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Recurrent-Neural-Network-Based
Adaptive-Backstepping Control
for Induction Servomotors
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Abstract—This study is concerned with the position control
of an induction servomotor using a recurrent-neural-network
(RNN)-based adaptive-backstepping control (RNABC) system.
The adaptive-backstepping approach offers a choice of design
tools for the accommodation of system uncertainties and non-
linearities. The RNABC system is comprised of a backstepping
controller and a robust controller. The backstepping controller
containing an RNN uncertainty observer is the principal con-
troller, and the robust controller is designed to dispel the effect
of approximation error introduced by the uncertainty observer.
Since the RNN has superior capabilities compared to the feed-
forward NN for dynamic system identification, it is utilized as
the uncertainty observer. In addition, the Taylor linearization
technique is employed to increase the learning ability of the RNN.
Meanwhile, the adaptation laws of the adaptive-backstepping ap-
proach are derived in the sense of the Lyapunov function, thus,
the stability of the system can be guaranteed. Finally, simulation
and experimental results verify that the proposed RNABC can
achieve favorable tracking performance for the induction-ser-
vomotor system, even with regard to parameter variations and
input-command frequency variation.

Index Terms—Adaptive control, backstepping control, induc-
tion servomotor, recurrent neural network (RNN).

1. INTRODUCTION

HE neural-network (NN)-based control technique has rep-

resented an alternative method for solving problems in
control engineering [1]-[4]. It is well known that the neural
network (NN) is capable of approximating linear or nonlinear
mapping through learning. By adequately choosing network
structures, training methods, and sufficient input data, the NN
controllers have been developed to compensate for the effects
of nonlinearities and system uncertainties, so that the stability,
error convergence, and robustness of the control system can
be improved. However, the NNs presented in [1]-[4] are the
feedforward NNs, they belong to static mapping networks.
On the other hand, the recurrent NN (RNN) has capabilities
superior to the feedforward NN, such as dynamic response
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and the information-storing ability [5]-[9]. Since the RNN
has a feedback loop, it captures the dynamic response of a
system with external feedback through delays. Thus, the RNN
is a dynamic mapping network and demonstrates good control
performance in the presence of uncertainties, which are usually
caused by unpredictable plant-parameter variations, external-
force disturbance, and unmodeled nonlinear dynamics in the
practical application of dynamic systems.

In the past decade, interest in adaptive control has been
increasing and many significant developments have been
achieved. In order to guarantee global stability, some restric-
tions had been made, such as matching condition and extended
condition [10]. In an attempt to overcome these restrictions,
research on adaptive-backstepping control has increased
[10]-[13]. Adaptive backstepping is a systematic and recursive
design methodology for nonlinear feedback control and offers
a choice for accommodating unmodeled nonlinear effects and
parameter uncertainty.

Induction servomotors are used in many automatic systems,
including drives for printers, tap recorders, robot manipulators,
etc. Recently, decoupled control approaches, such as field-
oriented control and nonlinear-state feedback techniques, has
been used in the design of induction-servomotor drives for
high-performance applications [14], [15]. Using decoupled-
control approaches, the dynamic behavior of the induction
servomotor is rather similar to that of a separately excited dc
motor. However, in the field-oriented method, the decoupled
relationship is obtained through the proper selection of state
coordinates, under the hypothesis that the rotor flux is kept
constant. Therefore, the rotor speed is only asymptotically
decoupled from rotor flux, and the speed is linearly related
to torque current only after the rotor flux reaches steady-
state values. Furthermore, in practical applications, the control
performance of the induction servomotor is still influenced by
the uncertainties of the plant, such as mechanical-parameter
uncertainties, external-load disturbance, and unmodeled dy-
namics. To deal with these uncertainties, many intelligent
techniques have been adopted [13], [16]-[18]. In [13], an
adaptive-backstepping control system using a hidden-layer
RNN has been proposed, in which the gradient-descent method
is used to derive the NN parameter-training algorithms. How-
ever, the gradient-descent method cannot guarantee the global
convergence of these parameters.

The motivation of this study is to design an RNN-
based adaptive-backstepping control (RNABC) system for the
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position control of the induction servomotor in relation to
system-parameter variations. The RNABC system is comprised
of a backstepping controller and a robust controller. The back-
stepping controller containing an RNN uncertainty observer is
designed based on the backstepping-control technique, and the
robust controller is designed to dispel the effect of approxima-
tion error introduced by the uncertainty observer. In this design,
an output-feedback RNN is used as the uncertainty observer,
which is superior to the hidden-layer RNN presented in [13]
in terms of dynamic learning capability [19]. For parameter
tuning, the Taylor linearization technique is used in this paper,
so that all the parameters of the RNABC system can be tuned
at the same time. The adaptive laws of the RNABC system
are derived in the sense of the Lyapunov function, so that
the stability of the system can be guaranteed. A comparison
between IP control and the proposed RNABC is presented.
Finally, the simulation and experimental results of the
induction-servomotor control are provided to verify the effec-
tiveness of the proposed RNABC scheme with regard to plant
variations and input-command frequency variation.

II. INDIRECT FIELD-ORIENTED INDUCTION SERVOMOTOR

With the implementation of field-oriented control, the me-
chanical equation of an induction-servomotor drive can be
simplified as [17]

JO(t)+BO(t)+ T, =T, (1)

where J is the moment of inertia, B is the damping coefficient,
6 is the position, 7; represents the external load disturbance,
and T, denotes the electric torque defined as

T, = Kyl )

3 L2
mz(gﬂ(iﬂﬁs 3)

where K is the torque constant, 7, is the torque-current com-
mand, 7} is the flux-current command, which will be restrained
to 24 at the operational points, n,, is the number of pole pairs,
L,, is the magnetizing inductance per phase, and L, is the rotor
inductance per phase. Then, the induction-servomotor drive
system can be represented in the following form:

. B . K ., 1
0t) = — <0() + —ig,(0) — 5T
= A,0(t) + Byu(t) + D,Ti “4)

where A,=-B/J, B,=K;/J>0, D,=-1/J, and
u(t) = i,4(t) is the control effort. Assume that the parameters
of the system are well known and the external load disturbance
is absent, the nominal model of the induction-servomotor
system can be presented as

0(t) = A,0(t) + Buu(t) (5)

where A,, = —B/J and B,, = K;/J are the nominal values
of A, and B,, and the “~” symbol represents the system
parameter in the nominal condition. If uncertainties occur, i.e.,
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the parameters of the system deviate from the nominal value
or an external load disturbance is added into the system, the
controlled system can be modified as

0(t) = (An + AA)O(t) + (Bn + AB)u(t) + DT
= A,0(t) + Byu(t) + d(t) (6)

where AA and AB denote the uncertainties; and d(t) is
called the lumped uncertainty defined as d(t) = AAO(t) +
ABu(t) + D,T;.

III. RECURRENT-NEURAL-NETWORK-BASED
ADAPTIVE-BACKSTEPPING CONTROL SYSTEM

Since the lumped uncertainty d(t) is time varying and is
unknown in practical applications, an RNN is introduced to
estimate this uncertainty in the following sections. Then, an
RNABC system shown in Fig. 1 is proposed for the induction-
servomotor control. The RNABC system is comprised of a
backstepping controller with the RNN uncertainty observer and
a robust controller.

A. RNN Observer

A three-layer RNN, which is shown in Fig. 2 and is com-
prised of an input layer, a hidden layer, and an output layer, is
utilized to estimate at real time the lumped uncertainty and its
structure. The RNN maps according to

n

y(N) = kaq’k (|zi(N)wiy(N — 1) = sikl, 6ix) (1)
k=1

where x;,7 = 1,2, -- -, m, and y contain the input variables and
the output variable of the RNN, respectively, N is the number
of iterations, vy represents the connective weights between the
hidden layer and the output layer, ®; represents the firing
weight of the kth neuron in the hidden layer, s;; and §;; are
the center and width of the radial basis function, respectively,
and w; is the recurrent weight for the unit in the output layer.
The firing weight can be represented as

U i(N)wiy(N — 1) — s 2
nety(N) = lzzl [2:(N) 52 ) £ )
and
By (N) = e nete (), ©)

For ease of notation, we define vectors 4, s, x, and w by
collecting all the parameters of the hidden layer in RNN as

O =[011 6mid12- Oma------ Oip - 5mn]T (10)
S=[511"" Sm1812 - Sma--" " Sip Smn]T (11)
X =[x Tp) (12)
W:[w1~-~wm]T. (13)

Then, the output of the RNN can be represented in vector form

y(x,0,8,w,v) = v ®(x,d,s,wW) (14)
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Fig. 2.

Structure of an RNN.

where v = [vy vg -+ v,]T and @ = [®] By --- P,] . It has
been proven that there exists an RNN of (14) such that it can
uniformly approximate a nonlinear, even time-varying, function
[20]. The introduced RNN takes the recurrent connection from

universal approximation theorem, there exists an optimal RNN
approximation d* such that [20]

d=d"+ A=v7T®" + A (15)
where A denotes an approximation error, and v* and ®* are the
optimal-parameter vectors of v and ®, respectively. The RNN
uncertainty observer is defined as

d=v"® (16)
where ¥ and ® are the estimated vectors of v* and ®*, respec-
tively. Define the estimated error d as

d=d—d=d"—d+A=vV"®+3vT®+vI®+ A (17)

where v=v* — v and ® = & — &. In the following, the
adaptive laws will be derived to online tune the center, width,
and recurrent weights of the RNN observer. For achieving this
goal, the Taylor-expansion linearization technique is employed
to transform the nonlinear radial basis function into a partially
linear form

the output feedback to the input. This RNN is superior to
the hidden-layer RNN presented in [13] and to the dynamic
learning capability presented in [19], in which the recurrent
connection was taken inside the hidden layer.

In this study, an RNN uncertainty observer is designed to

®,
. P,
P = .
L Py
r 84’1 8‘17’1 8q’l
96 Os ow
8‘1’2 6<I>2 84’2
08 e Os ~ ow ~
= . |5:56 + . |s:és+ w=wW +h
0%, oL :29 0P,
L 948 Os ow

estimate the system uncertainty. The output of the RNN uncer-
tainty observer is the estimated lumped uncertainty d. By the

(18)
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or
®=A"5+B5+CTWw+h (19)

where A = [(0®1/09)--- (09,/00)]|s_5: B = [(0P1/0s)

(09 /0s)]|s=s; C=[(0P1/0W) -+ (0Py/0W)]|w=w:
h is a vector of higher order terms; =6 — 3; S=s*"—8§;
w =w* — w; 8", s*, and w* are the optimal parameter vectors
of 4, s, and w, respectively; 3, S, and w are the estimated
parameter vectors of 8", s*, and w*, respectively, and 0P, /94,

0Py, /Js, and 0Py, /Ow are defined as

09, 1" 0D, o0d},
— L0 ==£ . e 2
96 C0 o ae, L8| @O
- - L(k—1)xm (n—k)xm
09, 1" o0d,, o0d,,
= e e e 21
s u aslk 8Smk u @n
) . (k—1)xm (n—k)xm
09, 1" 0P,
- L (k-1) (n—k)

— T+ 6 Av+5 B+ wICY + ¢ (23)

A % r 3 AN ~ o~ A A -
where VTATd =6 Av, vITBTs =§TBvV, and vTCTw =
wTCV are used since they are scales; and the approximation-
error term € = VT h + vT® + A is assumed to be bounded by
le] < E.

B. Design of RNABC

The idea of backstepping design is to select an appropriate
function as a pseudocontrol input and each backstepping stage
results in a new pseudocontrol design. When the procedure ter-
minates a feedback design for the true control input, it achieves
the original design objective by summing the Lyapunov func-
tions associated with each individual design stage. The RNABC
system design for the induction-servomotor position-tracking
control is described step by step as follows.

Step 1) Define the tracking error as

€1 = 0 — 9d (24)
and its derivative as
é1=0—04 (25)

where 04 is the input command. The 0 can be
viewed as a virtual control in the equation. Define
the following stabilizing function

o = —C1€1 + éd (26)

where ¢, is a positive constant.

Step 2) Define ey = 0 — «, then the derivative of ey is
expressed as

é2:é7d2é7(761é1+éd):éféd+clé1.
27

It also shows that
él = €2 — C1€1. (28)

Step 3) The control law is proposed in the following

equation:
u(t) = ua(t) + up(t) 29)
with
Uo(t) = B! [—czeg —er — An0(1)
—d— 161 + éd(t)} (30)
u(t) = — By E'sgn(en) (31)

where cg is also a positive constant. In the back-
stepping controller u,, the uncertainty d is estimated
by the RNN in (16); and in the robust controller
up, F is an estimated value of the approximation-
error bound. Applying the control law in (29) to the
system in (6), it is obtained that

0(t) = An0(t) + Bplua(t) +up(t)] + d(t). (32)

Substituting (30) and (31) into (32) and from (27), it
is obtained that

é — éd + 161
=d— dA— Co€9 — €1 — Esgn(eg)
= é. (33)

Substituting (23) into (33), yields

¢ =vT® + 8 Av + 8BV + wlCv
+ & —coeg —e1 — E‘sgn(eg). (34)

Step 4) Define the Lyapunov function as

1, 1, 1 - 1 g
I - —E2(t) 4+ —
2€1+262+2n1 ()+2772V v
1 T~ 1 . T~
+—68 0+—s8s+—ww (39
213 214 2

where E(t) = E — E(t); and 11, 12, 13, 74, and 15
are positive constants.
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Differentiating (35) with respect to time and using (28) and

(34), it is obtained that
. _ . EE '
V =e1é1 +e2ég + — +
Uit 2 n3 M4 M5

—ei(es — cre1) + €3 [oni’: +8 AV +5TBY + wICY

~T,L e ~ 5
6 6 §Ts wlw

+ & —coe2 — €1 — E Sgl’l(eg):|

EE %% &6 3% wiw
+—+—+—+
m 72 n3 N4 Ui

.V
= — cle% — 0263 +vT <62‘1) + >
T2

N 5 X
+4" <62A0 + > 437 (egB{f + S)
n3 M4

G . EE
+wT <ezco T W) + ey — Bles| + == (36)
5 m
If the adaptive laws for the RNN observer and the
approximation-error bound are chosen as
E(t) = = E(t) = mez| (37)
\L’ = — \~7 = 77262‘i’ (38)
6= — 8 = nyesAV (39)
§= —§=meBv (40)
W= —W=135eCvV 41
then (36) becomes
1% (61, es, B(t), 7,3, sw>
= —c1€? — o€l + ey — Eley|
< —ci1ef —coes — (E — |e|) ea] <0. (42)

In summary, the RNABC system is designed as in (29), which
is comprised of a backstepping controller in (30) and a robust
controller in (31). In the backstepping controller, the lumped
uncertainty is estimated by an RNN in (16), where the parame-
ters v, 5, §, and w of the RNN observer are adjusted by (38)
through (41). In the robust controller, the approximation-error
bound is estimated by (37). With this control system, the system
stability can be guaranteed.

IV. SIMULATION AND EXPERIMENTAL RESULTS

The curve-fitting technique based on step—position response
is applied to find the model of the drive system in the nominal
condition (7; =0 N -m without parameter variations). The
results are

K; =0.6851 N-m/A
J=025x103N-m-s>

B =19.84 x 103N -m-s/rad. (43)
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Fig. 3. Simulation results of the IP-control induction-servomotor system due

to a sinusoidal command.

To investigate the effectiveness of the proposed RNABC sys-
tem, two simulation cases including parameter variations are
considered as

Casel:J=J,B=B
Case2:J=2x.J,B=2xB.

(44)
(45)

In (28) and (30), ¢; and co will influence the convergent
speed of e; and eo, respectively; however, they also influence
the control gain of w,. In (38) through (41), the parame-
ters 72, 73, 14, and 75 are the leaning rates of the RNN.
If n2, n3, M4, and 75 are chosen to be small, then the pa-
rameter convergence of the RNN can be achieved; however,
this will result in slow learning speed. On the other hand,
if m2, n3, N4, and 75 are chosen to be large, then the learn-
ing speed will be fast; however, the RNN system may be-
come more unstable for the parameter convergence. In (37),
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Fig. 4. Simulation results of the RNABC induction-servomotor system due to
a sinusoidal command.

the parameter 7; is the learning rate of the approximation-
error bound. Similar to 79, 13, n4, and 75, the choice of
71 will influence the convergent speed of the error bound.
The parameters in control systems are chosen as c¢; = 20,
c2 = 20,m; = 0.1, and 2 = 13 = n4 = 15 = 100. These para-
meters are chosen through trials to achieve a favorable control
performance.

In the simulations, an IP control system is considered for
comparison [17]. The simulation results of an IP induction-
servomotor system due to a sinusoidal command are shown
in Fig. 3, in which the frequency of the sinusoidal command
is doubled at the seventh second. The tracking responses are
shown in Fig. 3(a) and (c); and the associated control efforts
are shown in Fig. 3(b) and (d) for cases 1 and 2, respectively.
From Fig. 3(a), accurate tracking performance can be obtained
at the first 7 s; however, degenerate tracking responses are pro-
duced when the frequency of the input command is increased
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Command -
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Fig. 5. Experimental results of the IP-control induction-servomotor system
due to a sinusoidal command.

at the seventh second. Fig. 3(b) shows that when parameter
variation occurs, degenerate tracking responses always result.
For comparison, the proposed RNABC scheme is applied for an
induction-servomotor control system with the same simulation
conditions. The simulation results are shown in Fig. 4. The
tracking responses are shown in Fig. 4(a) and (c); and the
associated control efforts are shown in Fig. 4(b) and (d) for
cases 1 and 2, respectively. The simulation results show that the
RNABC can achieve favorable tracking performance even in
relation to parameter variations and input-command frequency
variation.

Some experimental results are provided to further demon-
strate the effectiveness of the proposed control scheme. Two
experimental conditions are demonstrated; one is the condition
where the rotor inertia is the nominal value (condition 1),
and the other is the condition 2, which increases the rotor
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Fig. 6. Experimental results of the RNABC induction-servomotor system
due to a sinusoidal command.

inertia to approximate two times that of the nominal value; and
doubles the frequency of the sinusoidal command at the seventh
second. The experimental results of IP control and RNABC
due to the sinusoidal command are shown in Figs. 5 and 6,
respectively. The experimental results confirm the results of
the simulation, that the proposed RNABC can achieve better
control performance than the IP control.

V. CONCLUSION

This study has successfully demonstrated the application of a
recurrent-neural-network (RNN)-based adaptive-backstepping
control (RNABC) system, which is comprised of a backstep-
ping controller with an RNN uncertainty observer and a robust
controller, to the position control of an induction servomotor.
The uncertainty observer uses an RNN to estimate the lumped
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uncertainty in real time. All the adaptive laws of the RNABC
system are derived in the sense of the Lyapunov function, so
that the stability of the system can be guaranteed. Moreover,
simulation and experimental results were carried out to illus-
trate the effectiveness of the proposed control system. Finally,
a comparison between IP control and the proposed RNABC is
presented. The simulation and experimental results show that
the proposed RNABC has achieved better control performance
than the IP control.

ACKNOWLEDGMENT

The authors are grateful to the reviewers for their valuable
comments.

REFERENCES

[1] M. Zhihong, H. R. Wu, and M. Palaniswami, “An adaptive tracking
controller using neural networks for a class of nonlinear systems,” IEEE
Trans. Neural Netw., vol. 9, no. 5, pp. 947-1031, Sep. 1998.

[2] S. S. Ge, C. C. Hang, and T. Zhang, “Adaptive neural network control
of nonlinear systems by state and output feedback,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 29, no. 6, pp. 818-828, Dec. 1999.

[3] S. Seshagiri and H. K. Khalil, “Output feedback control of nonlinear
systems using RBF neural networks,” IEEE Trans. Neural Netw., vol. 11,
no. 1, pp. 69-79, Jan. 2000.

[4] C. M. Lin and C. F. Hsu, “Neural network hybrid control for antilock
braking systems,” IEEE Trans. Neural Netw., vol. 14, no. 2, pp. 351-359,
Mar. 2003.

[5] C.C.KuandK.Y. Lee, “Diagonal recurrent neural networks for dynamic
systems control,” IEEE Trans. Neural Netw., vol. 6, no. 1, pp. 144-156,
Jan. 1995.

[6] T. W. S. Chow and Y. Fang, “A recurrent neural-network-based real-
time learning control strategy applied to nonlinear systems with unknown
dynamics,” IEEE Trans. Ind. Electron., vol. 45, no. 1, pp. 151-161,
Feb. 1998.

[7] C.H. Lee and C. C. Teng, “Identification and control of dynamic systems
using recurrent fuzzy neural networks,” IEEE Trans. Fuzzy Syst., vol. 8,
no. 4, pp. 349-366, Aug. 2000.

[8] C. M. Lin and C. F. Hsu, “Recurrent neural network adaptive control of
wing rock motion,” J. Guid. Control Dyn., vol. 25, no. 6, pp. 1163-1165,
Jun. 2002.

[9] ——, “Supervisory recurrent fuzzy neural network control of wing
rock for slender delta wings,” IEEE Trans. Fuzzy Syst., vol. 12, no. 5,
pp. 733-742, Oct. 2004.

[10] M. Kistic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and
Adaptive Control Design. New York: Wiley, 1995.

[11] H. J. Shieh and K. K. Shyu, “Nonlinear sliding-mode torque control
with adaptive backstepping approach for induction motor drive,” IEEE
Trans. Ind. Electron., vol. 46, no. 2, pp. 380-389, Apr. 1999.

[12] T. Zhang, S. S. Ge, and C. C. Hang, “Adaptive neural network control
for strict-feedback nonlinear systems using backstepping design,”
Automatica, vol. 36, no. 12, pp. 1835-1846, Dec. 2000.

[13] E. J. Lin, R. J. Wai, W. D. Chou, and S. P. Hsu, “Adaptive backstepping
control using recurrent neural network for linear induction motor drive,”
IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 134-146, Feb. 2002.

[14] C. M. Liaw and F. J. Lin, “Position control with fuzzy adaptation for
induction servomotor drive,” Proc. IEE—Electr. Power Appl., vol. 142,
no. 6, pp. 397-404, Nov. 1995.

[15] C. M. Lin and C. F. Hsu, “Adaptive fuzzy sliding-mode control for induc-
tion servomotor systems,” IEEE Trans. Energy Convers., vol. 19, no. 2,
pp. 362-368, Jun. 2004.

[16] T.C. Huang and M. A. El-Sharkawi, “High performance speed and posi-
tion tracking of induction motors using multi-layer fuzzy control,” IEEE
Trans. Energy Convers., vol. 11, no. 2, pp. 353-358, Jun. 1996.

[17] E J. Lin, R. J. Wai, C. H. Lin, and D. C. Liu, “Decoupled stator-
flux-oriented induction motor drive with fuzzy neural network uncer-
tainty observer,” IEEE Trans. Ind. Electron., vol. 47, no. 2, pp. 356-367,
Apr. 2000.

[18] C. M. Lin and C. F. Hsu, “Neural-network-based adaptive control for
induction servomotor drive system,” I[EEE Trans. Ind. Electron., vol. 49,
no. 1, pp. 115-123, Feb. 2002.



1684

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 6, DECEMBER 2005

[19] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy
Synergism to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hall,

1996.

[20] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability
Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1994.

-

ol

Chih-Min Lin (S’86-M’87-SM’99) received the
B.S. and M.S. degrees in control engineering and
the Ph.D. degree in electronics engineering from
National Chiao Tung University, Taiwan, R.O.C., in
1981, 1983, and 1986, respectively.

From 1986 to 1992, he was with the Chung Shan
Institute of Science and Technology as a Deputy
Director of system engineering of missile systems.
He also served concurrently as an Associate Pro-
fessor at Chiao Tung University and Chung Yuan
University, Taiwan, R.O.C. He joined the faculty

of the Department of Electrical Engineering, Yuan-Ze University, Tao-Yuan,
Taiwan, R.O.C., in 1993 and is currently a Professor and the Chairman of the
Department of Electrical Engineering. From 1997 to 1998, he was the Honor
Research Fellow in the University of Auckland, New Zealand. His research
interests include fuzzy neural networks (NNs), cerebellar-model articulation
control, guidance and flight control, and systems engineering.

Dr. Lin has served as a Committee Member of the Chinese Automatic
Control Society and as Deputy Chairman of the IEEE Control Systems Society,

Taipei Section.

\

J

&

Chun-Fei Hsu (M’05) received the B.S., M.S., and
Ph.D. degrees in electrical engineering from Yuan-
Ze University, Tao-Yuan, Taiwan, R.O.C., in 1997,
1999, and 2002, respectively.

After graduation, he joined the Department of
Electrical and Control Engineering, National Chiao-
Tung University, Hsinchu, Taiwan, R.O.C. From
2002 to 2005, he was conducting postdoctoral
research on virtual-reality dynamic simulators and
intelligent transportation systems. His research in-
terests include servomotor drives, adaptive control,

flight control, and intelligent control using fuzzy-system and neural-network
technologies.



