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Abstract

Taguchi method was known as an off-line quality control methodology to be used in many industries. Until now, most

applications only focus on optimizing a single-response in a static system. Furthermore, due to the increasing complexity of the

product design, more than one quality characteristic must be considered simultaneously to improve the production quality.

Therefore, there are several studies to address the multi-response problem. In order to satisfy the requirements of the production’s

design, optimization of a dynamic system been mentioned by Taguchi has received more attentions in the recent years. Hence,

optimizing a multi-response problem in a dynamic system becomes an important issue to address the quality improvement.

This study proposes a procedure utilizing the statistic regression analysis and desirability function to optimize the multi-response

problem with Taguchi’s dynamic system consideration. Firstly, the regression analysis is employed to screen out the control factors

significantly affecting the quality variation, and the adjustment factors significantly affecting the sensitivity of a Taguchi’s dynamic

system. Then, the desirability function will be applied to optimize such a multi-response problem. Finally, the effectiveness of the

proposed procedure will be demonstrated by an example of a biological reduction of ethyl acetoacetate process experiment project

at the Union Chemical Laboratories of the Industrial Technology Research Institute in Taiwan.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1960, Dr Taguchi considered that product’s quality might lead to the society’s loss if the quality cannot achieve

the customer’s ideal target after the products leaving from the factory to the society. The philosophy of the Taguchi

method is not only for the quality being expected to achieve the customer’s specification, but the quality’s variation

must be also taken into consideration (Fowlkes and Creveling, 1995; Peace, 1993; Phadke, 1989). Most related

investigations or applications primarily focus on a multiple responses in a static system for manufactured products or

processes (Antony, 2000; Derringer & Suich, 1980; Elsayed & Chen, 1993; Hsieh & Tong, 2001; Tong & Hsieh,

2000; Tong & Wang, 2002; Wurl & Albin, 1999). However, many manufactured products have diversified and they
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may cause more than one response and the dynamic characteristics to be simultaneously considered (Chen, 1994;

Hong, 1996; Wang and Tong). For instance, semiconductor manufacturing and chemical process must frequently deal

with the problem of multi-responses problem with dynamic characteristics consideration. However, the optimization

of a multi-response in a dynamic system has seldom been mentioned until now.

The relationship of several responses and the unequal importance may exist in a real case. Optimize separately a

particular response may lead to serious conflict of the parameter’s settings for a multiple responses problem. Generally,

there are two possible shortcomings for optimizing a multi-response problem via using the single-response analysis

approach: (1) There is no suitable direction to determine the control factor’s settings when conflict incurred; (2)

Combining all responses by using the weighted summation may lead to an incorrect judgment. Moreover, the related

researches for a multi-response in a dynamic system were mentioned by Hong (Hong, 1996) and Chen (Chen, 1994), there

are several shortcomings: (1) the relationship of the quality response and the control factors will be considered when

constructing the regression model of each response. It can not completely describe the whole system; (2) The optimum

parameter’s settings must be determined by performing the confirmation experiment; if there are less control factors which

significantly affecting the signal-to-noise ratio (S/N ratio), many confirmation experiments are needed. Wang and Tong

(Wang and Tong) developed a procedure of optimizing dynamic multiple responses using PCA and multiple criteria

evaluation of grey relation model to determine the optimal factor level combination. The multiple criteria evaluation of

grey relation model simultaneously considers the ideal solution and negative ideal solution to determine the optimal factor

level combination. Consequently, the optimal factor/level combination which the nearest to the ideal solution and the

farthest from the negative ideal solution can be explicitly explored. However, the number of response will be determined

by the explanation capability of the principle components. If the explanation capability is lower or it cannot be accepted by

practitioners, the number of response still can not reduce. From above shortcomings mentioned, an effective optimization

for the multi-response problem in a dynamic system must be developed.

This article is organized as follows. The literature review is made in Section 2. In Section 2, we describe clearly the

Taguchi’s dynamic system, the omega transformation and the desirability function. The proposed approach is

represented in Section 3. An illustration example is employed to demonstrate the rationality of the proposed approach

in Section 4. The concluding remarks will be made in Section 5.
2. Literature review

2.1. Taguchi method

The Taguchi method, in combining the experimental design techniques with quality loss consideration, is

conventionally used for off-line quality control. Three sequential stages will be included for applying Taguchi method

into optimizing a product or process: (1) system design, (2) parameter design, and (3) tolerance design. Further details

can be found in Peace (Peace, 1993), Fowlkes and Creveling (Fowlkes and Creveling, 1995), and Phadke (Phadke,

1989). Taguchi suggests that we can use the quadratic loss function to measure the loss for the departure of the target.

The optimum parameter condition, which makes the product to be more ‘robust’ for the environment factors and to be

more close to the target, is then determined by performing the parameter design. Parameter design is also commonly

referred to as ‘robust design’. Taguchi’s parameter design can be divided into two classes for system’s architecture:

static and dynamic characteristics. These two classes differ primarily in that the latter employs the signal factor and

the former does not. In Taguchi’s dynamic method, there are three criterions of the performance: (1) Sensitivity; (2)

Linearity and (3) Variability. To measure these three criterions, Taguchi suggest two indexes (Fowlkes and Creveling,

1995; Peace, 1993; Phadke, 1989) to determine the optimum parameter condition and, the two indexes can be defined

as the S/N ratio (Hong, 1996) and sensitivity (S):

S=N Z 10 log
b2

s2
(2.1)

S Z 10 log b2 (2.2)

where the S/N ratio indicates the variability of system and S indicates the system’s sensitivity. The features of these

two indexes are the larger the best for maximizing the system’s sensitivity and minimizing the system’s variability.
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The philosophy of the S/N is to consider the corresponding relation between the system’s variability when

simultaneously adjusting the system’s sensitivity and, the philosophy of S just only consider the sensitivity.
2.2. Dynamic system

The relationship of the response and the signal factor is generally viewed as linear relationship in Taguchi method,

i.e.

Y Z bM C3 (2.3)

where the b represents the system’s sensitivity and the 3 represents the error term. Wassermam (Wassermam, 1996)

considered that the influence of the system’s sensitivity and the error term for the different control factor/level

combination and, rewrote the term (2.3) to as

Y Z bðdÞM C3ðdÞ (2.4)

where d represents the control factor/level combination, b(d) represents the system’s sensitivity under d and 3(d)

represents the random error term under d.

The b(d) in term (2.4) can be replaced with the regression model which is fitted by employing the control factors to

be the regressors, the term is written as:

bðdÞ Z b0 C
X

h

fhðxhÞ (2.5)

where the b0 indicates the intercept, fh(xh) represents the partial regression model of the corresponding control factor

xh. There are three forms of the fh(xh) according to the control factor’s level:

1. When the factor has 2 levels, then

fhðxhÞ Z bhxh (2.6)

where bh represents the regression’s coefficient.

2. When the factor has 3 levels, then

fhðxhÞ Z bhxh Cbhhx2
h (2.7)

where bh and bhh represent the regression’s coefficient, xh represents the linear effect and x2
h represents the quadric

effect of factor xh.

3. When the factor’s level excess three levels, then

fhðxhÞ Z
Xa

iZ1

bh;ixh;i (2.8)

where bh,i denotes the coefficient of regression model; xh,i denotes the i-th level for h-th control factor. Herein, the xh,i

equals to 1 if the control factor with i-th level setting, otherwise the xh,i equals to 0. We can use three independent

variables to denote three level of control factor. That is, we can use (aK1) independent variables to represent (a)

levels of the control factor.

If the interaction effect of the control factors xu and xv are considered, the b(d) of the term (2.5) can be added the

following term:

fu;vðxu; xvÞ Z buvxuxv (2.9)
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Fig. 1. The interaction effect’s diagram of the control factor (X) and the noise factors (Z).

K.-L. Hsieh et al. / Computers & Industrial Engineering 49 (2005) 556–571 559
the noise factor’s levels are also considered in the error term, then it can be written as following:

3ðdÞ Z
X

h

ghðzhÞC3 (2.10)

where gh(zh) represents the random error of noise factor (zh). There are four forms of the gh(zh) like as the term (2.6) to

term (2.9) and, the difference is that the regression’s coefficients Gh(d) of the gh(zh) are also a function of control

factors.

Term (2.4) can be viewed as a regression perspective for a dynamic system. The interaction effect of the control

factors and signal factors will affect the scale of the system’s sensitivity. The interaction effect of the control factors

and the noise factors can lead to the capability of reducing the system’s variability. Fig. 1 can explain the viewpoint.

From the Fig. 1, when the control factor X is at the level K1, the fluctuation of the noise factors Z will lead to

smaller variability of the response Y. Therefore, the control factors having the interaction effect with the noise factors

are obtained, the corresponding level setting will reduce the response’s variability.
2.3. Desirability function and omega transformation
2.3.1. Desirability function

The desirability function is a useful tool to analyze a multi-response problem (Derringer and Suich, 1980).

Therefore, the desirability function is employed in this study. The desirability function is primarily proposed by

Harrington (Harrington, 1965) and is modified to be more flexible in practical application by Derringer and Suich

(Derringer and Suich, 1980). The value of the desirability function, which represents the degree of achieving the

target, lies in the interval [0,1] and it can be viewed as the transformation value of the predictor ŷ of the observation.

There are three forms of the desirability function according to the response’s characteristic:

1. The-nominal-the best (NTB): the ŷ is required to achieve a particular target T. When the ŷ equals to T, the

desirability value equals to 1; if the departure of ŷ excesses a particular range from the target, the desirability value

equals to 0 and, such situation represents the worst case. The desirability function of the-nominal-the-best can be

written as the term (2.11):

d Z

ŷKymin

T Kymin

0
@

1
As

; ymin % ŷ%T ; sR0

ŷKymax

T Kymax

0
@

1
At

; T % ŷ%ymax; tR0

0; otherwise

8>>>>>>>><
>>>>>>>>:

(2.11)

where the ymax and ymin represent the upper/lower tolerance limits of ŷ and, s and t represent the weights.

2. The-larger-the best (LTB): The value of ŷ is expected to the larger the better. When the ŷ excess a particular criteria

value, which can be viewed as the requirement, the desirability value equals to 1; if the ŷ is less than a particular
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criteria value, which is unacceptable, the desirability value equals to 0. The desirability function of the-larger-the-

best can be written as the term (2.12):

d Z

0; ŷ%ymin

ŷKymin

ymax Kymin

0
@

1
A; ymin K%ŷ%ymax; rR0

1; ŷRymin

8>>>>>><
>>>>>>:

(2.12)

where the ymin presents the lower tolerance limit of ŷ, the ymax presents the upper tolerance limit of ŷ and r represents

the weight.

3. The-smaller-the best (STB): The value of ŷ is expected to be the smaller the better. When the ŷ is less than a

particular criteria value, the desirability value equals to 1; if the ŷ excess a particular criteria value, the desirability

value equals to 0. The desirability function of the-smaller-the-best can be written as the term (2.13):

d Z

1; ŷ%ymin

ŷKymax

ymin Kymax

0
@

1
A; ymin % ŷ%ymax; rR0

0; ŷRymax

8>>>>>><
>>>>>>:

(2.13)

where the ymin presents the lower tolerance limit of ŷ, the ymax presents the upper tolerance limit of ŷ and r represents

the weight.

The s, t and r in the term (2.11) to the term (2.13) indicate the weights and they are defined according to the

requirement of the user. If the corresponding response is expected to be closer to the target, the weight can be set the

larger value; otherwise, the weight can be set the smaller value.

In a multi-response situation, the ideal case is all responses’ desirability value to equal 1 and the whole response’s

desirability value also equal 1. If any response cannot achieve the requirement, the ideal case of the whole response

cannot achieve and that is viewed as the unacceptable case. Moreover, if the desirability value of any response equals

to 0, the whole response will be also viewed as the unacceptable case. To complete the requirement, the whole

response’s desirability value can take the geometric average of all responses’ desirability value, i.e.

D Z ðd1 !d2 !/!dmÞ
1=m Z

Ym
iZ1

di

 !1=m

(2.14)

where the di represents the desirability value of i-th response, iZ1,..m. That is, the D equals 1 when all responses

achieve the target and, the D equals 0 when any one response cannot achieve the requirement.
2.3.2. Omega transformation

When data lies in [0,1], e.g. yield or the desirability value, which may lead to a bad model’s additive since the

value being more close to 0 or 1. To solve this problem, Taguchi suggest the Omega (U) transformation (Phadke,

1989) is employed to transfer the data into an additive mode.

U transformation’s philosophy is to simultaneously maximize the average of the system and minimize the

variation via S=NZ10 logð �y2=s2Þ. Assume that there is a binary data set y1, y2, ., yn, where yiZ1 represents success

and yiZ0 represents failure with the probability of success p. The average value of the data set is

p̂ Z �y Z
1

n

Xn

iZ1

yi and p̂ Z
1

n

Xn

iZ1

y2
i (2.15)
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the variability of this data set is

s2 Z
1

nK1

Xn

iZ1

ðyiK �yÞ2 Z
1

nK1

Xn

iZ1

y2
i K2n �y Cn �y2

 !
Z

1

nK1
ðnp̂Knp̂2Þ (2.16)

for most situations, nOO1, then the term (2.16) can be rewritten as

s2 yp̂ð1Kp̂Þ (2.17)

The S/N ratio for the larger-the-better can be obtained as following:

S=NpKLTB Z 10 log
�y2

s2
Z 10 log

p̂2

p̂ð1Kp̂Þ


 �
Z 10 log

p̂

1Kp̂


 �
(2.18)

The S/N ratio for the smaller-the-better can also be obtained by adding a negative signal to the term (4.8) as following:

S=NpKSTB ZK10 log
p̂

1Kp̂


 �
Z 10 log 1Kp̂p̂

� �
(2.19)

The terms (2.18) and (2.19) transfer the data with an unadditive mode into the S/N ratio with additive mode, i.e. which

will transfer the data lying in [0,1] to the range of (KN,N). This method is called the U transformation. It can resolve

the problem by summing up the control factor’s effect when the data lie outside the interval [0,1].

3. Proposed approach

Kapur and Chen (Kapur & Chen, 1988) had proposed a function to represent the relationship between the quality

response Y and the signal factor M in a dynamic system.

Y Z f ðMÞC feðeÞ (3.1)

Where f (M) denotes the predictable part and the effectiveness of the expectable quality, fe(e) will denote the

unpredictable part. As for Eq. (3.1), the interaction between the control factors and signal factors will affect the

sensitivity of system. Besides, the interaction between the control factors and noise factors will affect the variation of

system. The philosophy of the desirability function is the same as that of Taguchi method for achieving the target, not

only for the quality specification. Besides, desirability function can also be viewed as a scale invariant index to be

applied into the multi-response optimization. Hence, we will intent to incorporate them to developing a suitable

analytic procedure. The thinking of reducing the number of responses to two responses, variation and sensitivity, is

then employed. Due to the above thinking, we design a procedure with six steps to optimize a multi-response problem

in Taguchi’s dynamic system as follow:

Step1. Construct the regression model according to the signal factor and response.

Construct the regression model for different response Yi to find the control factor affecting the response and the

adjustment factor affecting sensitivity,

Yi Z biðdÞM C3iðdÞ; i Z 1;.;m (3.2)

where the term (2.5) represents the bi(d) and the term (2.10) represents the 3i(d), the factor which has significant

interaction effect on noise factor will be viewed as the control factor affecting response’s variability and, the control factor

which has significant interaction effect on signal factor will be viewed as the adjustment factor affecting the sensitivity.

Step2. Estimate the noise factor’s coefficient and sensitivity for each experimental trial.

To estimate the noise factor’s coefficient Ĝh;iðdjÞ and sensitivity bi(dj) of the regression model for each response Yi

under each experimental trial dj.

Step3. Compute the desirability value of each experimental trial for affecting variability and sensitivity.

(1) If the control factor/level combination, which has no influence with the noise factor Zh, can make the response Yi

more robust. Then, the coefficient Ĝh;iðdjÞ of the noise factor Zh will be close to 0. Therefore, the output of the
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response is just only affected by the inputting signal factor and it only lead to less variation. Hence, We can

achieve this subjective by minimizing G2
h;iðdjÞ. To minimize Gij Z

P
h G2

h;iðdjÞCs2
i (s2

i represents the variation

which can not be explained by Eq. (3.2) at Step 1, that is, this error term which is affected by the other factors

except the known noise factors) will make the response Yi more robust. It cannot only lead to any variation by

being affected from the noise. Therefore, the-smaller-the-best desirability function can be employed to address

this issue:

dðĜijÞ Z

1; Ĝij Z 0

MSEiKĜij

MSE

0
@

1
Ar

; 0% Ĝij %MSEi

0; Ĝij RMSEi

8>>>>>>><
>>>>>>>:

(3.3)

where, Ĝij Z
P

h Ĝ
2
h;iðdjÞ and, the MSEi represents the mean square error of the regression model YiZbM of response

Yi and r represents the weight of the response.

(2) The scale of the b(d) is focused on adjusting the system to the ideal input/output relationship. For adjusting the

system’s sensitivity, the characteristic of the b(d) is determined according to the relationship of the inputting

signal factor and the outputting response and, the ideal relationship is achieved by employing the corresponding

desirability function dðb̂iðdjÞÞ.

Step4. Compute the desirability value of each experiment run for the whole response.

To compute the desirability value Nj of the variability and Sj of the sensitivity for each experiment run dj.in the

whole response.

Nj Z
Ym
iZ1

dðĜijÞ

 !1=m

(3.4)

Sj Z
Ym
iZ1

dðbiðdjÞÞ

 !1=m

(3.5)

Step5.Determine the optimum control factor/level combination.

(1) To transfer initially the desirability value in Step 4 into additive S/N ratio by employing U transformation, i.e.

ONj and OSj,

ONj Z 10 log
Nj

1KNj


 �
(3.6)

OSj Z 10 log
Sj

1KSj


 �
(3.7)

(2) To compute the average value of ONj and OSj for each factor’s level by using orthogonal array, moreover, to

construct the response table and response graph.

(3) Herein, we will apply the philosophy of Taguchi method: ‘reduce the variation at first, and then adjust the

sensitivity to achieve the optimization’ to determine the optimum parameter settings. Firstly, we will determine

the level setting of control factors with effect on the variation. Then, the level setting of control factors with effect

on the sensitivity can also be determined. However, if there is a conflict for judging the level setting, we will use

the philosophy of Taguchi method to make the compromise. Restated, the level setting of control factors can

reduce the variation will be the optimum choice. Besides, the experimenter’s experience or the engineering’s

knowledge can also be applied to aid our decision-making.
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Step6. Perform the confirmed experiment.

To obtain the estimated S/N ratio hON and hOS of each response under the optimum parameter’s settings by using

the control factor affecting response’s variability and the adjustment factor affecting system’s sensitivity. To make

sure the repeatability of the chosen optimum parameter’s settings in reality, the confirmed experiment must be

performed. If the confirmed experiment’s S/N ratio is close to the estimated S/N ratio, the obtained optimum

parameter’s settings have a well repeatability. If the confirmed experiment’s S/N ratio is less than estimated S/N ratio,

the optimum parameter’s settings obtained have a bad repeatability and it indicates the chosen control factors, signal

factors and responses are not suitable in the experiment. Therefore, a plan must be re-performed to find a suitable

control factors, signal factors and responses.
4. Illustrative example

4.1. Biological reduction of ethyl acetoacetate process

A biological reduction of ethyl acetoacetate process, which is a working process in the Union Chemical

Laboratories of the Industrial Technology Research Institute, will be employed to demonstrate the proposed

optimization in this section.

S-4-Chloro-3-hydroxybutyric acid ethyl ester (or S-CHBE), which is a middle optical activity widely used,

can employed to synthesize Simvastatin. If the middle components are synthesized by chemical method, which

needs more experimental steps and leads more fluctuate reactive conditions, it cannot produce high enantiomeric

excess (ee) products. Therefore, the optical features of microorganism can be applied to produce the middle

components. The goal of this experiment is to employ yeast to biological reduction of ethyl acetoacetate

process. This technique utilizes the yeast for reducing base’s ketone to alcohol chemical compound with optical

features. However, there are some enzymes which can perform the reduction in yeast cell, e.g. S-type (can

produce S-CHBE) dehydrogenase or R-type (can produce R-CHBE) dehydrogenase. The unequal amount of

S-CHBE and R-CHBE frequently exist in liquid products for the nonhomogenous or adverse of the enzyme’s

optical choices. If the process can be careful to control, the S-CHBE enzyme will have the better activity and

lead the activity of R-CHBE enzyme to be lower. Next, a high enantiomeric excess (ee) product can be

obtained.

The yield and enantiomeric excess (ee) is determined to be the interested responses. Engineers review the related

literature, the yield lies in 42–62% and the ee lies in 15–85% for S-CHBE in the previous experience or related

reports. Besides, the two responses are the larger the better (LTB) according to the application’s requirement. For

studying the effect on the change of base’s concentration, it is determined to be a signal factor (M). The obtained

reactive condition is then expected to keep high yield and produce high enantiomeric excess (ee) product under

different base’s concentrations. By performing brainstorm analysis and pre-experiment, eight control factors are

chosen: X1–X8 (for business secrete). Table 1 lists the levels of these eight factors and the signal factor. The levels of

X4 and X5 are designed as the fluctuate levels; a better result depends on that the increasing of base’s concentration

which may lead to increase the amount of X4 and X5. Table 2 lists the fluctuate levels of the two factors: X4 and X5.

The different lot of yeast is viewed as a noise factor and, two lots are considered. The L18 OA is employed to perform

this experiment. Herein, we use the SAS statistical software to deal with the necessary data analysis including the

model constructing.
4.2. Result analysis

The proposed approach is employed herein to demonstrate this illustrated example step by step.

Step 1: Construct the regression model of the signal factor and quality response

Firstly, the factor’s levels are coded according to the code -1 and 1 for two levels and, the code K1, 0 and 1 for

three levels. Employ the stepwise regression approach to construct the regression model of Y1 and Y2. After checking

the model’s adequacy, the regression models of Y1 and Y2 with respect to the significant factors are obtained as



Table 2

The fluctuate level definition for X4 and X5

M 1% 3% 5%

X4 Fluctuate (1) 40% 80% 120%

Fluctuate (2) 60% 100% 140%

Fluctuate (3) 80% 120% 160%

X5 Fluctuate (1) 1.0 ml/l 1.2 ml/l 1.4 ml/l

Fluctuate (2) 1.2 ml/l 1.4 ml/l 1.6 ml/l

Fluctuate (3) 1.4 ml/l 1.6 ml/l 1.8 ml/l

Table 1

The level definition of the control the signal factors

Factor Level 1 Level 2 Level 3

M 1% 3% 5%

X1 S A

X2 140 rpm 170 rpm 200 rpm

X3 0.2% 0.6% 1.0%

X4 Fluctuate (1) Fluctuate (2) Fluctuate (3)

X5 Fluctuate (1) Fluctuate (2) Fluctuate (3)

X6 7.5 8.0 8.5

X7 0.3 M 0.4 M 0.5 M

X8 1 h 2 h 3 h
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follows:

Ŷ1 Z ð0:39821K0:017933x1 C0:023587x2
3K0:031206x4 C0:012966x5 K0:02151x8ÞM C0:10905z;R2 Z 0:97135

(4.1)

Ŷ2 Z ð0:11105K0:005156x1K0:012232x2
2 C0:018344x4K0:009297x5ÞMK0:018378x2

3z;R2 Z 0:93132 (4.2)

No any interactions exist between the control factors and noise factors, hence, no control factors have the significantly

effect on the quality response Y1. However, the noise factor Z will significantly affect the output of quality response

Y1. That is, the product coming from the different lot will lead to the variance of the experimental results.

Furthermore, there are interaction exist between X1, X3, X4, X5, X8 and signal factor M from Eq. (4.1), that is, these

control factors will affect the sensitivity of quality response of Y1. Equally, from Eq. (4.2), interaction exist between

the control factors X3 and noise factor Z, the control factor X3 will be the factor significantly affects the quality

response Y2. At the same time, from Eq. (4.2), control factors X1, X2, X4, X5 and the signal factor M will have

interaction. Hence, these control factors will affect the sensitivity of quality response Y2.

Step 2: Estimate the sensitivity of the noise factor’s coefficient for each experimental run

The coefficients Ĝ1ðdÞ and Ĝ2ðdÞ of the noise factors for each quality response under experimental run can be

obtained from the form Eqs. (4.1) and (4.2):

Ĝ1ðdÞ Z 0:10905 (4.3)

Ĝ1ðdÞ ZK0:018378x2
3 (4.4)

Equally, the sensitivities b̂1ðdÞ and b̂2ðdÞof each quality response under experimental run can also be obtained from

the form Eqs. (4.1) and (4.2):

b̂1ðdÞ Z 0:39821K0:017933x1 C0:023587x2
3K0:031206x4 C0:012966x5K0:02151x8 (4.5)

b̂2ðdÞ Z 0:11105K0:005156x1K0:012232x2
2 C0:018344x4K0:009297x5 (4.6)

Step 3: Compute the desirability value of the variation and the sensitivity for each experimental run



Table 3

The desirability values of the variation and the sensitivity for each parameter’s combination

X1 X2 X3 X4 X5 X6 X7 X8 N S

S 140 0.2 1 1 7.5 0.3 1 0.19710 0.64667

S 140 0.6 2 2 8.0 0.4 2 0.20652 0.59653

S 140 1.0 3 3 8.5 0.5 3 0.19710 0.57909

S 170 0.2 1 2 8.0 0.5 3 0.19710 0.62654

S 170 0.6 2 3 8.5 0.3 1 0.20652 0.61751

S 170 1.0 3 1 7.5 0.4 2 0.19710 0.55153

S 200 0.2 2 1 8.5 0.4 3 0.19710 0.58270

S 200 0.6 3 2 7.5 0.5 1 0.20652 0.57476

S 200 1.0 1 3 8.0 0.3 2 0.19710 0.66534

A 140 0.2 3 3 8.0 0.4 1 0.19710 0.58999

A 140 0.6 1 1 8.5 0.5 2 0.20652 0.59786

A 140 1.0 2 2 7.5 0.3 3 0.19710 0.58023

A 170 0.2 2 3 7.5 0.5 2 0.19710 0.60256

A 170 0.6 3 1 8.0 0.3 3 0.20652 0.50001

A 170 1.0 1 2 8.5 0.4 1 0.19710 0.63672

A 200 0.2 3 2 8.5 0.3 2 0.19710 0.55875

A 200 0.6 1 3 7.5 0.4 3 0.20652 0.61551

A 200 1.0 2 1 8.0 0.5 1 0.19710 0.59363
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The variance of quality response of Y1 and Y2 can be estimated from the Mean Square Error (MSE) of Eqs. (4.1)

and (4.2). Then, the Ĝ1 and Ĝ2 can be computed by using Eqs. (4.3) and (4.4). The desirability value of dðĜ1Þ and

dðĜ2Þ can be obtained by employing the formula (3.3). Next, we can use the result obtained from Eqs. (4.5) and (4.6)

to compute the desirability value of sensitivity dðb̂1ðdÞÞ and dðb̂2ðdÞÞ. Herein, we will use Eqs. (2.12) and (2.13) to

compute the desirability value for response Y1 with LTB characteristic and response Y2 with STB characteristic.

Furthermore, the importance of these two responses have the same, the weight r of both will be set to 1.

Step 4: Compute the whole desirability value of each experimental run

The desirability value N and S of the variance and the sensitivity can be computed by inputting the dðĜ1Þ and dðĜ2Þ,

dðb̂1Þand dðb̂2Þ to Eqa. (3.4) and Eqa. (3.5). Table 3 lists all results

Step 5: Determine the optimum control factor/level combination

The desirability value N and S from the form Eqs. (3.4) and (3.5) are firstly employed to transfer the both value into

the additive S/N ratio. Then, the effect of the factor’s level can be determined. Tables 4 and 5 represent the response

table. The response graph can be represented as Fig. 2 and Fig. 3. Reviewing Table 4 and Fig. 2, the significant factors

affecting the variance of the whole quality N is X3. Reviewing Table 5 and Fig. 3, the significant factors affecting the

sensitivity of the system will be the factors X1, X2, X3, X4, X5, X7 and X8. Finally, we will apply the philosophy of

Taguchi method, reduce the variation at first and then adjust the sensitivity, to determine the optimum parameter

settings. The optimum factor/level combination can be determined as: X1ZS, X2Z200, X3Z0.6, X4Zfluctuate level

one, X5Zfluctuate level three, X6Z8.0, X7Z0.3 and X8Z1.
Table 4

The response table for the S/N ratio of the variation

Control factor Level one Level two Level three

X1 K6.01507 K6.01507

X2 K6.01507 K6.01507 K6.01507

X3 K6.09981 K5.84561 K6.09981

X4 K6.01507 K6.01507 K6.01507

X5 K6.01507 K6.01507 K6.01507

X6 K6.01507 K6.01507 K6.01507

X7 K6.01507 K6.01507 K6.01507

X8 K6.01507 K6.01507 K6.01507



Table 5

The response table for the S/N ratio of the sensitivity

Control factor Level 1 Level 2 Level 3

X1 1.85119 1.51864

X2 1.73626 1.57557 1.74292

X3 1.78641 1.47548 1.79285

X4 2.34041 1.68123 1.03310

X5 1.39030 1.68420 1.98024

X6 1.68144 1.68991 1.68340

X7 1.68683 1.68461 1.18330

X8 1.94623 1.68929 1.41922
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4.3. Confirmation experiments

The factors having the significant effect on both of the variation and the sensitivity for response Y1 and Y2 in Step1

are employed to estimate the S/N ratio:

1. The concentration of the S-CHBE(Y1)

Because no significant factor having effect on the variation in this experiment, hence,

hONopt
Z �hON ZK6:0158

Besides, the estimated desirability value can also computed as 0.2002.

2. The factors X1, X3, X4, X5 and X8 have the significant effect on the sensitivity:

hOSopt
Z �hOS C ð �hX1ZSðOSÞK �hOSÞC ð �hX3Z0:6ðOSÞK �hOSÞC ð �hX4Z1ðOSÞK �hOSÞC ð �hX5Z3ðOSÞK �hOSÞC ð �hX8Z1ðOSÞK �hOSÞ

Z �hX1ZSðOSÞ C �hX3Z0:6ðOSÞ C �hX4Z1ðOSÞ C �hX5Z3ðOSÞ C �hX8Z1ðOSÞK4! �hOS

Z 1:85119 C1:47548 C2:34041 C1:98024 C1:94623K4ð1:64892Þ Z 2:99786

And, the estimated desirability value can also computed as 0.9990.

3. The concentration of the R-CHBE(Y2)

The factor X3 is the significant factor for the variation:

hONopt
Z �hON C ð �hX3Z0:6ðonÞK �hONÞ Z �hX3Z0:6ðonÞ ZK5:8456

Then, the estimated desirability value can also computed as 0.2065.
The S/N ratio of the variation.
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Fig. 2. The response diagram for the S/N ratio of the variation.



The S/N ratio of the sensitivity.
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Fig. 3. The response diagram for the S/N ratio of the sensitivity.

K.-L. Hsieh et al. / Computers & Industrial Engineering 49 (2005) 556–571 567
4. The factors X1, X2, X4 and X5 have the significant effect on the sensitivity:
hOSopt
Z �hOS C ð �hX1ZSðOSÞK �hOSÞC ð �hX2Z200ðOSÞK �hOSÞC ð �hX4Z1ðOSÞK �hOSÞC ð �hX5Z3ðOSÞK �hOSÞ

Z �hX1ZSðOSÞ C �hX2Z200ðOSÞ C �hX4Z1ðOSÞ C �hX5Z3ðOSÞK3! �hOS

Z 1:855119 C1:74292 C2:3404 C1:98024K3!1:6849 Z 2:86

And, the estimated desirability value can also computed as 0.9986.

Perform the confirmed experiment according to the optimum parameter’s setting we obtained. Table 6 and Table 7

list the results of the confirmed experiment and the S/N value of the confirmed experiment. The related data of Table 6

can be sent to the proposed approach from step 2 to Step 4. Then, the S/N value can be then computed. To compare the

S/N ratio of the confirmed experiment and the estimated S/N ratio, only the sensitivity’s S/N ratio of S-CHBE is lower

than the estimated S/N ratio. The other S/N ratios are higher than the estimated S/N ratio. This indicates that the
Table 6

The results of the confirmed experiment

M X1 X2 X3 X4 X5 X6 X7 X8 Yield(%) ee(%) Y1 Y2

1 S 200 0.6 40 1.4 8.0 0.3 1 72.10 69.50 88.63 83.88 0.680 0.639 0.041 0.056

69.90 69.60 88.84 85.63 0.660 0.646 0.039 0.050

76.10 71.80 89.22 83.29 0.720 0.658 0.041 0.060

72.80 78.20 80.40 74.42 1.970 2.046 0.214 0.300

3 S 200 0.6 80 1.6 8.0 0.3 1 67.90 76.03 82.23 78.34 1.856 2.034 0.181 0.247

66.30 77.30 80.59 78.01 1.796 2.064 0.193 0.255

54.30 65.18 75.47 62.32 2.382 2.645 0.333 0.614

5 S 200 0.6 120 1.8 8.0 0.3 1 56.20 63.58 76.73 63.57 2.483 2.600 0.327 0.579

52.10 64.38 78.12 62.97 2.320 2.623 0.285 0.596

p.s: Where the yield and ee value can be computed as the following formulas: YieldZ ½ðY1 CY2Þ=M� � 100; eeZ ½ðY1 KY2Þ=ðY1 CY2Þ� � 100.

Table 7

The S/N ratios of the confirmed experiment

S/N ratio of the variation S/N ratio of the sensitivity

Confirmed result Estimated result Confirmed result Estimated result

Y1 K5.231 K6.0158 1.040 2.99786

Y2 K2.367 K5.8456 8.304 2.86

p.s: the S/N values of the confirmed experiment can be computed by inputting the confirmed result into the step 2wstep 4 for the proposed

procedure.
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Fig. 4. The S/N response diagram of variation for the S-CHBE.
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optimum parameter’s setting represents a well repeatability. Only one optimum parameter’s setting can be obtained

and it can achieve the target: the higher yield and high enantiomeric excess product.
4.4. The comparison result of the proposed approach and the Taguchi’s dynamic method for a single response

This experiment can be viewed as an experiment combined with two responses. The Taguchi’s dynamic method

for a single response is then employed to analyze the same experimental data.

When the Taguchi’s dynamic method is employed to response Y1 (the concentration of S-CHBE). The factors X2

and X4 are the significant factors affecting the S/N ratio of Y1 (we can screen out from Fig. 4). The factors X4 and X8 are

the significant factors having the significant effect on the sensitivity of Y1 (we can screen out from Fig. 5). Hence, the

optimum parameter’s settings can be determined as X1ZS, X2Z170, X3Z1.0, X4Zfluctuate level two, X5Zfluctuate

level three, X6Z8.0, X7Z0.5 and X8Z2. Employing Taguchi’s dynamic method to Y2 (the concentration of

R-CHBE), the factors X2, X4, X5, X6 and X8 are the factors having the significant effect on the S/N ratio (we can screen

out from Fig. 6) and, the factors X4 and X5 are the significant factors affecting the sensitivity (we can screen out from

Fig. 7). Therefore, the optimum parameter’s setting for the concentration of R-CHBE can be determined as X1ZA,

X2Z140, X3Z0.6, X4Zfluctuate level two, X5Zthe fluctuate level one, X6Z8.5, X7Z0.4 and X8Z2.

Analyzing these results, we can find out that there are serious conflicts between the parameter’s settings except the

factors X4 and X8. Hence, determining the optimum parameter’s settings of the whole system will be more difficult.

However, for making the comparison, one optimum parameter’s setting must be determined by making compromise

for several senior engineers as: X1ZS, X2Z170, X3Z0.6, X4Zthe fluctuate level two, X5Zthe fluctuate level three,

X6Z8.0, X7Z0.5 and X8Z2. Table 8 lists the results of the Taguch’s method (by compromise) and that of
Sensitivity reponse diagram for S–CHBE
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Fig. 5. The S/N response diagram of sensitivity for the S-CHBE.
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the proposed approach. The settings of X2, X4, X7 and X8 have the significant difference. Furthermore, Table 9 lists the

estimated S/N ratios of the two methods. From the comparison of Table 9, only the estimated S/N ratio of the variation

for the concentration of R-CHBE is less than Taguchi’s approach. The others estimated S/N ratios are larger than

Taguchi’s method. Hence, the proposed approach will be efficiency. It can effectively achieve the quality

improvement.
Table 8

The comparison result of the optimum parameter’s settings for the proposed approach and the Taguchi’s method

X1 X2 X3 X4 X5 X6 X7 X8

The proposed approach S 200 0.6 Level 1 Level 3 8.0 0.3 1

The Taguchi’s dynamic

method

S 170 0.6 Level 2 Level 3 8.0 0.5 2

Table 9

The comparison of the estimated S/N ratios for the proposed approach and the Taguchi’s method

The S/N ratio of the variation The S/N ratio of the sensitivity

The proposed approach The Taguchi’s method The proposed approach The Taguchi’s method

Y1 K6.0158 K7.365 2.99786 K1.319

Y2 K5.8456 K4.574 2.86 1.977
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5. Concluding remarks

The related literature for the optimization of a multi-response problem with Taguchi’s dynamic system

consideration has seldom been mentioned. Wasermam (Wassermam, 1996) has demonstrated the operation of a single

response problem in dynamic system by employing the regression’s perspective; however, there is not a suitable

approach to a multi-response problem. The most difficulty is that the optimum parameters’ settings for different

response are usually conflict and, the weight value of response usually depend on the engineers’ subjective judgment.

In such situations, the final optimum parameters’ setting will be more difficult to determine. In this study, an

optimization approach incorporating the regression analysis and the desirability function perspective in a multi-

response with Taguchi’s dynamic system consideration is proposed. Moreover, the proposed approach cannot be

employed in a dynamic system, but also can be employed in a static system. The proposed approach can provide

several metrics:

(1) Our proposed approach can effectively departure those control factors which significant affect the response’s

variability or system’s sensitivity and, the requirement of minimizing variability and adjusting system’s

sensitivity can be achieved;

(2) For real applications, linear relationship between the response and signal factor may be not necessary, the

proposed approach with great flexibility can be employed for non-linear relationship;

(3) In a dynamic system, the number of signal factor sometimes excess one signal factor, the proposed approach can

also be employed to a dynamic system with multiple signal factors;

(4) The proposed approach employing the desirability function can not only consider the unequal importance

between responses, but also represent the requirement for the response’s quality;

(5) The proposed approach cannot only be employed to optimize the multi-response problem in a dynamic system,

but also can be employed to optimize the multi-response problem in a static system.
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