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ABSTRACT   

Thermodielectric effect in dual-frequency cholesteric liquid crystals (DFCLCs) is an important issue and has rarely been 
studied in the past. DFCLC materials have many applications such as fast-switching CLCs, light modulators, and tunable 
photonic devices. However, DFCLCs characteristically need high operation voltage, which hinders their further 
development in thin-film-transistor operation. Here we present a lower-voltage switching method based on 
thermodielectric effect. Dielectric heating effect entails applying an electromagnetic wave to occasion dielectric 
oscillation heating so to induce the increase in crossover frequency. The subsequent change in dielectric anisotropy of 
the DFCLC permits the switching, with a lower voltage, from the planar state to the focal conic or homeotropic state. 
Furthermore, we also demonstrate the local deformation of the CLC helical structure achieved by means of the 
thermodielectric effect. The wavelength of the deformation-induced defect mode can be tuned upon varying the 
dielectric heating power. The physics and the calculation of dielectric heating in DFCLCs are described.  
 

Keywords: cholesteric liquid crystals, dual-frequency liquid crystal, dielectric heating effect, optical stability, photonic 
devices 

1. INTRODUCTION  

Dual-frequency nematic liquid crystal (DFNLC) was first developed in the 1970s and 1980s.1 DFLCs are a LC mixture 
whose dielectric constant parallel to the molecular axis, ε||, highly depends on the frequency; and the dielectric constant 
perpendicular to the molecular axis, ε⊥, is independent of frequency within the range of tenth of MHz. In other words, 
dielectric anisotropy of DFNLC is positive in mid-frequency and negative in radio-frequency regions. The specific 
frequency where dielectric anisotropy cross zero is known as crossover frequency (fc). Based on this feature, DFNLCs 
have been suggested to extensive applications such as fast-switching optical devices,2,3 tunable lens,4  optical retarders,5 
stable system,6,7 and so forth. In addition, dual-frequency cholesteric liquid crystals (DFCLCs), mixtures that made of 
DFNLCs and chiral dopants, have a great potential for photonic applications. DFCLCs hold the same frequency-
dependent-dielectric-anisotropic characteristic as DFNLCs do which allows DFCLCs can be fast switched among 
multiple of their peculiar states. Typically, switching CLCs from transparent planar (P) state to opaque focal conic (FC) 
state relies an AC voltage pulse. The reverse transition, from the FC to P state, however, cannot be directly switched to 
without an intermediate state. Our previous studies have demonstrated the direct two-way switching between P and FC 
states with DFCLCs, characterizing a much shorter transition time for practical applications such as light shutters8,9 and 
fast-switching color-reflective displays.10 Nevertheless, DFCLC devices still suffer from two common problems—high 
operation voltage and thermodielectric effect. In this work, we explore the physics of thermodielectric of a DFCLC 
system and exploit such effect to switch the states of DFCLCs without necessitating high voltage. Furthermore, through 
thermodielectric effect a local deformation in the CLC helical structure can be created, serves as a photonic defect layer. 
The wavelength of the deformation-induced defect modes are tunable by simply applying a frequency-modulated voltage 
which yields different dielectric heating power. 
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Figure 3. (a) Dielectric dispersion of a DFCLC sample consisting of 10 wt% of chiral dopant at 300 K as well as (b) 

dielectric heating temperature of DFCLC cells under different applied voltages. 

 

where h is the heat transfer coefficient and is of ~40 Wm−2K−1 for the glass substrate15 and A is the heat-transfer area and 
of 1 cm2 in this study.  If we ignore the small temperature gradient in the DFCLC bulk, the average temperature T of the 
DFCLC molecule in thermal equilibrium can be written as16 

T − T0 = (1 + Bi) (Ts − T0), 

where Biot number of the glass plate is about 0.04 and is the dimensionless, which is negligible to readily deduce T = Ts.  
In this study, we used electric field, whose strength E = Vrms/d, for simplicity, that the electric field is homogeneous in 
the cell. The dielectric heating power density P of the LC bulk is thus given by 

2
2 0 rms

0 2

2 ( )( ) f VP E
d

π ε ε ωω ε ε ω
′′

′′= ⋅ ⋅ = , 
 

 

where ω represents the angular frequency and ε0 is the permittivity of free space. In this report, the pretilt angle (< 2°) is 
small enough, so the imaginary part of the complex dielectric permittivity is roughly equal to 0ε ε⊥′′  in the initial state. 
However, 

⊥′′ε  is a linear function of the chiral dopant concentration at 100 kHz based on the past report11 

( )c cε α β⊥′′ = + , 

where α = 0.016 and β = 0.169 wt%−1 by fitting.  In our experiment, ε⊥′′  did not explicitly vary with T. Also note that c is 
lower than 16 wt%, beyond which the DFCLC cell became difficult to operate. Now that the LC layer is thin as 
compared with the glass plates, one can neglect the heat stored in the LC layer itself.  As a result, the heat generation Qin 
and dissipation Qout can be expressed as Qin = P d A = Qout. The equilibrium temperature of the LC to proceed to 

( ) ( ) 2
rms 2

0 0 rms

2 1 Bif A c V
T T T f cV

hd
π α β

γ
+ +

= + ≈ + , 

where both Bi and α, in comparison with 1 and β c, respectively, are ignored in the approximation. The relation 
2

s 0 rmsT T T f cVΔ = − ∝  is clearly confirmed by the experimental data as shown in Fig. 3. One can see that the dielectric 
heating effect is more drastic in the samples with higher CP concentrations as manifested by the higher temperatures 
measured.  It is also clear from Fig. 3 that the experimental data are in good agreement with the simulated results 
predicted. 
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3.2  Lower operation voltage in DFCLCs based on the thermodielectric effect 

DFCLC devices are powerful and have potential to many applications as previous mentioned. However, all DFCLC 
devices suffer from one common problem—high operation voltage. We employ this thermodielectric effect to switch the 
cell from the P to the FC or H state by a lower operation voltage. Figure 4 illustrates the electro-optical properties of a 
DFCLC device (with 10 wt% chiral dopant) between crossed polarizers at low frequency 1 kHz and high frequency 100 
kHz.  When the low-frequency (1 kHz) voltage is applied, the DFCLC bulk shows positive Δε, and the device is initially 
at the P state. However, through a range of increasing operation voltages, the DFCLC cell exhibits the three main optical 
states. The colorful brightest one is the initial P state and the scattering FC state appears subsequently at ~13–30 Vrms. 
Finally, the optical texture appears to be the H state when the applied voltage is over ~30 Vrms as demonstrated in Fig. 
4(a). In the voltage ramp-down route, the optical texture changes from the H to FC state and, the device retains the FC 
state because of bistability. However, when the driving voltage operates at the high frequency (100 kHz), the DFCLC 
exhibits negative Δε. The high-frequency voltage causes severe dielectric heating effect and, in turn, the blue shift of 
crossover frequency fc, eventually inducing the positive dielectric torque. Consequently, the optical texture of the 
DFCLCs transform from the P state to the FC or H state even when the applied voltage is as low as ~15 Vrms (Fig. 4(b)). 
Based on this thermodielectric effect, the operation voltages required for switching the P state is lower compared with 
that in the convectional drive scheme. Figure 5 shows the images of real DFCLC cells of thermodielectric induce the 
molecular flowing under the cross polarizers. We can observe that the P state change to the H state slowly based on the 
thermodielectric effect. The thermo-induced crossover frequency shifting usually takes time and the optimized condition 
must be considered. The thermo-induced respond times, defined as the time interval between 10% and 90% of the 
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Figure 4. Voltage-dependent transmittance at operation frequencies of (a) 1 kHz and (b) 100 kHz. under crossed polarizers. 
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Figure 7. (a) Wavelength of the TIDM varying with the energy density and simulated pitch of the middle defect layer. The
symbols show the experimental (blue) and the simulated (red) results. (b) Experimental spectrum obtained in a specific 
pitch-deformation exhibiting two defect-mode peaks in the PBG. (Adopted from Ref. 22.) 
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Based on the thermodielectric effect in DFCLCs, we have demonstrated that photonic defect modes can be induced and
that the switching and tuning of them can be realized by local deformation of the pitch in the middle layer of a DFCLC 
cell. An external applied voltage at a high frequency across the DFCLC cell can supply the dielectric heat to induce a
defect layer owing to the changed pitch susceptible to the gradient temperature in the DFCLC cell. The TIDMs appeared 
only when the incident circularly polarized light had the same handedness as the DFCLC. The tuning of the TIDMs can
be performed by local compression of the defect-layer helix in DFCLCs, allowing the defect mode to blueshift. Based on
controlling the extent of the modulation of the helix condition, a continuous shift of the TIDMs can be realized using the
self-organizability of DFCLC without prefabrication of the artificial defect layer. On the basis of thermodielectric effect,
various potential applications can be expected such as single-mode lasing, monochromatic selection, on-chip devices and 
optical communications.

4. CONCLUSION

In summary, the interesting properties of dielectric heating in DFCLCs have been investigated. In a high-frequency-
modulated electric field, the thermodielectric effect leads to the increases in temperature resulting in upshift to crossover
frequency. Once the sign of dielectric anisotropy is altered the optical states of DFCLCs are changed thereby. Numerous 
of possible applications were proposed based on this phenomenon, including fast optical modulators, fast shutters and 
displays. The DFCLCs can be switched from the P state to FC or H state with a low driving voltage at the expense of 
switching time. Thermodielectric effect can also generate photonic defect modes in a DFCLC. The induced photonic
defect mode is tunable in wavelengths and the number of them is controllable. This intriguing effect is believed to have 
more possibilities than those are proposed in this paper.
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