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Summary

This paper describes NCTUns, an innovative network simulator and emulator for wireless and mobile networks.

Effects of various radio resource management and quality of service (QoS) schemes on higher-layer protocols and

real-world applications can be easily studied using NCTUns. In this paper, we elaborate on NCTUns simulation

methodology, architecture, design, functionalities, performance, and applications. NCTUns simulation for

wireless ad hoc, sensor, inter-vehicle communication networks, GPRS cellular networks, and wireless mesh

networks are also illustrated. More details about this tool can be found in http://NSL.csie.nctu.edu.tw/nctuns.html.
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1. Introduction

Radio resource management and quality of service

(QoS) schemes are important for next-generation

wireless and mobile networks. With them, scarce

wireless bandwidth can be more efficiently utilized

and applications demanding a certain level of QoS

(e.g., voice over IP) can be adequately supported.

Several radio resource management and QoS schemes

are being proposed for next-generation wireless and

mobile networks such as IEEE 802.16 WiMax net-

works and IEEE 802.11 WiFi networks with IEEE

802.11e QoS supports. Evaluating the performance of

these schemes in various conditions can help research-

ers discover their design flaws and performance

limitation.

In a network, providing QoS guarantees for an

application (e.g., VoIP) should be end-to-end and up

to the application layer. The effect of a radio resource

management or a QoS scheme on network-layer

routing protocols (e.g., IP), transport-layer protocols

(e.g., TCP/UDP), and application-layer protocols

(e.g., HTTP) should all be considered. Performance

analysis of these schemes at a lower layer such as the

MAC layer cannot reflect the real performance of

these applications. To obtain more realistic end-to-end

application-layer performance, the processing and the

interactions among these layers and real-world appli-

cations need to be investigated.

Network simulators are valuable tools for research-

ers to design, test, diagnose, and evaluate network pro-

tocols under various network conditions. Conducting
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simulations is more economical, flexible, and safer

than performing real experiments. For example, in

large wireless and mobile networks where thousands

of nodes need to move, significant performance eva-

luation cost will be saved via simulations because one

need not to purchase many equipments to do the real

experiments. In addition, simulation results are easier

to analyze than experimental data because simulation

results are repeatable while experimental results

usually are unrepeatable due to many uncontrollable

factors in the real world. However, traditional network

simulators usually have the following drawbacks.

First, results of traditional simulations are not as

convincing as those produced by real hardware and

software equipment. In order to reduce development

complexity and cost, most network simulators only

simulate real-world network protocols and application

implementations with limited details. This abstraction

may lead to inaccurate results. For example, in ns-2

package [1], it is documented that ‘there is no dy-

namic receiver’s advertised window for TCP.’ As

another example, in a real network, a UDP-based

application program can change its destination host

(i.e., change the used destination IP address for an

outgoing UDP packet) at run time on a per-packet

basis. However, this cannot be done in ns-2 because

there is no concept of IP addresses in an ns-2 simu-

lated network. In ns-2, a traffic generator agent needs

to be bound to a traffic sink agent at the beginning of a

simulation. During simulation, it cannot dynamically

change its destination node at run time like a normal

real-world application program does.

Second, existing and to-be-developed real-world

application programs may not be directly run with

traditional network simulators. Instead, applications

in these simulators need to be simplified and re-

implemented as functions and compiled with the

simulation engine program. Such over-simplified

functions usually are not realistic (e.g., a generated

packet stream whose packet transmission time inter-

vals are drawn from a statistic distribution). As such,

when the simulator runs as a user-level process on top

of the operating system’s kernel, a real-world applica-

tion program cannot deliver packets to the simulator

via the standard UNIX POSIX system call API (e.g.,

socket(), sendto(), recvfrom(), etc.), because they run

at the same level. For this reason, the application

programs supported by a traditional network simula-

tor are only those that have been simplified, modified,

and re-implemented in the simulator.

To overcome these problems, Wang invented a

kernel re-entering simulation methodology [2,3] and

implemented it in the Harvard network simulator [4].

Later on, Wang improved the methodology in the

NCTUns 1.0 network simulator (referred to as

‘NCTUns’) [5]. Due to the kernel re-entering simula-

tion methodology, NCTUns directly uses the real-

world TCP/IP protocol stack in either FreeBSD or

Linux operating system to generate more accurate

simulation results than those generated by a simulator

that abstracts away a lot of protocol details. In addi-

tion, all existing or to-be-developed application pro-

grams that run on these operating systems can directly

run with NCTUns to generate realistic traffic for a

simulated network. These two properties enable re-

searchers to evaluate the effect of a new radio resource

management or QoS scheme on real-world applica-

tions and their end-to-end performance [6].

Regarding network devices and protocols, supports

for wireless LAN networks, wireless mesh networks,

GPRS networks, QoS DiffServ networks, RTP/RTCP/

SIP VoIP protocols, and several other wireless stan-

dards such as IEEE 802.11(e) QoS protocol have been

added to NCTUns. Regarding simulation speed, we

have designed and implemented a new simulation eng-

ine that combines the advantages of the discrete-event

simulation methodology and the kernel re-entering

simulation methodology for fast simulation execution

[7]. Regarding operating system platform, NCTUns

can be run on both FreeBSD and Linux. Regarding

functionalities, NCTUns supports emulation, which

can evaluate a real-world network device without the

need to get, know, or modify its protocol stack. The

NCTUns network simulator can be easily turned into

an emulator by just selecting an option. During

emulation, a real-world network device can exchange

packets with a simulated device in NCTUns. One can

use this capability to test the protocol conformance

and interoperability of a network device [8].

This paper is organized as follows. Section 2

surveys related work. Section 3 briefly presents the

kernel re-entering sim ulation methodology. Section

4 presents the NCTUns high-level architecture. In

Section 5, we present the wireless radio resource

management support provided by NCTUns. In Sec-

tion 6, we describe the emulation support provided

by NCTUns and how emulation can be applied to

wireless LAN mobile devices in the real world.

Section 7 illustrates how NCTUns is used to study

mobile ad hoc, sensor, inter-vehicle communication

(IVC) networks, wireless mesh networks, and gen-

eral packet radio service (GPRS) networks. Section 8

discusses a performance optimization technique

that NCTUns employs to significantly speed up
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wireless simulations. Finally, Section 9 concludes

this paper.

2. Related Work

In the following, we discuss related work and the

differences between NCTUns and them.

Dummynet [9], when it was originally proposed,

also used tunnel interfaces to use the real-world TCP/

IP protocol stack in the simulation machine. However,

since its release in 1997, Dummynet has changed

substantially and now is used as a real-time traffic

shaper or a bandwidth and delay manager in the

FreeBSD kernel. It is no longer used as a network

simulator.

VMware [10] can implement virtual machines. It

can provide virtual x86-like hardware environments

within which a number of different operating systems

can be executed. With this capability, a number of

virtual machines can be implemented on a single real

machine to act as hosts or routers. They can be

configured to form an emulated network and packets

generated by real-world application programs run on

these virtual machines can be exchanged through the

emulated network. Although VMware can be used as

an emulator, it is not a network simulator. As such, its

result is not repeatable and a simulation case cannot

be finished more quickly than the simulated time in

the real world. In addition, it is very heavy weight. A

virtual machine consumes much resource and runs

substantially slower than the real machine—some-

times by an order of magnitude.

OPNET modeler [11], ns-2, and SSFnet [12] re-

present the traditional network simulation approach.

In this approach, the thread-supporting event schedu-

ler, application code (not real-world application pro-

grams) that generates network traffic, utility programs

that configure, monitor, or gather statistics about a

simulated network, the TCP/IP protocol stack imple-

mentation on hosts, the IP protocol stack implementa-

tion on routers, and links are all compiled together to

form a single user-level program. A simulator con-

structed using this approach cannot easily provide

UNIX POSIX API for real-world application pro-

grams to run normally to generate network traffic.

Although some simulators may provide their own

non-standard API to let real-world application pro-

grams to interact with them (via IPC library calls),

real-world application programs still need to be

re-written so that they can use the internal API,

be compiled and linked with the simulator, and be

concurrently executed with the simulator during

simulation.

3. Simulation Methodology

The kernel re-entering simulation methodology was

proposed in References [2,3,5], where tunnel network

interface is the key facility in the kernel re-entering

methodology. A tunnel network interface, available

on most UNIX machines, is a pseudo network inter-

face that does not have a physical network attached to

it. The functions of a tunnel network interface, from

the kernel’s point of view, are the same as those of an

Ethernet network interface. A network application

program can send or receive packets through a tunnel

network interface, just as if these packets were sent to

or received from a normal Ethernet interface.

Each tunnel interface has a corresponding device

special file in the/dev directory. If an application

program opens a tunnel interface’s special file and

writes a packet into it, the packet will enter the kernel.

From the kernel’s viewpoint, the packet appears to

come from a real network and will pass through the

kernel’s TCP/IP protocol stack as an Ethernet packet

would do. On the other hand, if the application

program reads a packet from a tunnel interface’s

special file, the first packet in the tunnel interface’s

output queue will be dequeued and copied to the

application program. To the kernel, the packet appears

to have been transmitted onto a real link and this

pseudo transmission is not different from an Ethernet

packet transmission.

Using tunnel network interfaces, we can easily

simulate the wireless network depicted in Figure 1,

where a TCP sender application program running on

node 1 sends TCP packets to a TCP receiver applica-

tion program running on node 2. We set up the virtual

simulated network with two operations. First, we

configure the kernel routing table of the simulation

machine so that tunnel network interface 1 is chosen

as the outgoing interface for the TCP packets sent

from node 1 to node 2 and tunnel network interface 2

is chosen for the TCP packets sent from node 2 to

node 1. Second, the wireless channel is simulated by a

simulation engine process. For the direction from

node i to node j (i¼ 1 or 2 and j¼ 3� i), the simula-

tion engine opens the special files of tunnel network

interfaces i and j in /dev. It then executes a while loop.

In each step of this loop, it simulates a packet’s

transmission in the direction from node i to node j

by reading a packet from the special file of tunnel
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interface i, waiting for the packet’s transmission on

the channel to finish (in virtual time), and then writing

this packet to the special file of tunnel interface j.

The bottom of Figure 1 depicts this simulation

scheme. Since replacing a real channel with a simu-

lated channel happens outside the kernel, the kernels

on both nodes do not know that their packets actually

are exchanged in a simulated network. The TCP

sender and receiver programs, which run on top of

the kernels, do not know the fact, either. As a result,

all existing real-world application programs can run

on the simulated network, all existing real-world net-

work utility programs can be executed in the simula-

tion, and the TCP/IP network protocol stack used in

the simulation is the real-world implementation. Note

that in this simulation methodology, the kernel of the

simulation machine is shared by all simulated nodes.

Therefore, although two TCP/IP protocol stacks are

depicted in Figure 1, actually they are the same one—

the protocol stack of the simulation machine.

In addition to bandwidth and signal propagation

delay characteristics, we can simulate more interface

details by adding more protocol modules to the

simulation engine. In this figure, we see that there is

one routing protocol module, ARP protocol module,

packet scheduling or buffer management module

(PSBM), IEEE 802.11(b) MAC module (WMAC),

and IEEE 802.11(b) wireless physical module

(WPHY) associated with each interface.

4. High-Level Architecture

NCTUns uses a distributed architecture to support

remote and concurrent simulations. This feature uses

an open-system architecture to enable protocol mod-

ules to be added to the simulator. This task can be

easily done in just a few mouse clicks via its GUI

operating environment. Functionally, NCTUns can be

divided into eight components described in the fol-

lowing subsections.

4.1. GUI Operating Environment

The fully integrated GUI environment enables a user

to edit a network topology, configure the protocol

modules of a network node, set the parameter values

of a protocol module, specify mobile nodes’ moving

paths, plot performance curves, playback animations

of logged packet transfers, etc.

From a network topology, the GUI program can

generate a simulation job description file suite. Since

the GUI program uses Internet TCP/IP sockets to

communicate with other components, it can submit

a job to a remote simulation machine for execution.

When the simulation is finished, the simulation results

and generated log files are transferred back to the

GUI. The user then either examines logged data, plots

performance curves, or plays back packet transfer

animations.

During a simulation, the user can query or set an

object’s value (e.g., the routing table of a router or the

switch table of a switch) at any time. If the user does

not want to do any query or set operation during a

simulation, the user can choose to disconnect (but not

terminate) the currently running simulation so that he

(she) can use the GUI to handle other simulation jobs.

The user can later re-connect to a disconnected

simulation, regardless whether it is still running or

has finished. A user thus can submit many simulation

jobs simultaneously. This can increase simulation

throughput if multiple simulation machines are avail-

able to service these jobs concurrently.

Mobile Node 1

WPHYWPHY

PSBM PSBM

ARPARP

TCP_sender TCP_receiver

TCP_sender

User-level

Kernel

TCP/IP
Stack

Tunnel
interface 1

TCP_receiver

TCP/IP
Stack

Tunnel
interface 2

Route Route

WMACWMAC

Simulation Engine

Mobile Node 2

Fig. 1. The top single-hop TCP/IP wireless network can be
simulated by the bottom design.
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4.2. Simulation Engine

The NCTUns simulation engine is a user-level pro-

gram that functions like a small operating system.

Through a defined API, it provides basic simulation

services to protocol modules (to be described later).

Such services include virtual clock maintenance,

timer management, event scheduling, variable regis-

trations, etc. The simulation engine needs to be

compiled with various protocol modules to form a

single user-level program called ‘simulation server.’ A

simulation server takes a simulation job description

file suite as input, runs the simulation, and generates

data and packet transfer log files. When a simulation

server is running, it utilizes a lot of kernel resources.

Therefore, we do not allow other simulation servers to

run at the same time on the same machine.

4.3. Protocol Module and Job Dispatcher

NCTUns supports various protocol modules. A pro-

tocol module implements a layer of a protocol stack

(e.g., the ARP protocol or a FIFO queue). A protocol

module is composed of a set of functions. It needs to

be compiled with the simulation engine to create a

simulation server. Inside the simulation server, multi-

ple protocol modules can be chained to form a proto-

col stack.

The NCTUns simulation job dispatcher is a user-

level program that supports concurrent simulations on

multiple simulation machines. The job dispatcher

should be executed and remain alive to manage multi-

ple simulation machines.

The job dispatcher coordinates a large number of

GUI users and a large number of simulation machines.

When a user submits a simulation job to the job

dispatcher, the dispatcher will select an available

simulation machine to execute this job. If no machine

is available, the submitted job can be queued and

managed by the dispatcher as a background job.

Various scheduling policies can be used to schedule

their service order [13].

4.4. Coordinator

The NCTUns coordinator is a user-level program

executed on every machine where a simulation server

resides. The coordinator informs the job dispatcher

whether this machine is currently busy in running a

simulation or not. When executed, it first registers

itself with the dispatcher to join in the dispatcher’s

simulation machine farm. When its status (idle or

busy) changes, the dispatcher is notified of this new

status. Based on the machine status information, the

dispatcher chooses an available machine from its

machine farm to service a job.

When the coordinator receives a job from the

dispatcher, it forks (executes) a simulation server

to simulate the specified network and protocols.

The forked simulation server process will kill itself

when its simulation is finished. During simulation, the

coordinator may also fork (start) or kill (end) some

real-world application programs as specified in the job.

Because the coordinator has the process IDs of the

forked traffic generators, it can register these traffic

generators with the kernel, and all time-related system

calls issued by these registered traffic generators will

be performed based on the virtual time of the simu-

lated network, rather than the real time.

When the simulation server is running, the coordi-

nator communicates with the job dispatcher and the

GUI program on behalf of the simulation server. For

example, the simulation server periodically sends the

current virtual time of the simulated network to the

coordinator. The coordinator then forwards this in-

formation to inform the GUI user of the simulation

progress. During simulation, the user can also on-line

set or retrieve an object’s value (e.g., to query or set a

switch’s switch table). Message exchanges between

the simulation server and the GUI program are per-

formed via the coordinator.

4.5. Kernel Modification

NCTUns modifies the kernel of the simulation ma-

chine so that a simulation server can correctly run on

it. During a simulation, the timers of TCP connections

in a simulated network should be triggered in the

simulation time rather than in the real time. The same

processing should also be applied to the time-related

services requested by the application programs that

are run on simulated nodes. For example, when the

kernel receives the sleep(5) system call issued by an

application program process, it should suspend the

execution of the process for 5 s in simulation time

rather than in real time.

Also, the kernel needs to automatically perform

UDP/TCP port mapping between a port number

specified by a simulation user and the port number

that is actually used inside the kernel. This mapping

allows multiple real-world application programs to

bind to the same port number on different nodes in a

simulated network. Consider an example where two

web server processes are running on two different
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nodes in a simulated network and they both want to

bind to the well-known port number 80. Without

converting these two 80 port numbers to two different

port numbers inside the kernel, the above setup cannot

be simulated due to port number collision.

4.6. User-Level Daemon and Real-World
Application Program

The NCTUns protocol daemons run at the user level to

perform specific jobs. For example, the real-world

‘routed’ (using the RIP routing protocol) or ‘gated’

(using the OSPF routing protocol) daemons run with

NCTUns to set up the routing tables in a simulated

network.

The NCTUns real-world application programs run

at the user level to either generate network traffic,

configure network, or monitor network traffic, etc. For

example, the tcpdump program can run on a simulated

network to capture packets flowing over a link and the

traceroute program can run on a simulated network to

find out the routing path traversed by a packet.

4.7. Remote, Concurrent, and
Parallel Simulations

NCTUns uses a distributed architecture, by which

simulation machines can be far away from the ma-

chines where the GUI programs are run. For example,

the simulation service machines may reside at NCTU

in Taiwan while the GUI users come from many

different places of the world. Multiple simulation

jobs can be concurrently simulated on different ma-

chines (one machine serves one job) to increase the

total simulation throughput.

When the NCTUns simulation jobs are run on

multiple machines, we say that NCTUns is operating

in the ‘multiple machine’ mode [13]. This mode

supports remote and concurrent simulations. In the

‘single-machine’ mode, the simulation jobs run on

the same machine. With the inter-process communi-

cation (IPC) design, NCTUns can be used for either

mode without changing its program code. Only the

mode parameter in its configuration file needs to be

changed.

NCTUns can also be turned into a parallel and

distributed network simulator. This is particularly

suitable for simulating a very large wireless network

with thousands of mobile nodes. In this mode, differ-

ent nodes of a network are simulated by the NCTUns

simulation engines running on different machines.

The real-world application programs run on these

mobile nodes are forked and executed on different

machines. This approach can effectively spread the

total memory space demand imposed by these appli-

cation programs over multiple machines, hence over-

coming the memory space limitation of a single

machine. We have used the conservative synchroniza-

tion algorithm [14] to turn NCTUns into a parallel and

distributed network simulator that generates the same

simulation results as the sequential version.

5. Radio Resource Management
and QoS Supports

NCTUns supports radio resource management, QoS,

and mobility researches. It has been used in several

research work (e.g., [15–20]) to study these research

areas.

At the physical layer, the wireless channel models

supported include: (1) a simplified model like that

used in ns-2, where only a transmission range and an

interference range are specified for a wireless inter-

face, (2) a two-ray ground reflection model that

considers large-scale path loss and computes the

received power at a distance. The computed power

is then compared against BER (bit error rate) versus

power versus modulation scheme versus encoding/

decoding scheme curves to derive a BER for the

received packet, (3) a Rayleigh fading model that

further considers the effect of small-scale fading and

multipath propagation. Depending on the focus of the

research, one can choose an appropriate physical-

layer channel model to balance simulation result

accuracy and simulation speed.

At the MAC layer, the wireless MAC protocols

supported include: (1) CSMA/CA with RTS/CTS used

for IEEE 802.11(b) networks, (2) multiple frequency

time division multiplexed access (MF-TDMA) for

GPRS cellular networks, and (3) multichannel and

multiradio MAC protocols for reducing the bad effect

of signal interference in wireless mesh networks.

QoS support provided for IEEE 802.11(b) wireless

LAN networks is IEEE 802.11e protocol. NCTUns

includes a full implementation of enhanced distribu-

tion coordination function (EDCF) to differentiate

eight different priority traffic classes and hybrid co-

ordination function (HCF) to support contention-free

medium accesses.

Replacing an existing protocol module with a new

one developed by a researcher can be easily done with

a few mouse clicks in the node editor of NCTUns.

Figure 2 shows that the node editor for a wireless LAN
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access point has been invoked. In this editor, the

modules used in the access point’s protocol stack

are shown and the parameters of the more advanced

wireless physical module are being set. More GUI

operation illustrations are available in Reference [21].

6. Emulation Supports

The NCTUns network simulator can be easily turned

into an emulator. With emulation, we can test the

functions and performance of a real-world host and

see how it would perform under various network

conditions without getting, knowing, or modifying

its internal protocol stack.

When NCTUns is operating as an emulator, a real-

world host (e.g., a WLAN ad hoc mode mobile host, a

WLAN infrastructure mode mobile host, or a router)

can exchange packets with any node in a simulated

network. In the emulator mode, all nodes and links

specified in the simulated network are still simulated

by NCTUns (i.e., the simulation machine) where the

simulation speed is purposely slowed down to match

the speed of the wall clock.

In NCTUns, a real-world device is referred to as

an ‘external node,’ and is represented by a different

node icon in the topology editor. The NCTUns

external nodes can interact with the simulated net-

work in two configurations. In the first configuration

(see Figure 3(a)), the application programs running

on an external node can exchange packets with the

application programs running on a node in the

simulated network. For example, a TCP connection

can be set up between two application programs with

one running in the real network while the other

running in the simulated network. These two real-

world application programs can then exchange their

packets via the TCP connection to complete a spe-

cific job (e.g., a web server and client completing a

web page retrieval). With this feature, network de-

vice developers can test whether their applications

and protocols conform to standards, specifications,

or inter-operability requirements before releasing

them to the market. For example, a newly developed

VoIP phone device can interact with a fully tested

VoIP program running in the simulated network to

see whether it can pass the interoperability and

conformance tests. This feature is enabled by the

Fig. 2. The node editor invoked for editing the protocol stack and protocol module parameters of a wireless LAN access point.
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kernel re-entering simulation methodology and is

very unique.

Alternatively, two external hosts can exchange their

packets via the simulated network. In Figure 3(b), a

TCP connection is set up between two application

programs with one running on one external host, the

other running on another external host, and the TCP

connection traversing through several nodes in the

simulated network. Since the TCP packets exchanged

by these two real-world application programs need to

pass through the simulated network and experience

various simulated network characteristics, network

device developers can test how their applications

and protocols would perform under various network

conditions. For example, we can easily test the sound

quality generated by two VoIP phone devices when

the phone call needs to go through a simulated net-

work with about 300 ms network delay and 10%

packet loss rate. Although existing emulators can

support this configuration, the simulated network

supported by them mostly is only a link abstraction,

which may delay, drop, and reorder real-world packets

based on a certain statistics distribution. In the

NCTUns network emulator, on the other hand, the

simulated network where real-world packets go

through can be a complicated network with many

nodes. (The size of the simulated network can be very

large as long as the speed of the simulation machine’s

CPU can simulate the network at real time.) In

addition, in NCTUns, real-world packets can interact

and compete with the packet traffic dynamically

generated by application programs running on simu-

lated nodes. This capability is illustrated in Figure

3(b) by showing that ‘TCP connection 1’ is competing

with ‘TCP connection 2’ for the bandwidth of the link

connecting R1 to R2. To our knowledge, no existing

emulators support this type of traffic mix between

simulated and real-world packets.

To describe the connectivity between an external

node and a simulated node, each external node is

represented by an external node icon in the simulated

network. A GUI user can easily specify the connec-

tivity by drawing a link between an external node and

a simulated node. Lik e other links in the simulated

network, such a link has its own delay and bandwidth

properties simulated by NCTUns.

Fig. 3. The two different emulation configurations supported by NCTUns.
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We note that the physical link connecting the

simulation machine and the external node need not

apply any MAC protocol processing to the real-world

packets when they are transmitted over the link.

Instead, it only needs to transfer the real-world pack-

ets from one end of the link to the other end of the link

as fast as possible. Simulations of properties (e.g.,

bandwidth, delay, BER, etc.) for the link connecting

the external node is done by the simulation engine.

Since the packets delivered from an external node

to a simulated node need to enter the simulation

machine, the external node must be physically con-

nected to the simulation machine via some physical

network (can be as simple as a physical link). Ideally,

such a network should have infinite bandwidth and

zero latency. For example, a 100 Mbps Fast Ethernet

network may be used for this purpose. For NCTUns,

an external node must reside on the same subnet as the

simulation machine; otherwise, the emulation func-

tion will not work properly.

To receive the packets from an external node and

further inject them into the simulated network, a user-

level emulation daemon is run up on the simulation

machine for each external node. These daemons play

a similar role as a user-level network address transla-

tor (NAT) daemon. They intercept packets, translate

IP and port numbers, and then further inject packets

into their destinations (the simulated network or the

external hosts). Commands for running up these

daemons are automatically generated by the GUI

program and are automatically executed by the simu-

lation engine. These user-level daemons may incur

extra latency during context switching. According to

our test results, a machine with 1 GHz CPU or above

can limit the packet latency caused by the emulation

daemon to within 100 Ms.

To direct an external node’s packets to the simula-

tion machine, some routing entries must be set up

on the external node. To direct packets originated

from the simulated network to the external node, the

emulation daemon also needs some information. A

GUI user thus needs to do some settings on both the

external node and the simulation machine to ensure

that an emulation case works correctly.

6.1. Adjusting Simulation Speed

Once a user adds an external node into the network

topology, the speed of the simulation engine will be

automatically set to the speed of the wall clock. This

means that during an emulation, the simulated net-

work will be simulated at the speed of the wall clock.

During an NCTUns emulation, the clock of the

simulated network is synchronized with the wall clock

every 1 ms, and therefore the emulation function’s

latency precision is about 1 ms. For example, suppose

that a user uses the real-world ping program to

measure the round-trip time of the path between an

external node and a simulated node and the round-trip

time (RTT) of this path is 100 ms in the simulated

network, then the reported RTT on the external node

may be some value between 99 and 101 ms.

From experimental results, we found that the pre-

cision may get worse if NCTUns is used in the single-

machine mode. During emulation, the GUI program,

simulation engine, traffic generator application pro-

grams, and some daemon programs compete for the

machine’s CPU cycles, which results in degraded

emulation precision. The time mismatch between the

simulation clock and the wall clock may increase up to

3 ms. However, we found that when NCTUns is used

in the multiple-machine mode, where the above-

mentioned components are run on separate machines,

the precision is quite high and seldom degrades.

6.2. Adding an External Node
to the Network Topology

An emulation is set up as follows. First, a user clicks

on the external node icon in the tool bar and add it to

the network topology. This is to indicate how the

external node is connected to the simulated network.

Second, the user enters the IP address used by that

external node in the real network through the GUI.

This information must be known by the emulation

daemon so that it can forward packets originated from

the simulated network to the external node.

Like any node in the simulated network, the GUI

will assign an IP address to each external node’s inter-

face. This IP address is not a public IP address used in

the real world. Instead, it is a private IP address used in

the simulated network so that a user can specify the

destination IP address of a packet if he (she) intends to

send the packet to that node. To send packets to the

external node, a simulated node uses this assigned

private IP address as these packets’ destination IP

address. These packets will traverse the simulated

network as in the simulation mode and then reach the

external node represented in the simulated network.

The emulation daemon supporting this external node

will intercept these packets, change their destination IP

addresses from the one used in the simulated network

to the one used in the real network, and then forward

them to the external node in the real network.
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Now we describe how to direct traffic generated by

an external node to the simulated network (i.e., to the

simulation machine). Suppose that the simulation

machine’s IP address in the real world is 10.0.0.1

and the external machine’s IP address is 10.0.0.2, and

they are physically connected via an Ethernet cable.

Suppose that the external node makes a TCP connec-

tion to a simulated node whose assigned private IP

address is 1.0.3.1. Then on the external node, the user

should first execute the ‘route add 1.0/16 10.0.0.1’

command to add the required routing entry to the

system routing table.

In the above command, 1.0/16 means that the

destination network address is 1.0.X.X. (16 means

that the netmask is 255.255.0.0). Note that every node

in the simulated network is assigned a private IP

address of the form of 1.0.X.X. As such, the above

command indicates that all outgoing IP destination

address 1.0.X.X should be first sent to the gateway

whose IP address is 10.0.0.1. Since 10.0.0.1 is the

simulation machine’s IP address, these packets will be

delivered to the simulation machine.

When the packets generated by an external node

arrive at the simulation machine, we use the IP fire-

wall facility provided by FreeBSD or Linux to inter-

cept these packets and divert them to one emulation

daemon responsible for this external node. The re-

quired IP firewall rules are automatically generated by

the GUI program. They are automatically installed

into the operating system by NCTUns when an

emulation run is executed. Therefore, a user need

not install these firewall rules. When the emulation

daemon responsible for this, external node receives

these packets; it will function like an NAT to translate

their source IP addresses (which is the public IP

address of this external node) into the private IP

address assigned to this external node in the simulated

network. After this translation, the emulation daemon

will re-inject them into the kernel of the simulation

machine and these packets will traverse the simulated

network based on the routing tables stored in the

simulated network.

6.3. Mobile Network Emulation

We give two examples of mobile network emulations:

mobile ad hoc network and mobile infrastructure

network.

(1) Mobile ad hoc network: NCTUns supports emu-

lations with external mobile nodes, which can be

wireless LAN ad hoc mode or infrastructure-

mode devices. An external mobile node is repre-

sented by a node in the simulated network and the

mobility of this node in the simulated network is

specified in the topology editor.

During emulation, the packets generated by the

external mobile node will be transferred to the

simulation machine and then enter the simulated

wireless network. For the simulated network,

these packets seem to be generated by the corre-

sponding mobile node in the simulated network.

Since the corresponding mobile node uses a

wireless interface to connect to the simulated

wireless network (in either the ad hoc mode or

the infrastructure mode), these real-world packets

will be transferred wirelessly in the simulated net-

work and may contend with other wireless pack-

ets that are generated in the simulated network.

Note that real-world packets will experience

the wireless MAC protocols (e.g., IEEE 802.11(b)

MAC) in the simulated network, rather than the

wireless MAC protocols that are implemented in

the wireless interface of the external mobile node.

This situation is similar to a fixed-network emula-

tion where the link connecting the simulation

machine and an external node needs to deliver real-

world packets between two ends of the link as fast as

possible and need not apply any MAC protocol

processing to them. In addition, because the moving

path of an external node is specified in the simulated

network rather than in the real world, an external

mobile node in the real world need not move.

Figure 4 shows an emulation example in which

one external ad-hoc mobile host (on the left)

communicates with a simulated mobile host (on

the right) via another simulated mobile host (in the

middle). Initially, the application running on the

external mobile host can exchange packets with

the application running on the mobile host on the

right via the middle mobile host. As time proceeds,

the external mobile host begins to move away from

the middle mobile host (not in the real world but

in the simulated network; the mobile host move-

ment path can be easily set up as described in

Section 7) and it eventually moves out of the trans-

mission range of the middle mobile host. During

this period, the application running on the external

node can no longer communicate with the applica-

tion running on the mobile host on the right. Later

on, when the external node moves back to the mobile

node in the middle, the communication between

the two applications will be able to continue.

(2) Infrastructure-mode mobile network: The usage

of external infrastructure-mode mobile node is
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similar to those of external hosts and external ad

hoc mode mobile nodes. The only difference is

that in the GUI dialog box of the external infra-

structure-mode mobile node, the user needs to

provide the IP address of the gateway in the

simulated network for this mobile node.

Figure 5 shows an emulation example in which

one external infrastructure-mode mobile node in

the real-world communicates with a simulated host

at the top via a simulated wireless access point.

Like the ad hoc mobile node emulation case,

the external infrastructure-mode mobile node in

the real world may communicate with the simu-

lated host at the top initially. As time proceeds, it

will leave the coverage (represented by the inner

circle) of the simulated wireless access point and

no longer can communicate with that simulated

host. Later on, when it enters the coverage area of

the simulated wireless access point again, the

communication continues.

7. Various Wireless Network Supports

This section describes the NCTUns supports on

various wireless networks.

7.1. Military, Sensor, IVC Mobile Ad Hoc Networks

In mobile ad hoc network studies, one usually wants

to change the protocol stack or the parameter values

used by mobile nodes to see how the changes would

affect the overall performance of the mobile network.

In NCTUns, this task can be easily done for thousands

of mobile nodes without requiring the user to config-

ure individual mobile nodes. A user, before executing

a GUI command to automatically insert thousands of

mobile nodes into the topology editor, can first invoke

the node editor of the GUI to specify the protocol

stack and parameter values used for these mobile

nodes. With this setting, all inserted mobile nodes

will use the same protocol stack and parameter values.

In addition to protocol stack and parameter settings,

data and information fusion operation also useful in

mobile sensor networks to reduce traffic volume and

make intelligent decisions. In NCTUns, data and

information fusion agents running on each mobile

node can be conveniently implemented as user-level

application programs. This implementation provides

several advantages.

First, since such agents contain intelligence and are

usually complicated, it is better to implement them

separately rather than implement them as protocol

Fig. 4. Mobile ad hoc network emulation.
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modules and mix their codes with the simulation

engine code. Second, such agents may have been

implemented as application programs and are being

used in real-world sensor networks (e.g., there are

several commercial companies selling sensor network

products in the market). Since real-world application

programs can directly run on simulated nodes in

NCTUns, all developed data fusion agent programs

can readily run with NCTUns. Third, since applica-

tion programs developed for simulations can directly

run on real machines in NCTUns, it is advantageous to

develop data and information fusion agents as appli-

cation programs on NCTUns. Later on, they can be

immediately deployed in the real world or be sold as

commercial products.

For a large network with thousands of mobile

nodes, individually opening the GUI dialog box of

each node to configure its application programs and

moving path require significant effort. To simplify this

task, NCTUns provides a command to read a traffic

configuration file. Typically, such file is generated by

a script or a program written by the user. After the

GUI reads this file, each traffic generator (i.e., appli-

cation program) command string will be put into the

application tab of the specified node in the GUI. Also,

each moving path description in this file will be set as

the moving path of the specified node in the GUI. This

facility saves significant effort because the user need

not invoke each node’s GUI dialog box individually to

enter its application commands and set its moving

path.

The above facility is also useful for creating a

mobility pattern not provided by NCTUns. In the

current version, NCTUns can only automatically

generate random-waypoint paths for mobile nodes

or allow a user to manually specify the moving paths

of mobile nodes. However, a user may want to study a

mobile network with a different mobility pattern. For

example, to acquire a realistic vehicle moving sce-

nario not provided by NCTUns, one can first use a

microscopic vehicle traffic simulator to generate rea-

listic moving paths of vehicles moving on a highway

or in a city. Such traffic simulators consider the car-

following and lane-changing driver’s behavior and

the characteristics of various vehicles. The user then

imports this moving path file into the GUI and studies

how these vehicles (mobile nodes in the simulation)

wirelessly exchange their packets based on the im-

ported moving patterns. With this import facility, any

mobility pattern can be studied with NCTUns.

Fig. 5. Wireless LAN infrastructure-mode network emulation.
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Besides the above capabilities, NCTUns can dyna-

mically create, destroy, and disable/enable a mobile

node during a simulation. Each mobile node can also

dynamically change its moving path (including the

moving direction and moving speed), used protocol

stack, and used parameter values (e.g., a radio’s

transmit power) during a simulation. In addition,

each mobile node can also receive command mes-

sages sent over the simulated network to complete the

above tasks. This feature is useful for military tactics

mobile ad hoc network research and intelligent trans-

portation systems (ITS) IVC network research, as

elaborated below.

In a military tactics mobile ad hoc network, a

mobile node can be viewed as a military vehicle

(e.g., a tank) on which an intelligent agent program

acts as a commander controlling the movement of the

vehicle. The commanders on these mobile nodes use

ad hoc wireless links to communicate with each other.

Based on the information acquired from other com-

manders, a commander can make decisions to move

the vehicle. In a battlefield, a vehicle may be des-

troyed by the enemy force. It is also possible that a

vehicle suddenly appears in the battlefield (e.g., car-

ried and dropped by an airplane). To support these

military scenarios, NCTUns provides control API

functions (e.g., setNextTurningPoint()) to allow an

application program (e.g., the commander) running

on a simulated mobile node to control the movement

of the node.

In an IVC information network in ITS, a mobile

node can be viewed as a vehicle on which an intelli-

gent agent program acts as a control unit that controls

the movement of the vehicle. Recent studies have

proposed to use an ad hoc IVC network approach to

quickly distribute an emergent message among vehi-

cles without infrastructure support (i.e., via the uses of

GSM or GPRS cellular networks). One application is

to quickly distribute such a message from a scene

where a vehicle accident occurs to all following

vehicles, and the control units on the following

vehicles will then automatically slow down the cars

to avoid subsequent collisions. Another application is

to automatically maintain the safety distance between

a vehicle and its lead (or following) vehicle through

these control units without driver involvement. In

these two applications, a mobile node also needs to

actively control its moving speed and direction.

Figure 6 shows an example of IVC network studied

in NCTUns. The tiny vehicle icons in the figure

represent real-world vehicles moving on the highway.

The appearance of a small and large circles centered at

a vehicle icon represent that the vehicle is transmitting

a wireless packet, and they represent the transmission

and interference ranges of the wireless interface,

respectively. The moving paths of these vehicles are

Fig. 6. An example of IVC network.
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imported from the log file generated by the VISSIM

vehicle microscopic traffic simulator [22].

7.2. Wireless Mesh Networks

In a wireless mesh network (e.g., IEEE 802.11s),

access points function like routers to forward packets

among themselves. A mobile station associates itself

with an access point and transmits/receives packets to/

from the associated access point. The access point,

upon receiving a packet from the mobile station,

wirelessly sends it to a neighboring access point for

further forwarding. The forwarding process continues

until the packet reaches an access point that connects

to the Internet. Through this approach, a major part of

wiring cost can be saved because only a few access

points need to connect to the Internet to provide

Internet access for all mobile stations.

NCTUns provides 802.11(b) AP module for wire-

less mesh network study. Several routing approaches

suitable for wireless mesh networks have been im-

plemented and are being tested in NCTUns. We have

implemented AODV, DSR, and DSDV routing proto-

col modules for the MANET approach, the RIP and

OSPF routing protocol daemons for the fixed-network

approach, and the spanning tree protocol for the

cellular approach to build a spanning routing tree

among access points and the user location-tracking

database. Figure 7 shows an example 4� 3 wireless

mesh network. We can see that packets generated

by mobile stations are wirelessly forwarded among

access points until they reach the access points at the

top-left and top-right corners, where an Internet con-

nection is available.

7.3. GPRS Cellular Networks

In addition to simulating IEEE wireless LAN,

NCTUns also supports wide area GPRS cellular net-

work simulations. In the future, with some protocol

module modifications, NCTUns can also support

more recent cellular network proposals such as

W-CDMA.

Figure 8 shows an example of GPRS network

studied in NCTUns. From this figure, we see the

GPRS phones, base stations, SGSNs, GGSNs, and

GPRS switches that connect multiple SGSNs with

multiple GGSNs. In NCTUns, each GPRS phone is

Fig. 7. An example 4� 3 wireless mesh network.
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given an IP address to exchange IP packets with any

host on the fixed network. Internally, a GPRS phone

behaves like a host. It uses the real-world TCP/UDP/

IP protocol stack to communicate with the outside

world and any real-world application program can run

on it. This means that in NCTUns, a real-world web

browser program (e.g., the Mozilla on Linux) can run

on a GPRS phone to fetch web pages from a real-world

web server (e.g., the Apache) via the simulated GPRS

channels.

NCTUnss support for GPRS cellular network si-

mulations provides more freedom for researchers to

study such networks. NCTUns implements detailed

GPRS protocol modules (e.g., RadioPhy, MAC, RLC,

LLC, SNDCP, BSSGP, NS, and GTP [23]) and allows

their parameter values and designs to be easily chan-

ged. For example, the channel time slot allocation and

scheduling algorithm can be varied to study its effects

on contending GSM and GPRS traffic.

8. Performance Optimization

NCTUns uses a performance optimization technique

to speed up large-scale wireless network simulations.

In a real-world wireless network, when a node trans-

mits a packet through its wireless interface, the wi

reless interface of every surrounding node in the

network may receive this packet. To simulate this

phenomenon, a traditional approach makes many

copies of the packet and delivers each copy to every

surrounding wireless interface for further processing.

Although this implementation is correct, the simula-

tion speed may significantly degrade due to excessive

packet processing and duplications.

When the wireless nodes are scattered in a large

field, many of them will not ‘sense’ the signal of a

wireless packet transmitted by a node that is far from

them. In this situation, even though NCTUns makes a

copy of the transmitted packet and delivers a copy to

each of them, they will simply discard the delivered

packets because the signal strength of the received

packets is below their carrier-sense power threshold.

Therefore, CPU cycles and memory space are wasted

for duplicating, delivering, storing, and processing

these unnecessary packets.

To optimize the performance of wireless network

simulations, NCTUns moves the above power level

comparison tests from receiving nodes to the sending

node. A copy of a packet is created and delivered to

Fig. 8. An example of GPRS network.
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another node only when the comparison test is passed.

In this optimization implementation, a significant

amount of packet processing cost can be saved.

To illustrate this optimization technique, Figure 9

shows an example 10� 10 mobile ad hoc network in

which the node spacing between two neighboring

nodes is set to 200 m. In this network, the receive

and carrier-sense power thresholds of all wireless

interfaces are set to certain values that correspond to

250 and 550 m, respectively, which are graphically

indicated by the inner and outer circles centered at the

(5th row, 5th column) node. In this figure, many nodes

Fig. 10. The time required for a simulation with respect to the number of mobile nodes.

Fig. 9. A 10� 10 mobile ad hoc network configuration.
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are outside the scope of the outer circle and the new

implementation can save a lot of overhead by not

duplicating and delivering packets to them.

Figure 10 compares the simulation execution times

between the original and the optimization implemen-

tations with different numbers of nodes. The simula-

tion period is 60 s in simulation time. During the

simulation each node round-robinly transmits a

1500-byte UDP packet to other nodes in the network

at the rate of 10 packet/sec. The sizes of the networks

are 64 (8� 8), 100 (10� 10), 144 (12� 12), 255

(15� 15), 384 (18� 18), respectively. This figure

indicates that without using the performance optimi-

zation technique, the execution time will grow ex-

ponentially.

Since each packet is treated and processed as a

simulation event, the optimization technique also

reduces the number of events and the memory storage

during the simulation. Figure 11 compares the number

of events generated per simulated second between the

original and the optimization implementations under

different network sizes. The settings are the same as

those used in the previous comparison. This figure

indicates that the optimized implementation signifi-

cantly outperforms the original one.

9. Conclusions

In this paper, we present the NCTUns network

simulator and emulator for conducting wireless

communication and network researches. NCTUns

has several unique features that cannot be easily

achieved by existing simulators. For example, real-

world TCP/IP protocol stack is directly used to

generate simulation results and real-world applica-

tion programs can readily run on simulated nodes to

generate realistic traffic. These two properties en-

able researchers to use NCTUns to study the perfor-

mance of various radio resource management and

QoS schemes and their effect on higher-layer pro-

tocols and real-world applications. In addition,

NCTUns also supports emulation in which simu-

lated traffic and real-world traffic can interact with

each other. This capability is useful for testing the

function and performance of real-world networking

devices.

Currently, we are developing simulation modules

for supporting IEEE 802.16 WiMax networks, Ka-

band satellite networks, and IPv6 networks. All of

these networks are important next-generation wireless

and mobile networks.

Fig. 11. The number of events generated per simulated second with respect to the number of mobile nodes.
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