a neighborhood size M ∈ N and set the weights
to

σx(y) :=

{
1, i ≤M,

0, i > M.
(4.12)

In other words, the nonlocal Hessian at x is computed using its M closest neighbors with
respect to the geodesic distance through the gradient image.

The geodesic distances σx(y) can be efficiently computed using the fast marching method
[Set99, OF03] by solving the Eikonal equation

|∇c(y)| = ϕ(∇g(y)),(4.13)

c(x) = 0(4.14)

and setting dM(x, y) = c(x). Although it is necessary to process this step for every point
x ∈ Ω, it is in practice a relatively cheap operation: the fast marching method visits the
neighbors of x in the order of ascending distance dM, which means it can be stopped after M
points, with M usually between 5 and 20. If M is chosen too small, one risks that the linear
equation system that defines the nonlocal Hessian in (4.4) becomes underdetermined. In our
experiments we found M = 12 to be a good compromise, but the choice does not appear to
be a very critical one. In the experiments we used the L1-nonlocal TV2 model

min
u:Ω→R,

G′
u:Ω→RN ,

H′
u:Ω→Sym(RN×N )

∑
x∈Ω

|u(x)− g(x)|pdx+ α
∑
x∈Ω

ω(x)|H ′
u(x)|dx(4.15)

s.t. A

(
G′

u

H ′
u

)
= Bu,(4.16)

where α > 0 is the regularization strength, and p ∈ {1, 2}. The linear constraints implement
the optimality conditions for G′

u and H ′
u from (4.4), similar to (4.7)–(4.8):

∑
y∈Ω, z=y−x

(u(y)− u(x)−G′
u(x)

�z − 1

2
z�H ′

u(x)z)z σx(z) = 0, x ∈ Ω,(4.17)

∑
y∈Ω, z=y−x

(u(y)− u(x)−G′
u(x)

�z − 1

2
z�H ′

u(x)z)zz
� σx(z) = 0, x ∈ Ω,(4.18)
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input TV TV2 TGV

Figure 3. Classical local regularization. The input consists of a disc-shaped slope with additive Gaussian
noise, σ = 0.25. Shown is the result of denoising the input with an L1-data term. Total variation (TV, α = 1.1)
regularization generates the well-known staircasing effect. Regularization of the Hessian (TV2, α = 0.8) avoids
this problem, at the cost of oversmoothing jumps. Total generalized variation (TGV, α0 = 1.5, α1 = 1.1)
performs best but still clips the slope at the top.

with a suitable parametrization of H ′
u to enforce symmetry. Note that unlike the radially

symmetric case in Lemma 4.2, the conditions do not necessarily uncouple; therefore the first-
order component G′

u needs to be included in the optimization as well.

The local weight ω is set as ω(x) =M/|{y ∈ Ω|By,x �= 0}|. While the approach does work
with uniform weights ω = 1, we found that in some cases it can erroneously leave single outlier
points intact. We believe that this is caused by a subtle issue: by construction of σ, outlier
points are usually close neighbors to fewer points. Therefore they appear in fewer of the
regularization terms |H ′

u(x)|, which effectively decreases regularization strength at outliers.
The local weight ω counteracts this imbalance by dividing by the total number of terms in
which a particular value u(x) appears.

4.3. Numerical results. All experiments were performed on an Intel Xeon E5-2630 at
2.3 GHz with 64GB of RAM, MATLAB R2014a running on Scientific Linux 6.3, GCC 4.4.6,
and Mosek 7. Run times were between several seconds for the geometric examples to several
minutes for the full-size images, the majority of which was spent at the solution stage. The
computation of the geodesic distances dM using the fast marching method only took a few
milliseconds in all cases, and the total preprocessing time including building the sparse matrix
structures A and B took less than 5 seconds for the full-size images.

The solution of the Eikonal equation and computation of the weights as well as the system
matrix use a custom C++ implementation. For solving the minimization problems we used
the commercial interior-point based Mosek solver with the CVX interface. This allows us
to efficiently compute solutions with very high accuracy and therefore to evaluate the model
without the risk of accidentally comparing only approximate solutions. The stopping criterium
was set to guarantee that the normalized difference between the objective values f ′ of the
numerical solution and f∗ of the true minimizer satisfies (f ′ − f∗)/f∗ � √

ε = 1.5 · 10−8.
Alternatively, nonsmooth first-order methods could be used; however, in our experience they
become prohibitively slow for a precision beyond 10−4 due to the sublinear convergence rate.

Figure 3 illustrates the effect of several classical local regularizers, including TV, TV2,
and TGV. As expected, TV generates the well-known staircasing effect, while TV2 leads to
oversmoothing of the jumps. TGV with hand-tuned parameters performs reasonably well;
however, it exhibits a characteristic pattern of clipping sharp local extrema. This behavior
has also been analytically confirmed in [PB13, PS13] for the one-dimensional case.
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input TGV nonlocal Hessian
(proposed)

Figure 4. Nonlocal regularization of the problem in Figure 3. The adaptive choice of the neighborhood and
weights together with the nonlocal Hessian preserves the jumps, clips the top of the slope, and allows one to
perfectly reconstruct the piecewise affine signal.

Figure 4 shows the effect of our nonlocal Hessian-based method for the same problem.
The piecewise affine signal is almost perfectly recovered. This is mostly due to the fact
that the jumps are relatively large, which means that after computing the neighborhoods the
circular region and the background are not coupled in terms of regularization. Therefore the
regularization weight α can be chosen very large, which results in virtually affine regions.

To see what happens with smaller jumps, we generated a pattern of opposing slopes
(Figure 5). As expected, both TGV and the nonlocal Hessian approach struggle when the
jump is small. This shows the limitations of our approach for choosing the weights—while
it adds some structural information to the regularizer, this information is still restricted to a
certain neighborhood of each point and does not take into account the full global structure.

Figures 6–8 show a quantitative comparison of our nonlocal method with the results of
the TGV approach and several classical regularizers. The parameters for each method were
chosen by a grid search to yield the best PSNR. For all images we also provide a more realistic
“structural similarity index” (SSIM) [WBSS04]. The nonlocal approach improves on TGV
with respect to PSNR (34.09 vs. 33.28). However, it is interesting to look at the spatial
distribution of the error: the parts where the nonlocal approach improves are exactly the
local maxima, which are smoothed over by TGV. Surprisingly, this is hardly visible when
looking at the images only (Figure 6), which is in line with the good results obtained with
TGV for natural images. However, this property might become a problem when the data is
not a natural image, for example in the case of depth images or digital elevation maps. We
refer the reader to [LBL13] for a discussion of a problem that is more demanding in terms of
the correct choice of the regularization.

Finally, Figure 9 shows an application to the “cameraman” image with L2 data term.
Small details on the camera as well as long, thin structures such as the camera handle and
the highlights on the tripod are well preserved. In larger, more homogeneous areas the result
is what would be expected from second-order smoothness.

In its basic form, our approach is data-driven; i.e., the weights are computed directly
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input TGV low TGV high nonlocal Hessian

Figure 5. Denoising results for the “opposing slopes” image. The small jump at the crossing causes
a slight amount of smoothing for both the TGV and the nonlocal approaches. TGV with low regularization
strength (TGV low, α0 = α1 = 0.8) does reasonably well at preserving the strong jump on the right but does not
reconstruct the constant slope well. If one increases the regularization strength (TGV high, α0 = α1 = 1.5), the
jump is smoothed out. The nonlocal Hessian regularization (α = 10−3, note the different scales on the axes)
fully preserves the large jump by design and results in an overall cleaner reconstruction. The small amplitude
differences at the crossing point cause a slight blur in both approaches.

from the noisy data, while ideally they should be computed from the noise-free ground truth.
We can approximate this solution-driven approach by iterating the whole process, each time
recomputing the weights from the previous solution, resulting in a further reduction of noise
(bottom right image in Figure 9).

A current limitation is that our choice of weights can result in a pixelated structure along
slanted edges, as seen in Figures 10 and 11. This can happen when neighboring points are
separated by a strong edge and therefore have no regularization in common. We conjecture
that this effect could be overcome by ensuring that for neighboring points x, y the weight σx(y)
is always at least some positive constant; however, we have not pursued this direction further.
Whether this is a desired behavior or not depends on the underlying data—for applications
such as segmentation a pixelwise decision might actually be preferable.

5. Conclusion. From the perspective of the analysis, the study of the nonlocal Hessian
is a natural extension of the study of nonlocal gradients. While one has the straightforward
observation we mention in the introduction—that one may use nonlocal gradients to charac-
terize higher-order Sobolev spaces—the results of this paper alongside those of [MS15] provide
a framework for general characterizations of Sobolev spaces of arbitrary (nonnegative integer)
order. This notion, that one can write down an integrated Taylor series and use this as a
definition of a nonlocal differential object, is quite simple and yet leaves much to be explored.
Let us mention several interesting questions to this effect that would add clarity to the picture
that has developed thus far.

One of the foundations of the theory of Sobolev spaces is that of Sobolev inequalities.
While for a related class of functionals a Poincaré inequality has been established by Ponce
[Pon04a], the lack of monotonicity of the nonlocal gradient has proven difficult in adapting
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input image L2-TV (ROF, α = 0.24) L2-TGV(α0 = 0.38, α1 = 0.16)
PSNR = 22.82, SSIM = 0.33 PSNR = 31.83, SSIM = 0.90 PSNR = 33.28, SSIM = 0.93

L2-H ′
u (γ = 0.01, α = 0.20) L1-TGV(α0 = 2.95, α1 = 1.0) L1-H ′

u (γ = 0.005, α = 1.65)
PSNR = 34.09, SSIM = 0.93 PSNR = 35.39, SSIM = 0.97 PSNR = 36.06, SSIM = 0.98

Figure 6. Denoising results for a geometric test image using the total variation (TV), total generalized
variation (TGV), and nonlocal Hessian (NL-H) models (see Figure 7 for the discussion). For the nonlocal
models M = 12 neighbors were used.

his argument to our setting. This motivates the following open question.
Open question. Can one find a hypothesis on the approximation of the identity ρn so that

there is a C > 0 such that for all u in a suitable space one has the inequality
ˆ
Ω
|u−

 
u|p dx ≤ C

ˆ
Ω
|Gnu|p dx

for all n sufficiently large?
In fact, beyond the multitude of questions one could explore by making a comparison of the

results for nonlocal gradients and Hessians with known results in the Sobolev spaces, there
are already several interesting questions for nonlocal gradients and Hessians in the regime
p = 1 that have not been satisfactorily understood from our perspective. For instance, in the
first-order setting, assuming u ∈ BV(Ω), one has the convergence of the total variations

ˆ
Ω
|Gnu| dx→ |Du|(Ω).

While we have been able to show such a result for H ij
n u, i �= j, we have not succeeded in

demonstrating this in the case H ii
n u, which if true would settle the following conjecture.

Conjecture. Suppose u ∈ BV2(RN ). Then

ˆ
RN

|Hnu| dx→ |D2u|(RN ).

This question is related to a larger issue needing clarification, which is that of the right
assumptions for both the nonlocal gradient and the nonlocal Hessian when p = 1. In both the
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Figure 7. Slice at row 50 through the results images in Figure 6. The L2-TV model shows staircasing
as expected. L2-TGV smoothes out sharp local extrema, which is preserved better by the nonlocal L2 model.
Changing the data term to L1, as in the nonlocal L1 model, additionally removes the contrast reduction, even
though the original noisy data is clipped to the interval [0, 1].

paper [MS15] and this paper, the assumption utilized in the characterizations has been that
the object is an L1 function. The more natural assumption is that the nonlocal gradient or
nonlocal Hessian exists as a measure, for which the same argument gives a characterization of
BV(Ω) or BV2(RN ). However, the question of defining an integral functional of the nonlocal
gradient or nonlocal Hessian is less clear. More understanding is required here as to the notion
of integral functionals of a measure in the local case and the right framework to place the
nonlocal objects within.

One can already see that from the analysis standpoint there are many interesting questions
to explore in this area, while from the standpoint of applications we have seen that the
relatively simple framework already yields quite interesting results. Here two interesting
directions come into mind: developing strategies for choosing the weights, and moving on
beyond second-order regularization.

While in the numerical section we outlined one potential useful choice for the weights and
an application for the nonlocal Hessian—jump-preserving second-order regularization —the
approach is still somewhat local in the sense that we still restrict ourselves to a neighborhood
of each point. It would be interesting to find an application that allows us to truly capitalize on
the fact that we can include far-reaching interactions together with an underlying higher-order
model.

It would also be interesting to see whether it is useful in applications to go to even higher
orders than 2. While for natural images the use of such regularity is debatable, for other
applications such as reconstructing digital elevation maps it can make the difference between
success and failure [LBL13] and only requires replacing the quadratic model in the nonlocal
Hessian (4.4) by a cubic- or even higher-order model.
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Figure 8. Distribution of the L2 error to the ground truth for the experiment in Figure 6. In the TGV
case the errors spread out from the jumps. This is greatly reduced when using the nonlocal Hessian, at the cost
of introducing a few more local errors.

Appendix.
Proposition 5.1. For N � 1 we have the following definition and identity for C:

Ci0j0 :=

ˆ
SN−1

ν2i0ν
2
j0dHN−1(x) =

|SN−1|
N(N + 2)

·
{

1, i0 �= j0,
3, i0 = j0.

(5.1)

The matrix C = (Ci0j0)i0,j0=1,...,N is

C = C12(E + 2I),

where E ∈ R
N×N is the all-ones matrix.

Proof. In the case N = 1 we always have i0 = j0 and verify that in fact both the integral
and the right-hand side are equal to 2. For N = 2 the integral becomes either

(5.2)

ˆ 2π

0
cos2 α sin2 αdα =

π

4
or

ˆ 2π

0
cos2 α cos2 αdα =

3π

4
,

which agrees with (5.1). For the general case N � 3, we apply a general form of the coarea
formula in [AFP00, eq. (2.72)] using E = SN−1, M = N, N = N − 1, k = 2, f(x1, x2, . . .) =
(x1, x2); then

ˆ
SN−1

g(x)Ckd
EfxdHN−1(x) =

ˆ
R2

ˆ
SN−1∩{y1=x1,y2=x2}

g(y)dHN−3(y)d(x1, x2)

=

ˆ
B1(0)

ˆ
√

1−x2
1−x2

2SN−3

g(x1, x2, xr)dHN−3(xr)d(x1, x2).
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input image TGV
α0 = 0.30, α1 = 0.17

PSNR = 25.52, SSIM = 0.87

L2-H ′
u (1 iteration) L2-H ′

u (5 iterations)
α = 0.2, γ = 0.01 α = 0.2, γ = 0.01

PSNR = 25.23, SSIM = 0.83 PSNR = 24.68, SSIM = 0.86

Figure 9. Nonlocal Hessian-based denoising with L2 data fidelity (p = 2) on a real-world noisy input image
(top left) with σ = 0.1 Gaussian noise. Using a suitable choice of weights with a nonparametric neighborhood,
small details and long, thin structures such as the camera handle can be preserved while removing noise in
uniform structures (bottom left). By repeating the process several times, the result can be further improved
(bottom right). Compared to TGV (upper right), edges are generally more pronounced, resulting in a slightly
cartoon-like look. This effect can also be observed on other real-world images (Figures 10 and 11).

Here dEfx denotes the tangential differential of the function f at the point x, i.e., a linear map
from the (N−1)-dimensional tangent space Tan(E, x) = Tan(SN−1, x) at the point x ∈ SN−1

into R
2 [AFP00, Def. 2.89], and CkL denotes the coarea factor

√
detLL� for a linear map L.

In our case we set g(x) = cx21x
2
2 with c = (1 − x21 − x22)

−1/2; thus g(x1, x2, xr) is independent
of xr and we obtainˆ

SN−1

cx21x
2
2Ckd

EfxdHN−1(x) =

ˆ
B1(0)

cx21x
2
2

ˆ
√

1−x2
1−x2

2SN−3

dHN−3(xr)d(x1, x2).

Consider Ckd
Efx. For a given x ∈ SN−1, assume that B ∈ R

N × R
N−1 extends x to an

orthonormal basis of RN . Then x+Bt, t ∈ R
N−1, parametrizes the tangent plane of E at x.
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input image TGV
α0 = 0.25, α1 = 7.90

PSNR = 28.49, SSIM = 0.84

L2-H ′
u (1 iteration) L2-H ′

u (5 iterations)
α = 0.34, γ = 0.01 α = 0.34, γ = 0.01

PSNR = 27.82, SSIM = 0.80 PSNR = 28.18, SSIM = 0.70

Figure 10. Nonlocal Hessian-based denoising with L2 data fidelity (p = 2) on the real-world “flowers”
image (top left) with σ = 0.1 Gaussian noise. For this input, iterating the computation of the weights leads to
a slight overregularization, clearly illustrating the piecewise quadratic structure of the model (bottom right).

The derivative of f(x+Bt) = (x1, x2) at x in direction t is

L := dEfx = ∂tf(x+Bt)|t=0 = EB, E :=

(
e�1
e�2

)
.

We are interested in
√
detLL� =

√
det(EBB�E). Now

I2 = EInE
� = E

(
B x

)( B�

x�

)
E� = EBB�E +Exx�E�,

thus

LL� = EBB�E = I2 − Exx�E� = I2 −
(
x1
x2

)(
x1 x2

)
=

(
1− x21 −x1x2
−x1x2 1− x22

)
,

and consequently

Ckd
Efx =

√
det(LL�) =

√
(1− x21)(1 − x22)− x21x

2
2 =

√
1− x21 − x22.
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input image TGV
α0 = 0.16, α1 = 0.20

PSNR = 26.50, SSIM = 0.84

L2-H ′
u (1 iteration) L2-H ′

u (5 iterations)
α = 0.15, γ = 0.01 α = 0.15, γ = 0.01

PSNR = 25.31, SSIM = 0.80 PSNR = 25.28, SSIM = 0.81

Figure 11. Nonlocal Hessian-based denoising with L2 data fidelity (p = 2) on the real-world “leaves” image
(top left) with σ = 0.1 Gaussian noise (see also Figures 9 and 10).

Using the fact that c = C−1
k , we obtain

ˆ
SN−1

x21x
2
2dHN−1(x) =

ˆ
B1(0)

√
1− x21 − x22

−1

x21x
2
2

ˆ
√

1−x2
1−x2

2SN−3

dHN−3(xr)d(x1, x2).

The right-hand side is

ˆ 1

0

ˆ 2π

0
r
√

1− r2
−1
r4 cos2 α sin2 α

∣∣∣√1− r2SN−3
∣∣∣ drdα

=

ˆ 2π

0
cos2 α sin2 αdα

ˆ 1

0

√
1− r2r5

∣∣∣√1− r2SN−3
∣∣∣ dr(5.3)

=
π

4

ˆ 1

0

√
1− r2

−1
r5
∣∣∣√1− r2SN−3

∣∣∣ dr
=
π

4

ˆ 1

0

√
1− r2

−1
r5
√

1− r2
N−3|SN−3|dr

=
π

4
|SN−3|

ˆ 1

0
r5
√

1− r2
N−4

dr
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=
π

4
|SN−3| 8

N(N + 2)(N − 2)

=
π

4

(N − 2)π(N−2)/2

Γ(1 + (N − 2)/2)

8

N(N + 2)(N − 2)

=
2πN/2

N(N + 2)Γ(N/2)
.

Using a suitable reordering of the coordinates, this proves the i0 �= j0 case in the claimed
equality

Ci0j0 =

ˆ
SN−1

ν2i0ν
2
j0dHN−1(x) =

|SN−1|
N(N + 2)

·
{

1, i0 �= j0,
3, i0 = j0.

The case i0 = j0 follows by the same argument with g(x) = cx41. The only difference lies in
the evaluation of the integral in (5.3), which turns out to be a constant multiple of the first
case, since ˆ 2π

0
cos4(α)dα = 3

ˆ 2π

0
cos2 α sin2 αdα.

This completes the proof.
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