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Reinforcement Learning for An ART-B ased Fuzzy 
Adaptive Learning Control Network 

Cheng-Jian Lin and Chin-Teng Lin, Member, IEEE 

Abstract- This paper proposes a reinforcement fuzzy adap- 
tive learning control network (RFALCON) for solving various 
reinforcement learning problems. The proposed RFALCON is 
constructed by integrating two fuzzy adaptive learning con- 
trol networks (FALCON’S), each of which is a connectionist 
model with a feedforward multilayer network developed for 
the realization of a fuzzy controller. One FALCON performs 
as a critic network (fuzzy predictor), and the other as an ac- 
tion network (fuzzy controller). Using the temporal difference 
prediction method, the critic network can predict the external 
reinforcement signal and provide a more informative internal 
reinforcement signal to the action network. The action net- 
work performs a stochastic exploratory algorithm to adapt itself 
according to the internal reinforcement signal. An ART-based re- 
inforcement structurdparameter-learning algorithm is developed 
for constructing the RFALCON dynamically. During the learning 
process, both structure learning and parameter learning are 
performed simultaneously in the two FALCON’S. The proposed 
RFALCON can construct a fuzzy control system dynamically and 
automatically through a rewardlpenalty signal (i.e., a “good“ or 
“bad” signal). It is best applied to the learning environment, 
where obtaining exact training data is expensive. The proposed 
RFALCON has two important features, First, it reduces the 
combinatorial demands placed by the standard methods for 
adaptive linearization of a system. Second, the RFALCON is a 
highly autonomous system. Initially, there are no hidden nodes 
(i.e., no membership functions or fuzzy rules). They are created 
and begin to grow as learning proceeds. The RFALCON can also 
dynamically partition the input-output spaces, tune activation 
(membership) functions, and find proper network connection 
types (fuzzy rules). Computer simulations have been conducted 
to illustrate the performance and applicability of the proposed 
learning scheme. 

I. INTRODUCTION 
OST of the supervised and unsupervised learning algo- M rithms for neural networks require precise training data 

for setting the link weights and link connectivity of the nodes 
for various applications. For some real-world applications, 
precise training data are usually difficult and expensive, if 
not impossible, to obtain. For this reason, there has been 
a growing interest in reinforcement learning algorithms for 
neural networks [1]. In this paper, we are extending our 
previous work on fuzzy adaptive learning control networks 
(FALCON’S) [2] to the reinforcement learning problem. 

Training data are very rough and coarse for the reinforce- 
ment learning problem, and they are only “evaluative” when 
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compared with the “instructive” feedback in the supervised 
learning problem. Training a network with this kind of eval- 
uative feedback is called reinforcement learning; this simple 
evaluative feedback is scalar and is called the reinforcement 
signal. In addition to the roughness and noninstructive nature 
of the reinforcement signal, a more challenging problem to 
reinforcement learning is that a reinforcement signal may only 
be available at a time long after a sequence of actions has 
occurred; this signal may be caused by an action several time 
steps before or by the whole sequence of actions with varying 
degrees of contribution. In the latter case, it is difficult to 
determine which action to reward or punish. For example, in 
chess, the final result (win or lose) cannot be known until 
after a long sequence of moves. This is the well-known credit 
assignment problem in artificial intelligence [3]. To solve 
the long time-delay problem, reinforcement learning systems 
need the capability to predict. Reinforcement learning that 
is able to predict is also much more useful than supervised 
learning schemes in dynamic control problems, since the 
success or failure signal might be known only after a long 
sequence of control actions. From the biological and cognitive 
points of view, reinforcement learning is much closer to the 
modern animal learning theory [4] than is supervised learning. 
Research shows that animals and most cells adapt themselves 
to environments according to reinforcement signals from the 
external world or other cells. Moreover, animals can learn 
extensively about their environments even before the external 
reinforcement signal as introduced in [ 5 ] .  This situation is very 
similar to learning many high-level intelligent actions such as 
how to drive a car. 

The development of reinforcement learning can be roughly 
divided into two stages. The first began in the 1950’s when 
mathematical psychologists developed computational models 
to explain the learning behavior of animals and human beings 
[6 ] .  They viewed learning as stochastic processes and devel- 
oped the so-called stochastic learning model. At almost the 
same time, cybemeticians and control theorists were making 
independent efforts in the study of stochastic learning. Their 
work basically used deterministic automata as a model for 
learning systems operating in stationary random environments, 
and later the model was generalized to use stochastic automata 
[7]. At this stage, most of the learning models were “nonas- 
sociative” since there was no input to the learning system 
except the reinforcement signal. A typical example is the two- 
armed bandit problem [8]. More details on stochastic learning 
automata can be found in [9]. Representative of the second 
stage development of reinforcement learning is the associative 
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reinforcement learning in which people try to associate an 
input pattern with output patterns according to a reinforcement 
signal. This was stimulated by the theory proposed by Klopf 
[ 101. Inspired by Klopf‘s work and earlier simulation results 
[ 111, Barto and his colleagues used neuron-like adaptive 
elements to solve difficult learning control problems with 
only reinforcement signal feedback [12]. The idea of their 
proposed architecture, called the actor-critic (adaptive heuristic 
critic) architecture, was fully developed in [13]. They also 
proposed the associative reward-penalty (AR-P) algorithm 
for adaptive elements called Aa-p elements [14], and several 
generalizations of AR-P algorithm have been proposed [15]. 
Williams formulated the reinforcement learning problem as a 
gradient-following procedure [17], and he identified a class of 
algorithms, called REINFORCE algorithms, that possess the 
gradient ascent property. These algorithms, however, still do 
not include the full AR-P algorithms. Recently, Berenji and 
Khedkar [ 181 proposed a fuzzy logic controller and its associ- 
ated learning algorithm. Their architecture extends Anderson’s 
method [ 191 by including a priori control knowledge of expert 
operators in terms of fuzzy control rules. Lin and Lee [20] also 
proposed a reinforcement neural-network-based fuzzy logic 
control system (RNN-FLCS) for solving various reinforcement 
learning problems. The R”-FLCS can find proper network 
structure and parameters simultaneously and dynamically. 

In this paper, we shall apply the technique of associative 
reinforcement learning to our proposed reinforcement FAL- 
CON system. The proposed learning system can construct a 
fuzzy controller automatically and dynamically by means of 
a reward-penalty (i.e., good-bad) signal or from very simple 
fuzzy feedback information such as “high,” “too high,” “low,” 
and “too low.” Moreover, there is a possibility of a long delay 
between an action and the resulting reinforcement feedback 
information. To achieve the goal of solving reinforcement 
learning problems in fuzzy logic systems, a reinforcement 
fuzzy adaptive learning control network (RFALCON) is pro- 
posed, which consists of two closely integrated FALCON’S. 
The FALCON is a feedforward multilayer network that inte- 
grates the basic elements and functions of a traditional fuzzy 
controller into a connectionist structure. In this connectionist 
structure, the input and output nodes represent the input 
states and output control/decision signals, respectively, and, 
in the hidden layers, there are node functions as membership 
functions (activation functions) and fuzzy logic rules (con- 
nection types). In the RFALCON, the FALCON used for the 
action network (fuzzy controller) can choose a proper ‘action 
according to the current input vector. Its functions like the 
one proposed in [2] except that there is no “teacher” to 
indicate output errors for the action network to learn in the 
reinforcement learning problem. The other FALCON is used 
as the critic network (fuzzy predictor), and provides the action 
network more informative and earlier internal reinforcement 
signals from which to learn. 

Associated with the proposed RFALCON is an ART-based 
reinforcement structure/parameter-learning algorithm. This al- 
gorithm uses the temporal difference technique on the critic 
network to determine the output errors for multistep prediction. 
With this knowledge of output errors, the ART-based on-line 
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Fig. 1. 
tioning. 

(a) Grid-type fuzzy partitioning. (b) Flexible hyperbox fuzzy parti- 

supervised structure/parameter-learning algorithm developed 
in [2] can train the critic network to do fuzzy clustering 
in the input-output spaces and find proper fuzzy logic rules 
(connection types) dynamically by associating input clusters 
and output clusters. For the action network, the reinforcement 
structure/parameter-learning algorithm allows its output nodes 
to perform stochastic exploration on the output space. With 
the internal reinforcement signals from the cntic network, the 
output nodes of the action network can perform more effective 
stochastic searches with a higher probability of choosing a 
good action as well as discovering its output errors. Again, 
after finding the output errors, the whole action network can be 
trained by the on-line supervised learning algorithm described 
in [2] .  Thus, the proposed reinforcement structure/parameter- 
learning algorithm is basically composed of the temporal 
difference techniques, stochastic exploration, and on-line su- 
pervised structure/parameter-learning algorithm presented in 
[2]. It can thus on-line partition the input-output spaces, tune 
activation (membership) functions, and find proper network 
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Fig. 2. Functional diagram of a fuzzy controller. 

connection types (fuzzy logic rules) for an RFALCON dynami- 
cally by means of an external reinforcement signal. Moreover, 
learning can proceed even before an external reinforcement 
feedback is available. 

An important feature of the proposed leaming system is that 
it can dynamically partition the input-state space and output- 
control space using irregular fuzzy hyperboxes according to 
the distribution of environment states and reinforcement sig- 
nals. In many existing fuzzy or neural fuzzy control systems, 
including those introduced in the preceding paragraphs, the 
input and output spaces are always partitioned into “grids,” 
each defining a fuzzy region. The overlapping regions between 
the grids provide a smooth and continuous membership out- 
put surface. Consider, for example, a fuzzy logic controller 
with two input variables. If each of them contains three 
fuzzy terms (e.g., “small,” “medium,” and “large,”) then the 
corresponding input-space partition is as shown in Fig. l(a). 
Although during the learning process, the position and shape of 
membership functions will be changed, they are still inherently 
grid-type partitions. Due to its simplicity and intuitiveness, 
grid-type partitioning of input and output spaces has been 
used in the design of many existing fuzzy systems. As the 
number of input-output variables increases, however, the 
number of partitioned grids grows combinatorially. As a 
result, the memory or hardware size required may become 
impracticably large. This results in more learning difficulty 
since with finer space partitioning, more training samples 
are needed or insufficient leaming takes place. To avoid 
combinatorial growth of partitioned grids in complex systems, 
more flexible and irregular space partitioning methods must be 
developed. Fig. l(b) shows a proposed partitioning method in 
the RFALCON system. The problem of space partitioning from 
numerical training data is basically a clustering problem. The 
proposed system applies the fuzzy adaptive resonance theory 
(fuzzy ART) proposed by Carpenter et al. [24], [25] to do fuzzy 
clustering in the input-output spaces and find proper fuzzy 
logic rules dynamically by associating input clusters with 
output clusters. The backpropagation learning scheme is then 

used for tuning input-output membership functions. Hence, in 
the RFALCON, the fuzzy ART is used for structure learning 
and the backpropagation algorithm for parameter learning. The 
RFALCON can thus on-line partition the input-output spaces, 
tune membership functions, and find proper fuzzy logic rules 
dynamically on the fly. More notably, in this learning scheme, 
only the reinforcement signals from the outside world need 
to be provided. Users do not need to give the initial fuzzy 
partitions, membership functions, or fuzzy logic rules, hence, 
there are no hidden nodes at the beginning of learning; they 
are created and begin to grow as the first reinforcement signal 
arrives. 

This paper is organized as follows: Section 11 describes 
the basic structure and functions of our previously proposed 
FALCON [ 2 ] .  The proposed RFALCON and the correspond- 
ing reinforcement structure/parameter-learning algorithm with 
multistep prediction capability are presented in Section 111. 
In Section IV, the cart-pole balancing system and the ball 
and beam system are simulated to demonstrate the ability 
of the proposed RFALCON. Performance comparison with 
some other existing systems is described in Section V. Finally, 
conclusions are summarized in Section VI. 

11. THE STRUCTURE OF THE FALCON 

We shall briefly introduce basic components of conventional 
fuzzy control systems (for more details, please refer to [26] 
and [27]), and then propose our connectionist model. 

A. Basic Structure of A Fuzzy Control System 

Fig. 2 shows the basic structure of a conventional fuzzy 
control system with a learning/adapting component. Before 
proceeding, we must define some important terms. A fuzzy 
set F in a universe of discourse U is characterized by a 
membership function p . ~  : U i [0,1]. Thus, a fuzzy set F 
in U may be represented as a set of ordered pairs. Each pair 
consists of a generic element U and its grade of membership 
function p ~ ( u ) ;  that is, F = { ( U ,  ~ . F ( u ) )  I U E U } .  U is called 
a support value if ~ F ( u )  > 0. If U is a continuous universe and 
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F is normal and convex (i.e., maxpF(u) = 1 and p~(Xu1 + 

then F is a fuzzy number. A linguistic variable x in a universe 
of discourse U is characterized by T ( x )  = {T:, T,, . . . , T t }  
and M ( z )  = {M;,  M z , .  . . ) M t } ,  where T ( x )  is the term set 
of z; that is, the set of names of linguistic values of z with 
each value Ti being a fuzzy number with membership function 
M i  defined on U .  So M ( z )  is a semantic rule for associating 
with each value its meaning. For example, if x indicates speed, 
then T ( z )  may be {slow, medium, fast}. Following the above 
definition, the input vector X which includes the input state 
linguistic variables x,’s, and the output state vector Y which 
includes the output state linguistic variables yz’s in Fig. 2 can 
be defined as 

X =  

U E U  

(1 - X)u2)  2 m i n ( P F ( u l ) , P F ( U 2 ) ) ,  u1,u2 E u>x E [O, 111, 

{ (xz , U%, {T,1$ > T:”, , * * * ,T:; 1 > {M:% , @% > . . . > M:: } 1 Id,. 72) 

(1) 

Y =  
{(YZ,U,’, { T ~ ~ , T ~ ~ > . ’ . , T ~ ~ } , {  M ~ ~ , M ~ ~ , . . . , M ~ } )  12=1,.. ,m>. 

(2) 

The fuzzifier in Fig. 2 is a mapping from an observed input 
space to fuzzy sets in certain input universe of discourse. So 
a specific value xz( t )  at time t is mapped to the fuzzy set T:% 
with degree M2,(xz( t ) )  and to the fuzzy set T:% with degree 
M:%(z%(t)) ,  and so on. 

The fuzzy rule base in Fig. 2 contains a set of fuzzy logic 
rules R. For a multi-input and multioutput (MIMO) system, 
we have 

2 R { R L I . w o ,  R M I M O ,  . . . , R ~ M I M O  1 
where the zth fuzzy logic rule is 

RLIncro : IF ( z1 is T,, and . . . and xp is T., ) 

THEN ( y1 is Tyl and and y4 is Tyn ). 

The preconditions of RLIMo form a fuzzy set T,, x . . . x T., 
and the consequent of R b I M O  is the union of q independent 
outputs. So the rule can be represented by a fuzzy implication 

R h I M O  : (Tz, x . . . x TZp)  + (Tyl + . . . + Ty,) 

where “+” represents the union of independent variables. 
Since the outputs of MIMO rule are independent, the general 
rule structure of MIMO fuzzy system can be represented as 
a collection of multi-input and single-output (MISO) fuzzy 
systems by decomposing the above rule into q subrules with 
Ty, as the single consequent of the ith subrule. For clarity, 
we shall consider MISO system in the following analysis. A 
sample rule follows: 

IF the speed is too slow and the acceleration is decreasing, 
THEN increase power strongly. 

The inference engine in Fig. 2 matches the rule precondi- 
tions in the fuzzy rule base with the input state linguistic terms 
and performs implication. For example, if there were two rules: 

R1: IF x1 is T21 and x2 is Ti2 ,  THEN y is Tt. 

R2: IF X I  is T:, and x2 is T:2, THEN y is T i .  
Then the firing strengths of rules R1 and R2 are defined as 

01 and 122, respectively. Here a; is defined as 

a, = K 1 ( x 1 )  A M:&2) (3 )  

where ‘‘A“ is the fuzzy AND operation. The most commonly 
used fuzzy AND operations are intersection and algebraic 
product [26], [27]. 

Rules R1 and R2 lead to the corresponding decision with the 
membership function, f i i ( w ) ,  i = 1,2,  which is defined as 

k ; ( w )  = at A M;(w) (4) 

where w is the variable that represents the membership func- 
tion support values. Combining these decisions, we obtain the 
output decision 

f i y (w)  = & i ( W )  v k ; ( w )  (5)  

where “V“ is the fuzzy OR operation. The most commonly 
used fuzzy OR operations are union and bounded sum [25], 
W I .  

Notice that the last result is a membership function curve. 
Before feeding the signal to the plant, we must defuzzify it to 
get a crisp decision, which is what defuzzifier block in Fig. 2 
does. Among commonly used defuzzification strategies, the 
center of area method yields a superior result [26], [27]. Let 
wJ be the support value at which the membership function, 
Mi ( w )  , reaches the maximum value 2; ( w )  I 2u=w3 . Then the 
defuzzification output is 

- p ; ( w j ) w j  

The preceding describes the standard function operations 
in a conventional fuzzy control system, although there are 
some alternatives for fuzzy OR, fuzzy AND, and reasoning 
operations [26], [27]. 

Most system designers usually chose their membership 
functions empirically and constructed fuzzy logical rules sup- 
plied by experts. Enabling fuzzy control systems to learn 
is an important issue. The learningladapting block in Fig. 2 
represents this function. This leaming/adapting block finds 
suitable fuzzy logic rules and adapts the fuzzifier and the 
defuzzifier to find the proper shapes and membership function 
overlaps by learning the desired output, or in response to 
external reinforcement signals. The aim of this paper is to 
present an adaptive fuzzy control system design that can adapt 
itself in response to external reinforcement signals. In the next 
section, the FALCON, a connectionist model, is proposed as 
just such a fuzzy control system. This neural-network-based 
architecture eliminates the rule-matching process and distribu- 
tively stores control knowledge in the connection types and 
link weights. More importantly, the connectionist architecture 
is a natural structure with which to perfom neural-network- 
based learning. 
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Fig. 3. The proposed FALCON. 

B. A Connectionist Fuzzy Control System 
In this section, we shall describe the structure and functions 

of the proposed FALCON [2], a connectionist realization of 
a conventional fuzzy logic control system and also a basic 
component of the proposed RFALCON, that will be introduced 
in Section 111. The FALCON system (see Fig. 3) has five 
layers with node and link numbering defined by the brackets on 
the right-hand side of the figure. Layer-1 nodes are input nodes 
(input linguistic nodes) representing input linguistic variables. 
Layer-5 nodes are output nodes (output linguistic nodes) repre- 
senting output linguistic variables. Layer-2 and layer-4 nodes 
are term nodes that act as membership functions representing 
the terms of the respective input and output linguistic variables. 
Each layer-3 node is a rule node representing one fuzzy logic 
rule. Thus, together all the layer-3 nodes form the fuzzy rule 
base. Links between layers 3 and 4 function as a connectionist 
inference engine. Layer-3 links define the preconditions of the 
rule nodes, and layer-4 links define the consequents of the 
rule nodes. Therefore, each rule node has at most one link 
to some term node of a linguistic node, and may have no 
such links. This is true both for precondition links (links in 
layer 3 )  and consequent links (links in layer 4). The links in 
layers 2 and 5 are fully connected between linguistic nodes 
and their corresponding term nodes. The arrows indicate the 
normal signal flow directions when the network is in operation 
(after it has been built and trained). We shall later indicate 
the signal propagation, layer-by-layer, according to the arrow 
direction. 

The FALCON uses the technique of complement coding 
from Fuzzy ART [24] to normalize the input-output training 
vectors. Complement coding is a normalization process that 
rescales an n-dimensional vector in X2”, x = (21, x 2 ,  , xn), 
to its 2n-dimensional complement coding form in [O, 1Izn, x’, 
such that 

x’ (7) (51, z;, 3 Z 7  z;, . . . z,, 3;) 
= (31,l- 3 1 , 2 2 , 1 -  3 2 ,  

where ( f l , Z z , .  . . ,2 , )  = X = x/11x11 and 37 is the com- 
plement of 3 1 ,  i.e., 3; = 1 - 3 1 .  As mentioned in [24], 
complement coding helps avoid the problem of category 
proliferation when using fuzzy ART for fuzzy clustering. 
It also preserves training vector amplitude information. In 

applying the complement coding technique to the FALCON, 
all training vectors (either input state vectors or desired output 
vectors) are transformed to their complement coded forms in 
the preprocessing process, and the transformed vectors then 
used for training. 

A typical network consists of nodes with some finite number 
of fan-in connections from other nodes represented by weight 
values, and fan-out connections to other nodes. Associated 
with the fan-in of a node is an integration function f which 
combines information, activation, or evidence from other 
nodes, and provides the net input; i.e., 

where zZ(‘) is the ith input to a node in layer k, and is 
the weight of the associated link. The superscript in the above 
equation indicates the layer number. This notation will be also 
used in the following equations. Each node also outputs an 
activation value as a function of its net-input 

output = a( f )  (9) 

where a(.) denotes the activation function. We shall next 
describe the functions of the nodes in each of the five layers of 
the FALCON. Assume that the dimension of the input space 
is n, and that of the output space is m. 

Layer 1: Each node in this layer is called an input linguistic 
node and corresponds to one input linguistic variable. Layer- 
1 nodes just transmit input signals to the next layer directly. 
That is 

f ( ~ Z , z ~ ) = ( ~ z , ~ : , C ) = ( ~ , , l - ~ z ) a n d a ( f ) =  f .  (10) 

From the above equation, the link weight in layer 1 (w:’)) 
is unity. Noted that due to the complement coding process, 
for each input node i, there are two output values, 3, and 

Layer2: Nodes in this layer are called input term nodes 
and each represents a term of an input linguistic variable, and 
acts as a one-dimensional membership function. The following 
trapezoidal membership function [3 11 is used: 

x; = 1 - 3,. 

and 

4.f) = f 
where and U!:) are, respectively, the left-flat and right- 
flat points of the trapezoidal membership function of the jth 
input term node of the ith input linguistic node [see Fig. 4(a)]; 
z$) is the input to the j th input term node from the ith input 
linguistic node (i.e., z$) = 5&); and 

1 if sy > 1 

{ 0 if sy < 0. 
g(s,y) = sy if 0 5 sy 5 1 (12) 

The parameter y is the sensitivity parameter that regulates the 
fuzziness of the trapezoidal membership function. A large y 
means a more crisp fuzzy set, and a smaller y makes the 
fuzzy set less crisp. A set of n input term nodes (one for each 
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Fig. 4. (a) One-dimensional trapezoidal membership function. @) 
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input linguistic node) is connected to a rule node in layer 3 
where its outputs are combined. This defines an n-dimensional 
membership function in the input space, with each dimension 
specified by one input term node in the set. Hence, each input 
linguistic node has the same number of term nodes. That is, 
each input linguistic variable has the same number of terms in 
the FALCON. This is also true for output linguistic nodes. A 
layer-2 link connects an input linguistic node to one of its term 
nodes. There are two weights on each layer-2 link. We denote 
the two weights on the link from input node i (corresponding 
to the input linguistic variable z,) to its j th term node as 
U!,”’ and U!,“’ (see Fig 3). These two weights define the 

correspond respectively to the two inputs, 8, and’;,“ from the 
input linguistic node i. More precisely, x, and Zc,“, the two 
inputs to the input term node j ,  will be used during the fuzzy- 
ART clustering process in FALCON’S structure-learning step 
to decide U::) and U::), respectively. In FALCON’S parameter- 
learning step and normal operating, only 8% is used in the 
forward reasoning process [i.e., 2::) = 8, in (ll)]. We detail 
the FALCON learning scheme in Section 111. 

Layer 3: Nodes in this layer are called rule nodes and each 
represents one fuzzy logic rule. Each layer-3 node has n input 

membership function in (11). The two weights, u ( ~ )  and vZJ (2) , 

term nodes, fed into it,’ one for each input linguistic node. 
Hence, there are as many rule nodes in the FALCON as there 
are term nodes of an input linguistic node (i.e., the number 
of rules equals the number of terms of an input linguistic 
variable). Notice that each input linguistic variable has the 
same number of terms in the FALCON as mentioned in the 
above. The links in layer 3 are used to perform precondition 
matching of fuzzy logic rules. Hence the rule nodes perform 
the following operation 

n 

i=l 

where z2(3) is the ith input to a node in layer 3 and the 
summation is over the inputs of this node. The link weight 
in layer 3 (~2”’) is then unity. Note that the summation 
in the above equation is equivalent to defining a multidi- 
mensional (n-dimensional) membership function, which is the 
summation of the trapezoid functions in (11) over i .  This 
forms a multidimensional trapezoidal membership function 
called the hyperbox membership function [31], since it is 
defined on a hyperbox in the input space. The corners of 
the hyperbox are decided by the layer-2 weights, U::) and 
v!”, for all 2’s. More clearly, the interval [u!:),u!$)~ defines 
t G  edge of the hyperbox in the ith dimensTon. Hence, the 
weight vector, [(urf’ ) vis’), . . . , (U::’, U::))) . . . , (U$), U:))], 
defines a hyperbox in the input space. An illustration of 
a two-dimensional hyperbox membership function is shown 
in Fig. 4(b). The rule nodes output are connected to sets 
of m output term nodes in layer 4, one for each output 
linguistic variable. This set of output term nodes defines an 
m-dimensional trapezoidal (hyperbox) membership function in 
the output space that specifies the consequent of the rule node. 
Note that different rule nodes may be connected to the same 
output hyperbox (i.e., they may have the same consequent), 
as is shown in Fig. 3. 

Layer4: The nodes in this layer are called output term 
nodes; each has two operating modes: down-up transmission 
and updown transmission modes (see Fig. 3). In down-up 
transmission mode, the links in layer 4 perform the fuzzy OR 
operation on fired (activated) rule nodes that have the same 
consequent 

where 2,’“’ is the zth input to a node in layer 4 and p 
is the number of inputs to this node from the rule nodes 
in layer 3. Hence the link weight = 1. In up-down 
transmission mode, the nodes in this layer and the up-down 
transmission links in layer 5 function exactly the same as 
those in layer 2: each layer-4 node represents a term of 
an output linguistic variable and acts as a one-dimensional 
membership function. A set of m output term nodes, one 
for each output linguistic node, defines an m-dimensional 
hyperbox (membership function) in the output space, and there 
are also two weights, U::) and U::’, on each of the up-down 
transmission links in layer 5 (see Fig. 3). The weights define 
hyperboxes (and thus the associated hyperbox membership 
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Fig. 5. The fuzzy reasoning process in the FALCON model. 

functions) in the output space. More clearly, the weight 
defines 

a hyperbox in the output space. 
Layer 5: Each node in this layer is called a output linguistic 

node and corresponds to one output linguistic variable. There 
are two kinds of nodes in layer 5. The first kind of node 
performs up-down transmission for training data (desired 
outputs) to feed into the network, acting exactly like the input 
linguistic nodes. For this kind of node, we have 

(15) 

where 9, is the ith element of the normalized desired output 
vector. Notice that complement coding is also performed on 
the desired output vectors. Thus, as mentioned above, there 
are two weights on each of the up-down transmission links in 
layer 5 (the U::) and us’ shown in Fig. 3). The weights define 
hyperboxes and the associated hyperbox membership functions 
in the output space. The second kind of node performs down- 
up transmission for decision signal output. These nodes and 
the layer-5 down-up transmission links attached to them act as 
a defuzzifier. If U$) and U::’ are the corners of the hyperbox 
of the j th term of the 2th output linguistic variable y,, then 
the following functions can be used to simulate the center of 
area defuzzification method: 

vector, [(U!:), vi:)), . . . , (U::), v!:)), . . . , (umg, ( 5 )  vm,)], ( 5 )  

f (Y, ,Y,“)  = (YZ,YP) = (Yz, 1 - YJ and a ( f )  = f 

where zi5’ is the input to the 2th output linguistic node from its 
j th term node, and m::) = (U::’ + v::))/2 denotes the center 
value of the output membership function of the j th term of the 
ith output linguistic variable. The center of a fuzzy region is 
defined as that point with the smallest absolute value among 
all the other points in the region at which the membership 
function membership value is equal to one. Here the weight, 
tu$’), on a down-up transmission link in layer 5 is defined 

the weights on the corresponding up-down transmission link 
in layer 5 .  

by w,, ( 5 )  = - mz,, ( 5 )  = (U::) + vi:))/2, where U$’ and U$) x e  

The fuzzy reasoning process in the FALCON is illustrated 
in Fig. 5, which shows a graphic interpretation of the center 
of area defuzzification method. Here, we consider a two-input 
and two-output case. As shown in the figure, three hyperboxes 
(IH1, IH2, and IH3) are formed in the input space and two 
hyperboxes (OHl,OH2) are formed in the output space. These 
hyperboxes are defined by the weights ut3, vzg, U:,, and U:,. 
The three fuzzy rules indicated in the figure are “IF x is 
IHl THEN y is OH1 (rule l),” “IF x is IH2 THEN y is 
OH1 (rule 2),” and “IF x is IH3 THEN y is OH2 (rule 3),” 
where x = ( x 1 , ~ )  and y = (y1,yz). If an input pattern is 
located inside a hyperbox, the membership value is equal to 
one [see (12)]. In this figure, according to (14), z1 is obtained 
by performing fuzzy OR (maximum) operation on the inferred 
results of rules 1 and 2, which have the same consequent, 
OH1. Also according to (14), z2 is directly the inferred result 
of rule 3. z1 and z~ are then defuzzified to get the final output 
according to ( 16). 

Note that with the proposed learning algorithms developed 
in Section 111, no input-output term nodes and no rule node are 
presented when learning begins. They are created dynamically 
as on-line teaching signals are received and learning proceeds. 
In other words, the FALCON initially has only input and 
output linguistic nodes before training, other input and output 
term nodes and rule nodes are added during the learning 
process. 

An on-line supervised learning algorithm originally pro- 
posed in [2] is associated with the FALCON to perform on-line 
training. This algorithm works very well when supervised 
training data are available on-line, however, it requires precise 
training data to indicate the exact desired outputs, and to 
compute the output errors for training the whole network. 
Unfortunately, such detailed and precise training data may be 
very expensive or even impossible to obtain in some real- 
world applications because the controlled system may only be 
able to provide the learning algorithm with a reinforcement 
signal such as a binary right-wrong decision from the current 
controller. Thus, we propose two FALCON’s integrated into a 
structure called RFALCON to train networks with this kind 
of evaluative feedback. The RFALCON and an associated 
reinforcement learning algorithm are presented in the next 
section. 

111. LEARNING ALGORITHM FOR THE RFALCON 
WITH A MULTISTEP CRITIC NETWORK 

This section presents details of the integrated RFALCON 
network and associated learning algorithm we propose. The 
RFALCON consists of two FALCON’S, one of which is 
used as an action network, and the other as a critic network 
(see Fig. 6). The reinforcement learning algorithm combines 
structure learning and parameter learning to determine the 
proper corners of the hyperbox (uo’s and v,j’s) for each 
term node in layers 2 and 4. It also learns fuzzy logic rules 
and link connection types in layers 3 and 4; that is, the 
precondition and consequent links of the rule nodes. All the 
learning is performed on both FALCON’s simultaneously and 
only conducted by a reinforcement signal feedback from the 
external environment. Unlike the supervised learning problem 
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in which the correct “target” output values are given for each 
input pattern to instruct network learning, the reinforcement 
learning problem has only very simple “evaluative” or “critic” 
information available for learning rather than “insmctive” 
information. In the extreme case, there is only a single bit of 
information to indicate whether the output is right or wrong. 
Fig. 6 shows how a network and its training environment 
interact in a reinforcement learning problem. The environment 
supplies a time-varying input vector to the network, receives 
its time-varying output-action vectors, and then provides a 
time-varying scalar reinforcement signal. In this paper, the 
reinforcement signal r ( t )  is two-valued, r ( t )  E { - l , O ) ,  such 
that r ( t )  = 0 means “a success” and r ( t )  = -1 means 
“a failure.” We also assume that r ( t )  is the reinforcement 
signal available at time step t and is caused by the inputs 
and actions chosen at earlier time steps (i.e., at time steps 
t - 1, t - 2, . . .). The goal of learning is to maximize a function 
of this reinforcement signal, such as the expectation of its value 
on the upcoming time step or the expectation of some integral 
of its values over all future time. 

The precise computation of the external reinforcement sig- 
nal is highly dependent on the nature of the environment 
and is assumed to be unknown to the learning system. It 
could be a deterministic or stochastic function of environment 
states and network outputs. In most cases, the environment 
is itself governed by a complicated dynamic process, in 
which reinforcement signals and input patterns may depend 
on past network outputs. In a chess game, for example, the 
environment is actually another player, and the network only 
receives a reinforcement signal (win or lose) after a long 
sequence of moves. 

To resolve this class of reinforcement learning problems, 
a system, called the RFALCON, is proposed. Associated 
with the RFALCON is a reinforcement structure/parameter- 
learning algorithm. As Fig. 6 shows, the proposed RFALCON 
consists of two FALCON’S: one FALCON for the action 
network (fuzzy controller) and the other FALCON for the 
critic network (fuzzy predictor). Each network has exactly the 
same structure as shown in Fig. 3. The action network can 
have multiple outputs as shown in Fig. 3, although only one 
output node is shown in Fig. 6. In the multioutput case, all the 
output nodes of the action network receive the same internal 
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reinforcement signals from the critic network, which has only 
one output node since it is used to predict the external scalar 
reinforcement signal. Since we want to solve reinforcement 
learning problems in which the external reinforcement signal 
is available only after a long sequence of actions have been 
passed on to the environment, we need a multistep critic 
network to predict the external reinforcement signal. The 
action network decides a best action to impose onto the 
environment in the next time step according to the current 
environment status and predicted reinforcement signals. The 
critic network models the environment such that it can perform 
a multistep prediction of the reinforcement signal that will 
eventually be obtained from the environment for the current 
action chosen by the action network. The multistep predicted 
reinforcement signal thus enables both the action network and 
the critic network to learn at each time step without waiting 
for the arrival of an external reinforcement signal, greatly 
accelerating the learning of both networks. 

In this section, we introduce the proposed reinforcement 
structure/parameter-learning algorithm for the WALCON with 
a multistep critic network. We first consider the reinforcement 
structure/parameter-learning scheme for the multistep critic 
network and then introduce the reinforcement learning scheme 
for the action network. 

A. The Multistep Critic Network 

We shall use a FALCON to develop a multistep critic 
network that can perform multistep prediction of an external 
reinforcement signal. When both the reinforcement signal 
and input patterns from the environment depend arbitrarily 
on the past history of the action network outputs and the 
action network only receives a reinforcement signal after 
a long sequence of outputs, the credit assignment problem 
becomes severe. This temporal credit assignment problem 
results because we need to assign credit or blame to each 
step individually in long sequences leading up to eventual 
successes or failures. Thus, to handle this class of rein- 
forcement learning problem, we need to solve the temporal 
credit assignment problem along with solving the original 
structural credit assignment problem concerning attribution 
of network errors to different connections or weights. The 
solution to the temporal credit assignment problem we propose 
in the RFALCON is including a multistep critic network that 
predicts the reinforcement signal at each time step in a given 
period without any external ,reinforcement signals from the 
environment. This will ensure that both the critic network 
and the action network can both update their parameters and 
structures during the period without any evaluative feedback 
from the environment. To solve the temporal credit assignment 
problem, we used a technique based on the temporal-difference 
method, which is often closely associated with dynamic pro- 
gramming techniques [12], [16], [29]. Unlike the single-step 
prediction and the supervised learning methods which assign 
credit according to the difference between the predicted and 
actual outputs, the temporal-difference methods assign credit 
according to the difference between temporally successive 
predictions. Notice that the term “multistep prediction” used 
here means the critic network can predict a value that will 
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be available several time steps later, although it does such 
prediction at each time step to improve its prediction accuracy. 

In this paper, we consider the case of infinitely discounted 
predictions [16], [20]. In this case, the critic network output, 
pt- 1, predicts accumulatively discounted outcomes (external 
reinforcement signals) Cy=o tkrt+r, = r t  + t p t ,  where pt-1 
is the output of the critic network at time t - 1, rt is the actual 
outcome occurring between time steps t - 1 and t ,  and the 
discount-rate parameter E ,  0 5 < 1, determines the extent to 
which we are concerned with short- or long-range predictions. 
Since the actual outcome (external reinforcement signal), r t ,  
is not available at each time step in the problems we consider, 
r t  is set to zero during the period when there is no external 
reinforcement signal. The actual external reinforcement signal 
may be available at some unexpected time long after time 
step t - 1. The infinitely discounted prediction is used for 
prediction problems in which exact success or failure may 
never be completely known. In this case, the prediction error 
is (rt + [ p t )  - pt-l, and the learning rule is 

t-1 

Awt = v(rt + t p t  - pt-I) Xt-k-lVwpli (17) 

where w represents the adjustable network parameter (weight), 
v is the learning rate, and X is the recency weighting factor 
with which weight update due to the predictions of observation 
vectors occurring k steps in the past are weighted by Xk. In 
applying the temporal difference procedures to the proposed 
RFALCON, we let X = 0 for efficiency and accuracy [16]. A 
general learning rule used for infinite discounted predictions 
is thus 

k=l 

We shall next derive the learning rule for the multistep critic 
network according to (18). Here, p ( t )  = pt is the single output 
of the critic network for the network‘s current parameter, w(t), 
and current given input state vector, z( t ) ,  at time step t. 
According to (18), let 

+(t) = ~ ( t )  + @(t) - p ( t  - 1), 0 1. < < 1. (19) 

Then +(t) is the multistep critic network’s output node error 
signal. With the (predicted) desired output, p ( t ) ,  and the 
output error signal, +(t), available, we can use the supervised 
learning techniques to train the critic network. Note that if the 
environment provides a reinforcement signal at each time step, 
the critic network can “single-step,’’ or calculate the actual 
learning output error at each time step. Thus, the critic network 
can operate as either a multistep or single-step predictor. 

Thus far, we have formulated the multistep prediction 
problem as a supervised learning problem, so the on-line 
learning algorithm proposed in [2 ]  can be adopted directly 
here. This learning scheme uses the fast-learn fuzzy ART 
for structure learning and the backpropagation algorithm for 
parameter learning of each incoming training pattern. When 
learning begins, only input and output linguistic nodes are 
presented, and user need not provide fuzzy partitions, mem- 
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Fig. 7. Flowchart of the proposed reinforcement structure/parameter- 
learning algorithm. 

bership functions, and fuzzy logic rules. As training data are 
received, input and output term nodes, and rule nodes are 
created dynamically. Then as learning proceeds, more are 
added as they are needed. 

We present the reinforcement learning algorithm for the 
critic network in detail in the rest of this section. A flowchart of 
this reinforcement learning algorithm is shown in Fig. 7. Basi- 
cally, we use the temporal difference prediction  method to find 
the output error of the critic network. The error is then used 
for training the critic network by the proposed reinforcement 
learning algorithm. This learning algorithm consists of two 
steps: the structure-learning step and the parameter-learning 
step, as introduced in the following two sections, respectively. 

1) The Structure-Learning Step: The structure-learning task 
can be stated as: Given input training data at time t ,  zz( t ) ,  i = 
1, . . , n and desired output value r ( t ) ,  we need proper fuzzy 
partitions, membership functions, and fuzzy logic rules. At this 
stage, the network works in a two-sided manner; that is, the 
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nodes and links in layer 4 are in the up-down transmission 
mode so training input and output data are fed in from both 
sides. 

The structure-learning step consists of three learning pro- 
cesses: input fuzzy clustering process, output fuzzy clustering 
process, and mapping process. The first two processes are 
performed simultaneously on both sides of the network, and 
are described below. 

a)  Input Fuzzy Clustering Process: We use the fuzzy 
ART fast learning algoritha [24,25] to find the input 
membership function parameters, U::’ and ‘ujf). This is 
equivalent to finding proper input space fuzzy clustering 
or, more precisely, to forming proper fuzzy hyperboxes in 
the input space. Initially, for each complement coded input 
vector x’ [see (7)], the values of choice functions, T3, are 
computed by 

where “A” is the minimum operator performed for the pair- 
wise elements of two vectors, a! > 0 is a constant, N is 
the current number of rule nodes, and wj is the comple- 
ment weight vector, which is defined by wi i(u, , 1 - ( 2 )  

- -3 _ .  

‘ulj),...,(uij (2) ( 2 )  ,1 - U,$)), . . . , (  u$),l - ‘us))]. Notice that 
[(U!;),  U!:’), . , (u.. (2) ‘u.. (2) ), . . . , (unj ( 2 )  , ‘unj (2) )] is the weight 2 3  ’ 2 3  
vector of layer-2 links associated with rule node j. The choice 
function value indicates the similarity between the input vector 
x‘ and the complement weight vector w3. We then need to find 
the complement weight vector closest to x’. This is equivalent 
to finding a hyperbox (category) that x’ could belong to. The 
chosen category is indexed by J ,  where 

Resonance occurs when the match value of the chosen cate- 
gory meets the vigilance criterion 

where p E [0,1] is a vigilance parameter. If the vigilance 
criterion is not met, we say mismatch reset occurs. In this case, 
the choice function value TJ is set to zero for the duration of 
the input presentation to prevent persistent selection of the 
same category during search (we call this action “disabling 
J“).  A new index J is then chosen using (21). The search 
process continues until the chosen J satisfies (22). This search 
process is indicated by the feedback arrow marked with 
“vigilance test“ in Fig. 7. If no such J is found, then a new 
input hyperbox is created by adding a set of n new input term 
nodes, one for each input linguistic variable, and setting up 
links between the newly added input term nodes and the input 
linguistic nodes. The complement weight vectors on these new 
layer-2 links are simply given as the current input vector, x’. 
These newly added input term nodes and links define a new 
hyperbox, and thus a new category, in the input space. We 
denote this newly added hyperbox as J .  

b) Output Fuzzy Clustering Process: The output fuzzy 
clustering process is exactly the same as the input fuzzy 
clustering process except that it is performed between layers 4 
and 5 which are working in the up-down transmission mode. 
Of course, the training pattern used now is the desired output 
vector after complement coding, r/ = (T, T c )  = (T, 1 - T). 
We denote the chosen or newly added output hyperbox by 
K .  This hyperbox is defined by the complement weight 
vector in layer 5, WK = [(Ul3 (5)  ,I - v@’), . . . , (Uz3 ( 5 )  , I - va3 ( 5 )  >, 
. . . ,(  U:;, 1 - .3]. 

The two fuzzy clustering processes above produce a chosen 
input hyperbox indexed as J and a chosen output hyperbox 
indexed as K ,  where the input hyperbox J is defined by 
WJ and the output hyperbox K by WK. If the chosen input 
hyperbox J is not newly added, then there is a rule node, J ,  
that corresponds to it. If the input hyperbox J is a newly added 
one, then a new rule node (indexed as J )  in layer 3 is added, 
and connected to the input term nodes that constitute it. 

e) Mapping Process: After the two hyperboxes in the in- 
put and output spaces are chosen in the input and output fuzzy 
clustering processes, the next step is to perform the mapping 
process which decides the connections between layer-3 and 
layer-4 nodes. This is equivalent to deciding the consequents 
of fuzzy logic rules. This mapping process is described by 
the following algorithm, wherein connecting rule node J to 
output hyperbox K we means connecting the rule node J to 
the output term nodes that constitutes the hyperbox K in the 
output space. 

Step 1) IF rule node J is a newly added node 
THEN connect rule node J to output 

hyperbox K. 
Step 2) ELSE IF rule node J is not connected to output 

hyperbox K originally 
THEN disable J and perform input fuzzy 

clustering process to find the next qualified J [i.e., 
the next rule node that satisfies (21) and (22)]. 

Go to Step 1). 
Step 3) ELSE no structure change is necessary. 
In the mapping process, hyperboxes J and K are resized 

according to the fast learning rule [24] by updating weights, 
WJ and WK, as follows: 

Note that once the consequent of a rule node has been 
decided in the mapping process, it will not be changed 
thereafter. We now use Fig. 5 to illustrate the structure- 
learning step as follows. For a given training datum, the 
input fuzzy clustering process and the output fuzzy clustering 
process find or form proper clusters (hyperboxes) in the input 
and output spaces. Assume that the input and output hyperbox 
pair found (or formed) are ( J ,  K ) .  The mapping process then 
tries to relate these two hyperboxes by setting up links between 
them. This is equivalent to finding a fuzzy logic rule that 
defines the association between an input hyperbox and an 
output hyperbox. If this association exists already (e.g., ( J ,  K )  
= (IH1, OHl), (IH2, OHl), or (IH3, OH2) in Fig. 5), then 
no structural change is necessary. If input hyperbox J is 
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newly formed and thus not connected to any output hyperbox, 
it is connected to output hyperbox K directly. Otherwise, 

different from K originally (e.g., ( J ,  K )  = (IH2, OH2)), then 

then easily derived 

if input hyperbox J is associated with an output hyperbox zz p ( t  - 1) - ~ ( t )  - e p ( t )  = -?(t) (25) 

a new input hyperbox close to J will be found or formed 
by performing the input fuzzy clustering process again. This 
search, called “match tracking” (see Fig. 7), continues until 
an input hyperbox, J‘, that can be associated with output 
hyperbox K is found [e.g., ( J ’ ,  K )  = (IH3, OH2)]. 

The vigilance parameter, p ,  is an important structure- 
learning parameter that determines learning cluster density. 
High (approaching one) p values tend to produce increasingly 
finer learning clusters, until at one, each training datum is 
assigned to its own cluster in the input (output) space. Low 
(approaching zero) p values tend to produce increasingly 
coarser learning clusters, until at zero, all training data are 
assigned to a single cluster in the input (output) space. 

Clearly, a constantly high or low p value will result in 
formation of excessively high numbers of clusters on the one 
hand, or very low output accuracy (and thus, low network 
representation power) on the other hand. For these reasons, we 
chose an adaptive vigilance strategy in which the p parameter 
is initially set high to allow fast RFALCON structure growth, 
and then monotonically decreased to slow cluster formation 
and stabilize learning. Empirical studies have shown this 
approach to be efficient and stable in the learning speeds and 
numbers of clusters it produces. 

2)  The Parameter-Leaming Step: After the network struc- 
ture has been adjusted according to the current training pattern 
in the structure-learning step, it is then necessary to fine tune 
the network parameters using the same training pattern. This 
fine tuning process is necessary to assure the desired output 
accuracy of a network for controUprediction problems. Using 
the terminology of fuzzy logic: once our fuzzy controller 
has found its fuzzy logic rules, its membership functions 
must be tuned to make its output meet the desired output 
as closely as possible. Notice that the following parameter 
learning is performed on the whole network after structure 
learning, no matter whether the nodes (links) are newly added 
or are existent originally. The parameter-learning task can be 
stated as: Given the training input data xt(t), i = 1, . . . , n, 
the desired output value, and the network structure (specified 
by input and output hyperboxes and fuzzy logic rules), we 
need to adjust the network parameters to make the network 
output match the desired output values as closely as possible. 
Thus, the network works in a feedforward manner; that is, 
the nodes and links in layer 4 are in the down-up transmission 
mode. Basically, the backpropagation algorithm is used to find 
node output errors, which are then analyzed to guide parameter 
adjustment. 

The goal of training the multistep critic network is to 
minimize the error function [see (19)] 

1 
2 

E = - ( ~ ( t )  + Jp(t )  - ~ ( t  - 

where ~ ( t )  is the actual external reinforcement signal, and p ( t )  
is the predicted reinforcement signal. Gradient information is 

where the subscript t - 1 represents the time displacement. 
The time displacement in (25) and the remaining equations in 
this paper reflect the assumption that the reinforcement signal 
(which may be the “predicted” reinforcement signal) at time 
step t depends on the input state and chosen action at time 
step t - 1. 

We can derive the structure/parameter-learning algorithm 
for the multistep critic network using the following general 
parameter-learning rule: 

d E  
w( t  + 1) = ~ ( t )  + A w ( t )  = ~ ( t )  + ~( -du) ) ,  (26) 

(27) 

where w is the adjustable parameter in the critic network (i.e., 
u;j or qj). The general parameter-learning rule then is 

dE - dE a p  _ _  - aw apaw 

Aw(t )  = r]?(t) [ 4 . 
t-1 

To show the parameter-learning rules, we derive the rules 
layer-by-layer using the hyperbox membership functions with 
corners uz3’s and vi3’s as the adjustable parameters for these 
computations. In the following derivation, we consider only 
one output linguistic variable for notational clarity. Hence, the 
adjustable parameters in layer 5 are denoted by U:), v:~), and 
my) = (u:5) + ~ : ~ ) ) / 2 ,  for the j th term node. 

Layer 5: Using (16), (26), and (27), the updating rule for 
the comers of the hyperbox membership function ~ 1 ~ )  is 

And the corner parameter is updated by 

Similarly, using (16), (26), and (27), the updating rule for the 
other corner parameter u : ~ )  is 

And the other corner parameter is updated by 

The error propagated to the preceding layer is 
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Layer4: There is no parameter to be adjusted in this 
layer. Only the error signal (S,(“)) needs to be computed and 
propagated. According to (16), the error signal is derived 

dE - dE da(5) 

by 

(34) ($4) = -- 
da(4) - &(5) da(4) 

where 

(35) 

Hence, the error signal is 

So the adaptive rule of w$) is 

Similarly, using (1 l), (26), and (27), the updating rule of U:;) 

is derived as 

where 

In the multioutput case, the computations in layers 5 and 4 are 
exactly the same as the above and proceed independently for 
each output linguistic variable. 

computed in this layer. According to (14), this error signal 
can be derived by 

Hence, the adaptive rule of uz3 becomes 

u:;)(t + I) = u!p(t)  + $:3) [e] . 

The proposed reinforcement learning algorithm provides a 
novel on-line scheme to combine the structure and the param- 
eter learning such that they can be performed simultaneously. 

(50) Layer 3: As in layer 4, only the error signals need to be a u p  t--l 

(38) 
d E  da(4)  - - dE p = - - - - - - 

da(3) da(4) df(4) da(3) 

where B. The Action Network 
~ - -s!4), 
d E  

da(4) - 
ad4) dfo = 1, 

df(4) df(4) - 44) 

(39) 

(40) 

(41) 

In this section, we develop the reinforcement learning 
algorithm for the action network. The goal of this reinforce- 
ment structure/parameter-learning algorithm is to adjust the 
parameters (e.g., w’s) of the action network, to change the 
connection types, or even to add new nodes, if necessary, such 
that the reinforcement signal is maximum; that is 

- 
~~~ - 
da(3) dz,(4) - Xmax 

where z,,, = max(inpu1s of output terms node j ) .  The term 
z(4) - normalizes the error to be propagated for fired rules with 

the same consequent. Hence the error signal is 
z,,, 

If there are multiple outputs, then the error signal becomes 

s !3 )  = [g] 6f), where the summation is performed 

over the consequents of a rule node; that is, the error of a rule 
node is the summation of the errors of its consequents. 

Layer 2: Using ( l l ) ,  (26), and (27), the updating rule of 
w!:) is derived as in the following: 

t-1 

d E  da(3)  da(’) 
(43) - d E  

-- - - _ _ _ ~  
dw(2) - &(3) dWP) 

23 23 

where 

(44) 

dr aw K -. dw 
To determine E, we need to know %, where g is the output 
of the action network. (For clarity, we discuss the single- 
output case first.) Since the reinforcement signal does not 
provide any hint as to what the right answer should be in 
terms of a cost function, there is no gradient information, 
and the gradient, E, can only be estimated. If we can 
estimate e, then the on-line supervised structurelparameter- 
learning algorithm developed in the last section for the critic 
network can be directly applied to the action network to solve 
the reinforcement learning problem. To estimate the gradient 
information in a reinforcement learning network, there needs 
to be some randomness in how output actions are chosen by 
the action network so the range of possible outputs can be 
explored to find a correct value. Thus, the output nodes (layer 
5) of the action network are now designed to be stochastic 
units which compute their output as a stochastic function of 
their input. 

In our learning algorithm, the gradient information, z, is 
also estimated by the stochastic exploration method [32]. In 
particular, the intuitive idea behind multiparameter distribu- 
tions suggested by Williams [17] is used for the stochastic 
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search of network output units. In estimating the gradient infor- 
mation, the output y of the action network does not directly act 
on the environment. Instead, it is treated as a mean (expected) 
action. The actual action, $, is chosen by exploring a range 
around this mean point. This range of exploration corresponds 
to the variance of a probability function which is the normal 
distribution in our design. The stochastic exploration, o(t), is 
some nonnegative, monotonically decreasing functions of the 
predicted reinforcement signal, e.g., 1/( 1 + exp(2p(t))). The 
a( t )  can be interpreted as the extent to which the output node 
searches for a better action. Since p ( t )  is the predicted reward 
signal, if p ( t )  is small, the exploratory range, o(t), will be 
large. On the contrary, if p ( t )  is large, a(t)  will be small. 
This amounts to narrowing the search about the mean, y(t), if 
the predicted reinforcement signal is large. This can provide a 
higher probability of choosing an actual action, $(t), which is 
very close to y(t), since it is expected that the mean action y(t) 
is very close to the best action possible for the current given 
input vector. On the other hand, the search range about the 
mean, y(t), is broadened if the predicted reinforcement signal 
is small such that the actual action has a higher probability of 
being quite different from the mean action, y(t). Thus, if an 
expected action has a smaller predicted reinforcement signal, 
we can have more novel trials. In terms of searching, the use of 
multiparameter distributions in the stochastic nodes (the output 
nodes of the action network) could allow independent control 
of the location being searched and the breadth of the search 
around that location. In [35], a Gaussian search was also used 
in developing a stochastic reinforcement learning algorithm, 
where the variance was chosen as a decreasing function of 
the predicted reinforcement signal. This idea was later used in 
[33] for the reinforcement learning of a ball-and-beam system, 
which will be mentioned in Section IV. 

In the above two-parameter distribution approach, a pre- 
dicted reinforcement signal is necessary to determine the 
search range, a@). This predicted reinforcement signal can be 
obtained from the critic network. Once the variance has been 
decided, the actual output of the stochastic node can be set as 

Y(t) = N(y( t ) , o ( t ) ) .  (52) 

That is, $(t)  is a normal or Gaussian random variable with 
the density function 

1. (53) 
4 Y  - YI2 

202 

For a real-world application, $(t)  should be properly scaled to 
the final output to fit the input specifications of the controlled 
plant. This scaling factor or method is application-oriented. 

From the above discussion, the gradient information is 
estimated as 

where the subscript, t - 1, represents time displacement. We 
can observe that if P ( t )  > 0, the actual action, $(t - l), is 
better than the expected action, y(t - 1). So y(t - 1) should 
be moved closer to $(t - 1). On the other side, if P ( t )  < 0, 
then the actual action $(t - 1) is worse than the expected 

action y(t  - 1). So y(t  - 1) should be moved further away 
from y(t - 1). 

Basically, the training of a action network is not a supervised 
learning problem. There are no correct “target” output values 
for each input pattern. In action network structure learning, 
however, we need the desired output values to determine 
proper output fuzzy partitions as well as membership functions 
and to find fuzzy logic rules. The desired output values can 
be estimated as 

(55)  

where K is a real number in the range [0,1] and can be 

replaced by P ( t )  [ 51 in (54). According to the input state 
values and the estimated desired output values, the structure- 
learning step described in Section III-A1) can be performed 
on the action network directly. 

The goal of action network parameter learning is to max- 
imize the external reinforcement signal, ~ ( t ) .  Thus, we need 
to estimate the gradient information, E, as we did above. 
With the predicted reinforcement signal, p ( t ) ,  and the internal 
reinforcement signal, F ( t ) ,  provided from the critic network, 
the action network can perform stochastic exploration and 
leaming. The prediction signal p ( t )  is used to determine the 
variance of the normal distribution function during stochastic 
exploration. Then the actual output, $(t) ,  can be determined 
according to (52) and the gradient information can be ob- 
tained by (54).With this gradient information, action network 
parameter leaming can be performed in exactly the same 
way as that of the critic network described in Section III- 
A2). The exact action network parameter-learning equations 
are the same as (29)-(50) except that P ( t )  is replaced by the 
new error term F ( t )  [ 91 . As a summary, the flowchart of 
the reinforcement learning algorithm for the action network is 
shown in Fig. 7. Basically, we use the stochastic exploration 
method to find the output error of the action network. The 
error is then used for training the action network by the above 
two-step (structure-learning step and parameter-learning step) 
learning algorithm. 

t-1 

t-1 

IV. ILLUSTRATIVE EXAMPLES 

A general purpose simulator for the RFALCON model 
with the multistep critic network has been written in the 
C Programming and runs on an 80 486-DX-based personal 
computer. Using this simulator, two typical examples are 
presented in this section to show the fundamental applications 
of the proposed model: the cart-pole balancing system [12] 
and the ball and beam system [33], 1371. 

Example 1-Control of the Cart-Pole System: The cart-pole 
balancing problem involves of learning how to balance an 
upright pole as shown in Fig. 8. The bottom of the pole is 
hinged to a cart that travels along a finite-length track to its 
right or its left. Both the cart and pole can move only in the 
vertical plane; that is, each has only one degree of freedom. 
There are four input state variables in this system:. 0, angle 
of the pole from an upright position (in degrees); 8, angular 
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Fig. 8. The cart-pole balancing system. 

velocity of the pole (in degreeslsecond); x, horizontal position 
of the cart's center (in meters); and x,  velocity of the cart 
(in meterdsecond). The only control action is f, which is the 
amount of force (in Newtons) applied to the cart to move it 
left or right. The system fails and receives a penalty signal of 
-1 when the pole falls past a certain angle (f12" was used) 
or the cart runs into the bounds of its track (the distance is 
2.4m from the center to both bounds of the track). The goal 
of this control problem is to train the WALCON to determine 
the sequence of forces and magnitudes to apply to the cart to 
balance the pole for as long as possible without failure. 

The model and the corresponding parameters of the cart- 
pole balancing system for our computer simulation are adopted 
from [12,19] with the consideration of friction effects. The 
equations of motion that we used are given in (56)-(59), shown 
at the bottom of the page, where 

g = -9.8m/s2 Acceleration due to the gravity 
m = llcg Mass of the cart 
mp = O.lkg Mass of the pole 

I = 0.5m Half-pole length 
pc = 0.0005 Friction coefficient of cart on track 
p p  = 0.000002 Friction coefficient of pole on cart 
a = 0.02 Sampling interval. 

(60) 

The constraints on the variables are -12" 5 8 5 12", 
-2.4m 5 x 5 2.4m, and -10N 5 f 5 ION. In designing the 
controller, the equations of motion of the cart-pole balancing 
system are assumed to be unknown to the controller. A more 
challenging part of this problem is that the only available feed- 
back is a failure signal that notifies the controller only when 
a failure occurs; that is, either IO1 > 12' or 1x1 > 2.4m. Since 
no exact teaching information is available, this is a typical 

reinforcement learning problem and the feedback failure signal 
serves as the reinforcement signal. Since a reinforcement 
signal may only be available after a long sequence of time 
steps in this failure avoidance task, a multistep critic network 
is required for the RFALCON. Moreover, since the goal is to 
avoid failure for as long as possible, there is no exact success 
in finite time. Also, we hope that the RFALCON can balance 
the pole for as long as possible for an infinite number of trials, 
not just for one particular trial, where a "trial" is defined as 
the time steps from an initial state to a failure. Hence, the cart- 
pole balancing problem is an infinitely discounted prediction 
problem, and (17) should be used for temporal difference 
prediction. The reinforcement signal is defined as 

(61) -1, if lQ(t)l > 12" or Ix(t)l > 2.4m { 0, otherwise r( t )  = 

and the goal is to maximize the sum t kr ( t  + k ) ,  where < is the discount rate. 
In the simulations, the learning system was tested for five 

runs. Each run consisted of a sequence of trials; each trial 
began with the same initial condition and ended with a failure 
signal indicating that either (01 > 12" or 1x1 > 2.4m. A run 
consisted of at most 60 trials, unless the duration of each run 
exceeded 50000 time steps. In the latter case, we considered 
the run "successful." The following learning parameters were 
used for each trial. The learning rate q = 0.001, sensitivity 
parameter y = 4, and initial vigilance parameter pinput = 
0.5,poUtput = 0.8 were used for the action network. The 
learning rate 77 = 0.002, sensitivity parameter y = 4, and 
initial vigilance parameter pinput = 0.4, poutput = 0.7 were 
used for the critic network, where pinput was the vigilance 
parameter used in the input fuzzy clustering process and 
poutput was the vigilance parameter used in the output fuzzy 
clustering process. 

In our computer simulations, a total of five runs were 
performed. Each run started at a different initial state. The 
simulation results in Fig. 9 shows that the RFALCON learned 
to balance the pole at the 15th trial on average. Fig. 10 shows 
the pole position (angular deviation of the pole) when the 
cart-pole system was controlled by a well-trained RFALCON 
starting at the initial state: 8(0) = 5.8, d(0) = 0.058, x(0)  = 
0.1,5(0) = 0.01. The average angular deviation was 0.5'. 
On average, there were ten fuzzy logic rules generated in the 
action network and six fuzzy logic rules generated in the critic 

O(t + 1) = O(t) + a@), 
e(t  + 1) = e @ ) +  



LIN AND LIN, REINFORCEMENT LEARNING 123 

TABLE I 
PERFORMANCE COMPARISON OF VARIOUS REINFORCEMENT SYSTEMS 

Ours 

30 40 50 60 
Trials 

Fig. 9. Performance of the RFALCON gn the cart-pole balancing problem. 

network after learning. These results are shown in the first 
column of Table I. 

We now compare the performance of our system with 
that of other existing reinforcement learning systems. The 
performance indexes considered include number of trials, 
numbers of fuzzy rules, and angular deviation of the pole. 
The detailed comparison is tabulated in Table I. In this table, 
the performance of various systems is averaged over runs. 
First, we compare the performance of the RFALCON with that 
of the Barto’s original system [12]. Two neuron-like adaptive 
elements are integrated in this system. They are the associative 
search element (ASE) used as a controller, and the adaptive 
critic element (ACE) used as a predictor. Temporal difference 
techniques and single-parameter stochastic exploration are 
used in this system. A bang-bang control scheme is used in 
the ASE, where a threshold function is used for force output, 
thus, the control output can have only two values: H O N .  
They divided. the four-dimensional state space of the cart- 
pole system into disjoint regions (or boxes) by quantizing the 
four state variables. They distinguished three grades of cart 
position, six of pole angle, three of cart velocity, and three of 
pole angular velocity. This yielded 3 x 6 x 3 x 3 = 162 regions 
corresponding to all of the combinations of intervals. Each box 
was imagined to contain a local demon whose job is to choose 
a control action whenever the system state enters its box. 
Hence, there were the equivalent of 162 (nonfuzzy) control 
rules, one for each box. Fig. 11 illustrates the simulation 
results for Barto’s original system [12]. A total of five runs 
were performed in the simulations. Each run started at the 

2od 
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Fig. 10. 

same initial states as those set for the RFALCON, and the 
results show that this system learned to balance the pole at 
the 35th trial on average. Additional observations are made 
on the state trajectory of the angular deviation of the pole 
with respect to the vertical plane. Fig. 12 shows the angular 
deviation of the cart-pole system starting at the initial state: 
O(0) = 5.8,8(0) = 0.058,~(0)  = O . l , i ( O )  = 0.01. The 
average angular deviation is about 4 ’. The results show that 
our controller is able to keep the pole angle within a smaller 
region than Barto’s original system. These results are shown 
in the second column of Table I. The simulation results also 
show that our system has better learning performance than 
Barto’s original system. 

In another set of simulations, we changed the threshold 
function in the ASE of Barto’s original system to a sigmoid 
function such that the force output became continuous in 
the range [-lON,+lON]. In this system, the input space 
was also partitioned into 162 regions. Fig. 13 illustrates the 
simulation results based on Barto’s system with continuous 
output, and show that this system learned to balance the pole 
at the 40th trial on average. This is a little longer than Barto’s 
original system using discrete output. The angular deviation 
of the pole about the center point is shown in Fig. 14. The 
average angular deviation was about 2.5 ’. Hence, although 
Barto’s system with continuous output needs more trials than 
the original system, the angular deviation produced by it is 
smaller. These results are shown in the third column of Table I. 
Our RFALCON’s learning performance is still better than that 
of Barto’s system even with continuous output. 

Angular deviation of the pole allowed by a trained RFALCON. 
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Fig. 12. 
system. with continuous output. 

Angular deviation of the pole allowed by a trained Barto’s original Fig. 14. Angular deviation of the pole allowed by a trained Barto’s system 

Anderson [ 191 extended the work of Barto et al. by replacing 
the ASE and ACE with two two-layer feedforward networks. 
Hence the force output in his system is also continuous. A form 
of error backpropagation was derived to train both networks 
to learn to balance the pole given the actual state values of the 
cart-pole system as input. As shown in Table I, this approach 
required about 8000 trials to control the cart-pole system. It 
took more trials than the other approaches listed in Table I 
due to the slow convergence of the pure backpropagation 
algorithm. In [191, we can find no further information about 
the number of hidden nodes used in the system and the average 
angular deviation produced by it. 

Lee and Berenji [28] modified Barto’s original system by 
introducing fuzziness into it. They firs1 partitioned the input 
space into boxes and then defined membership function for 
each box. These membership functions overlap one another 
to allow generalization to occur beyond the confines of a 

given box. They partitioned the input space into 189 boxes 
(3 x 7 x 3 x 3), which yielded the equivalent of 189 fuzzy 
logic rules, one for each overlapping box in the input space. 
As shown in Table I, the average number of trials with this 
approach is about 10 and the average angular deviation is 2”. 

Berenji and Khedkar [ 181 proposed a model, called general- 
ized approximate reasoning-based intelligent control (GARIC) 
architecture, for learning and tuning a fuzzy controller based 
on reinforcement signals from a dynamical system. Their 
architecture extended Anderson’s method [ 191 by including 
a priori control knowledge of expert operators in the form of 
fuzzy control rules. In the GARIC, a three-layer feedforward 
neural network, called the action evaluation network (AEN), 
is used to predict external reinforcement signals and produce 
internal reinforcement signals. The role of the AEN parallels 
that of the ACE in Barto’s system and the critic network in our 
system. A five-layer feedforward neural network, called the 
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Fig. 15. Angular deviation of the pole allowed by a trained RFALCON after 
a disturbance is given. 
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Fig. 16. 
system after a disturbance is given. 

Angular deviation of the pole allowed by a trained Barto's original 

action selection network (ASN), is used as a fuzzy controller. 
The role of the ASN parallels that of the ASE in Barto's 
system and the action network in our system. In the ASN, a 
total of 13 fuzzy rules are used to control the cart-pole system 
as indicated in Table I. This set of correct fuzzy logic rules, 
however, must be given in advance by experts before initiating 
training of the GARIC [ 181. As shown in Table I, this approach 
required about 300 trials to control the cart-pole system. The 
average angular deviation of the pole about the center point 
produced by the GARIC was about 1 '. 

In [20], Lin and Lee proposed an RFALCON, two con- 
nectionist fuzzy systems are used for the controller and the 
predictor, respectively. This system has the ability to find 
proper network structures (fuzzy rules) and parameters (mem- 
bership functions) simultaneously and dynamically. They still 
partitioned the input and output spaces into grids, however. 
They needed 35 fuzzy logic rules to control the cart-pole 
system. This number is larger than that given by experts (as 
in the GARIC) or that learned by the proposed RFALCON. 
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Fig. 17. Angular deviation of the pole allowed by a trained RFALCON when 
the half-length of the pole is reduced to 0.25 m from 0.5 m. 

40 160 180 200 

Fig. 18. 
system when the half-length of the pole is reduced to 0.25 m from 0.5 m. 

Angular deviation of the pole allowed by a trained Barto's original 

As shown in Table I, this system required about 10 trials to 
control the cart-pole system. The average angular deviation of 
the pole about the center point produced by the R"-FLCS 
is about 1 '. 

Similar to the simulation in [ 181, the adaptation capability 
of the proposed RFALCON and Barto's original system were 
tested and compared. To demonstrate the disturbance rejection 
capability of the trained system, we gave a disturbance f = 
10N to the cart at the 80th second. The trajectories of angular 
deviations in Figs. 15 and 16 indicate that both the RFALCON 
and Barto's original system brought the pole back to the 
center position quickly after the disturbance was given. During 
the process, neither system required any further trials for 
relearning. We also changed the parameters of the cart-pole 
system to test robustness. We first reduced the pole length, 
I, from 0.5m to 0.25m. Figs. 17 and 18 show, respectively, 
the results produced by the RFALCON, and those produced 
by Barto's original system. We found that the latter cannot 
keep angular deviation within the range [-12', +12O] without 
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Fig. 19. 
cart mass is doubled to 2 kg from 1 kg. 
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Fig. 20. 
system when cart mass is doubled to 2 kg from 1 kg. 

Angular deviation of the pole allowed by a trained Barto's original 

relearning, but the proposed WALCON can still balance the 
pole without any relearning. In another test, we doubled the 
mass of the cart, m, to 2 kg from 1 kg. Figs. 19 and 20 
show, respectively, the results produced by the RFALCON, 
and those produced by Barto's original system. Again, the 
results show that Barto's original system cannot keep angular 
deviation within the range [-12", + 1 2 O ]  without relearning, 
but the proposed RFALCON can still balance the pole without 
any relearning. These robustness tests show that no further 
trials are required for relearning by a trained RFALCON when 
the controlled system parameters are changed in the ways 
mentioned. Further trials are required, however, for relearning 
in Barto's original system. The results show the good control 
and disturbance rejection capabilities of the trained RFALCON 
in the cart-pole balancing system. 
Example 2-Control of the Ball and Beam System: The ball 
and beam system is shown in Fig. 21. The beam is made 
to rotate about a horizontal axis by applying a torque at the 
center of rotation and the ball is free to roll along the beam. 

Fig. 21. The ball and beam system. 

We require that the ball remains in contact with the beam. 
There are four input state variables in this system: T ,  position 
of the ball's center from origin (in meters); i, velocity of 
the ball (in meterskecond); e ,  angle of the beam from the 
horizontal (in degrees); and 0, angular velocity of the beam 
(in degreedsecond). The only control action, U, is the angular 
acceleration. The system fails and receives a penalty signal of 
-1 when the beam deviates beyond a certain angle (f14" is 
used here) or the ball reaches the end of the beam (the distance 
is four meters from the origin to both ends of the beam). 
The goal of this control problem is to train the RFALCON 
to determine the proper sequence of forces and magnitudes to 
apply to the beam to balance the ball for as long as possible 
without failure. 

The ball and beam system can be described by a state-space 
form as 

where (z1,22, x3, z4) E (T ,  i ,  8,e) is the state of the system 
and y = 5 1  E T is the output of the system. The control 
signal U is the angular acceleration ( e )  and the parameters 
B = 0.7143 and G = 9.81 are chosen in this system. These 
parameters are also used in [33] and [34]. The purpose of 
control is to determine u(t)  such that the system output y 
will converge to zero from different initial conditions. The 
constraints on the variables are -4m 5 z1 5 4m, -14" 5 

In designing the controller, the state-space equations of the 
ball and beam balancing system are assumed to be unknown 
to the controller. A more challenging part of this problem 
is that the only available feedback is a failure signal that 
notifies the controller only when a failure occurs; that is, either 
lzll > 4m or 1x31 > 14". Since no exact teaching information 
is available, this is a typical reinforcement learning problem 
and the feedback failure signal serves as the reinforcement 
signal. Since a reinforcement signal may only be available 
after a long sequence of time steps in this failure avoidance 
task, a multistep critic network is required for the RFALCON. 
Moreover, since the goal is to avoid failure for as long as 
possible, there is no exact success in finite time. Also, we hope 
that the RFALCON can balance the ball for as long as possible 
for an infinite number of trials, not just for one particular trial, 
where a "trial" is defined as the time steps from an initial 
state to a failure. Thus, like the cart-pole balancing problem, 
the ball and beam balancing problem is a typical infinitely 

~3 5 14", and -70N 5 U 5 70N. 
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Fig. 22. 
constraints on the variables are -4m 5 2 1  5 4m, -14' 5 2 3  5 14'. 

Performance of the RFALCON on the ball and beam problem. The 

discounted prediction problem, and (17) should be used for 
temporal difference prediction. The reinforcement signal is 
defined as 

(64) 
-1, if Ixl(t)l > 4m or Ix3(t)l > 14" { 0, otherwise 

r ( t )  = 

and the goal is to maximize the sum Cy=o ckr(t + I C ) ,  where 
is the discount rate. 
In our computer simulations, the learning rate q = 0.001, 

sensitivity parameter y = 4, and initial vigilance parameter 
pinput = 0.7,poUtput = 0.7 for the action network and the 
learning rate q = 0.002, sensitivity parameter y = 4, and 
initial vigilance parameter pinput = 0.7, poutput = 0.7 for the 
critic network are chosen. A total of six runs were performed in 
the simulation. Each run started at a different initial state, and 
consisted of a sequence of trials, each beginning with the same 
initial conditions and ending with a failure signal indicating 
that either 1x11 > 4m or 1x31 > 14". A run consisting of at 
most 60 trials, was considered successful and terminated after 
50000 time steps. The simulation results in Fig. 22 show that 
the RFALCON learned to balance the ball at the 20th trial 
on average. Fig. 23 shows the ball position (deviation of the 
ball from the center point) when the ball and beam system 
was controlled by a well-trained RFALCON starting from the 
initial state: [-1.2, -0.01,0.58,0.58]. On average, there were 
fourteen fuzzy logic rules generated in the action network 
and nine fuzzy logic rules generated in the critic network 
after learning. In another six runs, we set the constraints on 
the variables as -2m 5 5 1  5 2m, -12' 5 2 3  5 12O, 
and kept the other two constraints unchanged. The simulation 
results shown in Fig. 24 indicate that the RFALCON could 
still balance the ball at the center position of the plane within 
45 trials under the new constraints. 

For comparison, we also used Barto's original system [12] 
on the ball-and-beam balancing problem. We divided the 
four-dimensional state space of the ball and beam system 
into disjoint regions (or boxes) by quantizing the four state 
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Fig. 23. Position deviation of the ball produced by a trained RFALCON. 

60 
0 
0 10 20 30 40 50 

Trials 

Fig. 24. 
constraints on the variables are -2m 5 11 5 2m, - 1 2 O  5 z3 5 12'. 

Performance of the RFALCON on the ball and beam problem. The 

variables. After several simulations, we finally distinguished 
three grades of ball position, six of beam angle, three of 
ball velocity, and three of beam angular velocity, yielding 
3 x 6 x 3 x 3 = 162 regions corresponding to all of the 
combinations of the intervals. Each box is imagined to contain 
a local demon whose job is to choose a control action 
whenever the system state enters its box. Fig. 25 illustrates 
the simulation results of using Barto's original system. We see 
that each run failed within 8000 time steps. It was found that 
proper definition and alignment of the partitioned regions are 
critical to Barto's original system. Benbrahim et al. [33] also 
applied Barto's original system to the ball and beam balancing 
problem. They distinguished five grades of ball position, three 
of beam angle, six of ball velocity, and two of beam angular 
velocity, yielding 5 x 3 x 6 x 2 = 180 boxes. The time step until 
failure is topped at 300, where 300 steps represent about 15 
s of real time. Gullapalli et al. [34] also proposed a structure 
based on Barto's ASE-ACE configuration for reinforcement 
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Performance of Barto’s original system on the ball and beam 
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Fig. 26. 
the disturbance is given. 

Position deviation of the ball allowed by a trained RFALCON after 

learning. The ASE used was a multilayer feedforward network 
with a stochastic real-valued (SRV) output unit that outputs the 
control action as the motor voltage. The hidden layer is a set of 
boxes representing the quantized state. There are 180 hidden 
units. The hidden layer becomes the set of inputs used by the 
SKV unit. This controller successfully learned to balance the 
ball and improved over the two-action controller (i.e., Barto’s 
original system). Their learning curve in [34] showed that the 
ball was balanced with no further failure after 700 failures. 

In the published literature, we could not find a paper that 
used reinforcement learning to train a fuzzy controller to solve 
the ball and beam balancing problem. Wang and Mendel [37], 
however, proposed an adaptive fuzzy controller that can learn 
to control the ball and beam system by supervised learning. In 
their approach, 20 fuzzy logic rules were used to balance the 
ball, where our system, the RFALCON, used 14 fuzzy logic 
rules to balance the ball by reinforcement learning. 

We then tested the adaptation capability of the proposed 
RFALCON on the ball and beam system. To demonstrate the 
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Fig. 27. Position deviation of the ball allowed by a trained RFALCON when 
ball mass is reduced to 0.025 kg from 0.05 kg. 

disturbance rejection capability of the trained system, we gave 
a disturbance U = 6 0 N  to the ball and beam system at the 
60th second. The results shown in Fig. 26 indicate that the 
WAL,CON brought the ball back to the origin quickly after the 
disturbance was given. No further training was required during 
the process. This figure demonstrates the good disturbance 
rejection capability of the trained RFALCON. Paralleling the 
robustness tests performed in Example 1, we also changed the 
parameters of the ball and beam system. Fig. 27 shows the 
simulation results obtained when the ball’s mass was reduced 
to 0.025kg from 0.05kg, i.e., B = 0.556, and Fig. 28 shows 
the simulation results obtained when the ball’s mass was 
doubled to 0.lkg from 0.05kg, i.e., B = 0.833. No further 
trials were required for relearning in these tests. The results 
show the good control and disturbance rejection capabilities 
of the trained RFALCON in the ball and beam system. 

V. DISCUSSION 

In this section, we summarize the features of the proposed 
WALCON. It keeps the ability of Barto’s original system [12] 
to learn at each time step within a trial without waiting to 
know the actual outcome, by using a multistep critic network. 
In addition, distributed representation is used to represent 
the input vectors in the RFALCON. This is achieved by the 
fuzzification process through the adaptive input membership 
functions. With the adaptive input membership functions, the 
input space can be considered to be divided into overlapping 
smaller regions and, more importantly, this partitioning is not 
performed in advance but is dynamically and appropriately 
adjusted during the learning process. As a result, each smaller 
region varies in size and the degree of overlapping is also 
adjustable. This is in contrast to the localized storage scheme 
used in the BOXES system [30] and in Barto’s system [12], 
which divides the input space into disjoint regions (boxes) 
and allows generalization only within the confines of a given 
box. The dynamic fuzzification process in the RFALCON 
also avoids the necessity of partitioning the input space into 
disjoint [12] or overlapping [28] small regions in advance. 
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The second important feature of the proposed RFALCON is 
its dynamic structure/paranieter-learning ability that can find 
proper fuzzy logic rules. This is in contrast to the approach 
in [18], which needs a priori control knowledge from expert 
operators in term of fuzzy control rules. The third feature of the 
proposed RFALCON is its capacity for stochastic search with 
multiparameter distribution functions. This gives the action 
network a higher probability of finding a better action via the 
prediction signal from the critic network instead of limiting 
it to perform random searches around the expected action 
with single-parameter distribution functions. The fourth feature 
of the proposed RFALCON is the ease with which expert 
knowledge can be incorporated into its the action network and 
the critic network greatly shortening learning time. The fifth 
important feature of the proposed RFALCON is that it flexibly 
partitions the input-output spaces according to the distribution 
of environment states and reinforcement signals. This avoids 
the combinatorial growth problem encountered by partitioned 
grids in some complex systems. 

Using the Stone-Weierstrass theorem [38], we have shown 
that the structure of the FALCON is a universal approxi- 
mator (the detailed proof will be presented in a future pa- 
per). Although we have not provided a convergence theorem 
demonstrating the stability of the proposed on-line (supervised 
or reinforcement) structure/parameter-learning algorithm yet, 
many empirical studies have shown the proposed learning 
scheme to be stable. In addition to the simulations done in this 
paper, the proposed on-line supervised structure/parameter- 
learning algorithm has been used to identify dynamic systems, 
predict chaotic time-series, and control of the truck backer- 
upper. Some of these results were presented in [23], [2]. 
Furthermore, this algorithm has been stable when used for 
practical position control of a crane in our lab. These empirical 
studies and the following analysis lead us to be optimistic 
about the stability of our learning scheme. The basic concept 
behind our learning algorithm is that structure learning deter- 
mines the skeleton of the network, while parameter learning 
fine tunes the network parameters to achieve the desired 
output control accuracy. Structure leaming usually causes large 
weight changes if there are changes in a learning time step 
[see (23)], whereas parameter learning often causes smaller 
weight changes in a learning time step due to its gradient 
descent nature and small leaming constant. Hence, although 
the two learning steps may control the values of the same 
weights, they produce cooperative effects on weight changes. 
The major effect of structure learning on weight changes 
is definition of new hyperboxes (and thus new weights), or 
resizing of hyperboxes by embedding training data directly 
into the weights [see (23)], whereas the major effect of the 
parameter learning is to fine tune the weights around the values 
determined in the structure-learning step. Furthermore, the use 
of adaptive (monotonically decreasing) vigilance values is also 
important to the stability of the proposed learning scheme. As 
mentioned at the end of Section 111-A 1), decreasing vigilance 
values will cause fast structure growth in the early stages of 
learning, and supervised weight tuning of a stable network 
structure in the later stages of learning. Hence, the two learning 
steps interact, each playing the major role at different learning 
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Fig. 28. 
ball mass is doubled to 0.1 kg from 0.05 kg. 

Position deviation of the ball allowed by a trained RFALCON when 

stages. This can also greatly speed up parameter learning since 
structure learning has built up the regularity of the training data 
in the early stages of learning, and parameter learning just fine 
tunes the parameters based on the a priori knowledge obtained 
in the structure-learning step. This becomes clear when we 
perform the two learning steps separately, as in cases where 
we have a whole set of training data and learning can be 
performed off-line. That is, we first perform structure learning 
on all training data, and then perform parameter learning using 
all training data. In such cases, there should be no instability 
problem, since the convergence of the ART-like leaming in 
the structure-learning step has been demonstrated conclusively 
in 1241, and the gradient descent procedure in the parameter- 
leaming step can be expected to eventually converge to 
values that minimize the error function (24) to within some 
small fluctuation range. The latter expectation is based on the 
RFALCON’s potential as a universal approximator. 

Reinforcement learning has been widely used to solve 
various practical problems. The peg-in-hole insertion problem 
is difficult to model analytically and exemplifies the difficulties 
raised by uncertainty in real-world control problems. This task 
is also highly relevant to industrial robotics because about 
33% of all automated assembly operations are peg-in-hole 
insertions, which makes them the most common assembly 
operation. The abstract peg-in-hole task can be solved quite 
easily if the exact location of the hole is known and if 
the manipulator can precisely control the position and ori- 
entation of the peg. Real-world conditions, however, present 
uncertainties due to errors and noise in sensory feedback, 
errors in execution of motion command and movement of 
the part grasped by the robot, and substantially degrade 
the performance of conventional position control methods. 
The success of the direct reinforcement learning approach 
[34] to training the controller indicates that this approach 
can be useful for automatically synthesizing robot control 
strategies that satisfy constraints encoded in the performance 
evaluations. Another important problem in robotics is that 
of generating paths between initial and goal positions that 
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avoids collisions with obstacles. In practice, the robots have 
incomplete information about environments, knowing only 
their own sensory data. This kind of problem cannot be 
modeled exactly and explicitly because many possible paths 
between initial and goal positions exist. A reinforcement- 
based connectionist system that enabled a mobile robot to 
find and learn obstacle-avoiding paths in a nonmaze-like two- 
dimensional environment was presented in [39]. We are also 
using the proposed RFALCON model to solve many practical 
problems including crane position control and adaptive control 
of electro-discharge machining (EDM). 

VI. CONCLUSION 

This paper describes an RFALCON for solving various 
reinforcement learning problems. By combining temporal dif- 
ference techniques, stochastic exploration, and a proposed on- 
line supervised structure/parameter-learning algorithm, a rein- 
forcement structure/parameter-learning algorithm was derived 
for the RFALCON. Using the proposed connectionist structure 
and learning algorithm, a fuzzy logic controller that controls 
a plant and a fuzzy predictor that models the plant can be 
set up dynamically through simultaneous structure/parameter- 
learning for reinforcement learning problems. The proposed 
RFALCON makes the design of fuzzy logic controllers more 
practical for real-world applications, since it greatly lessens the 
quality and quantity requirements of the teaching signals. More 
importantly, it reduces the combinatorial demands placed by 
the standard methods for adaptive linearization of input-output 
spaces in existing fuzzy control systems. This makes possible 
the use of fuzzy controllers in real-world complex systems that 
involve many state/control variables. Computer simulations 
of the cart-pole balancing and the ball and beam problems 
satisfactorily verified the validity and perFormance of the 
proposed RFALCON. Future work will focus on applying the 
RFALCON to practical problems in the real world. 
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