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Abstract

The design criteria of stainless steel compression member are more complicated than those of

carbon steels due to the nonlinear stress strain behavior of the material. In general, the tangent

modulus theory is used for the design of cold-formed stainless steel columns. The modified

Ramberg–Osgood equation given in the ASCE Standard can be used to determine the tangent

modulus at specified level of stresses. However, it is often tedious and time-consuming to determine

the column buckling stress because several iterations are usually needed in the calculation. This

paper presents new formulations to simplify the determination of flexural buckling stress without

iterative process. Taylor series expansion theory is utilized in the study for numerical

approximations. The proposed design formulas are presented herein and can be alternatively used

to calculate the flexural buckling stress for austenitic type of cold-formed stainless steel columns.

It is shown that the column strengths determined by using the proposed design formulas have good

agreement with those calculated by using the ASCE Standard Specification. A design example is also

included in the paper for cold-formed stainless steel column designed by using the ASCE Standard

equations and the proposed design formulas.
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Notation

A Area of the full, unreduced cross section

Ae Effective area of the cross section

b Effective design width of compression element

C Slenderness ratio, KL/r

Co Specified slenderness ratio at FnZFy

C1 Limiting slenderness ratio at FnZF1

Eo Initial modulus of elasticity

Et Tangent modulus

f Nominal stress

Fy Specified yield strength

F1 Specified buckling stress with respect to C1

Fn Nominal buckling stress

Fn,ASCE Nominal buckling stress determined from ASCE Standard Specification

Fn,prop Nominal buckling stress determined from the proposed design formulas

Ix Moment of inertia of x-axis

Iy Moment of inertia of y-axis

k Plate buckling coefficient

K Effective length factor

L Unbraced length of member

n Coefficient used for determining the tangent modulus

Pn Nominal axial strength of member

r Radius of gyration

t Thickness of the section

w Flat width of element exclusive of radii

a Eo/EtK1

b Constant

fc Resistance factor for axial strength

lo Parameter used for determining buckling stress

l1 1Klo

r Reduction factor

l Slenderness factor
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1. Introduction

For the design of cold-formed stainless steel compression members, the ASCE

Standard Specification can be used to determine the design axial strength. The current

specification was published in 2002 by ASCE as SEI/ASCE 8-02 [1]. This updated edition

of the Specification is a revision of the ASCE Standard published in 1991 [2]. Due to



a

 b

c
d

S
tr

es
s

Strain

a Hot rolled carbon or low alloy steel
b  Cold rolled carbon low alloy steel
c  Annealed and flattened stainless steel

(longitudinal tension)
d  Annealed and flattened stainless steel
        (longitudinal compression)

Fig. 1. Stress–strain curves of carbon and stainless steels
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the differences in mechanical behavior of stainless steels as compared with carbon steels as

shown in Fig. 1, the design of stainless steel compression members is more complex than

those of carbon steels. It is noted that stainless steels have gradually yielding type of

stress–strain curves with relatively low proportional limits [3,4]. Because of the nonlinear

stress-strain behavior, the design of stainless steel compression members is based on the

tangent modulus theory [5,6].

Stainless steel has different mechanical properties in longitudinal and transverse

directions for tension and compression modes of stress. As a result, different tangent

modulus, Et, are provided for different types of stainless steels in the design tables and

figures of the ASCE Specification. Tangent modulus is used to account for the inelastic

buckling of stainless steel compression components. Alternatively, it can be determined by

using the modified Ramberg–Osgood equation [7,8] given in Appendix B of the ASCE

Standard for specified types of stainless steels. Because of the nonlinear nature of tangent

modulus, the column buckling stress is determined through an iterative process until the

satisfied tolerance is reached [9,10]. This type of calculation is often tedious and time-

consuming as compared with that of hot-rolled steel column design.

To simplify the design process, this paper presents a new approach to obtain the design

formulas for determining the flexural buckling stress without successive iterations. These

formulas are developed from the tangent modulus equation obtained from the modified

Ramberg–Osgood equation. A mathematical approximating method utilizing the Taylor

series expansion theory is formulated for numerical approximation. New design formulas

are proposed for austenitic type of cold-formed stainless steel columns subjected to

flexural buckling. It is shown that the approximated solutions have a good agreement as

compared with the ASCE Standard solutions. To illustrate the simplified design approach,

a design example of cold-formed stainless steel column subjected to flexural buckling is

included in Appendix of the paper.
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2. Review of ASCE design criteria

Section 3.4 of the ASCE Standard provides the design requirements to determine the

design axial strength for concentrically loaded cold-formed stainless steel compression

members. It specifies that the resultant of all loads acting on the members is an axial loads

passing through the centroid of the effective section calculated at the stress Fn. The design

axial strength, fcPn, is calculated as follows:

fc Z 0:85

Pn Z AeFn (1)

where:

AeZeffective area calculated at stress Fn

FnZthe least of the flexural, torsional, and torsional-flexural buckling stress

determined according to Sections 3.4.1–3.4.3 of the ASCE Standard, respectively.

Section 3.4.1 of the ASCE Standard specifies that, for doubly symmetric sections,

closed cross sections, and any other sections which are not subjected to torsional or

torsional–flexural buckling, the flexural buckling stress, Fn, is determined as follows:

Fn Z
p2Et

ðKL=rÞ2
%Fy (2)

where:

EtZtangent modulus in compression corresponding to buckling stress Fn

KL/rZslenderness ratio

FyZspecified yield strength, as given in Table 1 for austenitic type stainless steels

To calculate the flexural buckling stress in Eq. (2), it is necessary to have a proper value

of Et, which can be obtained from design tables or figures in the ASCE Standard for the

assumed stress. Alternatively, it can be determined by using analytical expression, which

is based on the modified Ramberg–Osgood equation

Et Z
EoFy

Fy C0:002 nEoðFn=FyÞ
nK1

(3)
Table 1

ASCE specified yield strength Fy for austenitic type stainless steels [1]

Types of stress Fy, Mpa

Types 201, 301, 304, 316

Annealed 1/16 Hard 1/4 Hard 1/2Hard

Longitudinal

tension

206.9 310.3 517.1 758.5

Transverse tension 206.9 310.3 517.1 758.5

Transverse

compression

206.9 310.3 620.6 827.4

Longitudinal

compression

193.1 282.7 344.8 448.2



Table 2

ASCE specified initial modulus of elasticity Eo and coefficient n for austenitic type stainless steels [1]

Types of stress Types 201, 301, 304, 316

Annealed and1/16 Hard 1/4Hard 1/2Hard

Eo (MPa) n Eo (MPa) n Eo (MPa) n

Longitudinal tension 193100 8.31 186200 4.58 186200 4.21

Transverse tension 193100 7.78 193100 5.38 193100 6.71

Transverse compression 193100 8.63 193100 4.76 193100 4.54

Longitudinal

compression

193100 4.10 186200 4.58 186200 4.22
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in which Eo is the initial modulus of elasticity and n is the coefficient used for determining

tangent modulus. Table 2 gives values of Eo and n for austenitic type stainless steels,

which are obtained from design tables in the ASCE Standard.

Because the buckling stress, Fn, and the tangent modulus, Et, are interdependent as self-

explanatory in Eqs. (2) and (3), the determination of flexural buckling stress, Fn, requires

iterative process. The buckling stress, Fn, is needed to determine Et in Eq. (3), but it is not

known until it has been obtained from Eq. (2). Therefore, to determine a proper value of Et,

a buckling stress is first to be assumed in Eq. (3). Then, this calculated value of Et is used to

determine the buckling stress, Fn, in Eq. (2). In view of the fact that the calculated buckling

stress is seldom equal to the first assumed buckling stress, further successive iterations are

needed to obtain the final buckling stress. This buckling stress can be achieved when a

satisfied convergence of error is reached.

For details of determining the buckling stress by using ASCE Standard design

provisions, see the design example in the appendix of the paper.
3. Simplified approach

As discussed above, for the design of cold-formed stainless steel columns, the

determination of flexural buckling stress is tiresome due to its iterative process of

calculation. As a result, a simplified approach is proposed herein to determine the flexural

buckling stress without having iterative calculations. New formulations are developed as

targets of the numerical approximation. In order to simplify the calculations, Taylor series

expansion is applied to the approximating equation. The following section gives detailed

presentations on this subject.

3.1. Initial concept

The flexural buckling stresses determined by using the ASCE design equations for

Type 304 stainless steel columns in longitudinal compression (LC) and transverse

compression (TC) are shown in Figs. 2 and 3, respectively. Nonlinear buckling stress

curves are found typical for those columns when the flexural buckling stresses are less than

Fy, which is the upper bond of Eq. (2). Thus, a linear equation is initialized in this study to

simplify these nonlinear curves.



0 50 100 150 200

Slenderness Ratio, KL/r

0

100

200

300

400

500

F
le

xu
ra

l B
uc

kl
in

g 
S

tr
es

s,
 F

n 
(M

P
a)

Type 304 Stainless Steel Columns
(Longitudinal Compression)

Annealed
1/16 Hard
1/4 Hard
1/2 Hard

Fig. 2. ASCE Standard flexural buckling stresses for Type 304 stainless steel columns in longitudinal

compression.
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Fig. 3. ASCE Standard flexural buckling stresses for Type 304 stainless steel columns in transverse compression.

S.H. Lin et al. / Thin-Walled Structures 43 (2005) 1831–18511836



Slenderness Ratio, KL/r

F
le

xu
ra

l B
uc

kl
in

g 
S

tr
es

s 
in

Lo
g 

S
ca

le
, l

og
 F

n

Eq. (5)

Eq. (13)

A (C0 , logFy )

B ( C1, log F1  )log F1

C1C0

log Fy

Fig. 4. Simplified flexural buckling stress formulas.
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As shown in Fig. 4, it is observed that when applying logarithm to the flexural buckling

stress curves, i.e. log(Fn), a portion of the nonlinear buckling stress curve becomes a

straight line segment between points A(C0, logFy) and B(C1, logF1). The linearized

portion of the curve can be defined by these two specified points as follows:

log F1Klog Fy

C1KC0

Z
log FnKlog Fy

CKC0

(4)

in which CZKL/rZslenderness ratio, and C0 and C1 are two specified slenderness ratios

with their corresponding buckling stresses at Fy and F1 in logarithmic scale, respectively.

This linear approximation is beneficial to simplify the procedure of finding the nonlinear

buckling stresses.
3.2. Development of formulations

The simplified approach can be achieved by taking the advantage of this linear

approximation. New formulations are developed for the corresponding parameters used in

the simplified scheme. Eq. (4) can be rearranged as the following simplified form:

Fn Z F
ðCKC0=C1KC0Þ
1 !FðC1KC=C1KC0Þ

y (5)
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The parameters in the above equation can be obtained from the flexural buckling stress

equation in Eq. (2) and the tangent modulus equation in Eq. (3). As shown in Fig. 4, the

slenderness ratio of C0 in Eq. (5) is determined when Fn is equal to Fy. That is

Fn Z Fy Z
p2Ey

ðKL=rÞ2
(6)

r ðKL=rÞ2 Z
p2Ey

Fy

Let

C0 Z KL=r Z p

ffiffiffiffiffiffi
Ey

Fy

s
ðfor Fn Z FyÞ (7)

where Ey is the tangent modulus at yield strength level and is equal to

Ey Z
Eo

1 C0:002 n Eo

Fy

(8)

The buckling stress F1 given in Eq. (5) is obtained from Eq. (3) by rearranging Et and Fn

and replacing Fn by F1 as follows:

F1 Z
EoKEt

Et

� �
Fy

0:002nEo

� �1=nK1

!Fy (9)

Let

a Z
EoKEt

Et

Z
Eo

Et

K1 (10)

Then, Eq. (9) becomes

F1 Z
aFy

0:002nE0

� �1=nK1

!Fy (11)

The value of F1 can be considered the proportional limit of stainless steels, which varies

with respect to the type of stainless steels.

Based on Eq. (10), the tangent modulus Et can be expressed in terms of a

Et Z
Eo

ð1 CaÞ
(12)

Substitution of Eq. (12) into Eq. (2) yields the following general expression for the flexural

buckling stress:

Fn Z
p2Et

ðKL=rÞ2
Z

p2Eo

C2ð1 CaÞ
(13)
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Then, for the stress level at FnZF1, the limiting slenderness ratio of C1 can be obtained as

follows:

C1 Z p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eo

F1ð1 CaÞ

s
ðfor Fn Z F1Þ (14)

The value of C1 can be considered a limiting slenderness ratio of column buckling as

shown in Fig. 4. When the KL/r ratio is greater than this limiting slenderness ratio, the

column buckling stress is calculated by Eq. (13); and when the KL/r ratio is smaller than

this limiting ratio, the column buckling stress is determined by Eq. (5).

3.3. Approximating expressions

The parameter a plays an important role in finding the buckling stress F1 in Eq. (11) and

the limiting slenderness ratio C1 in Eq. (14). When the a value is known, the determination

of buckling stress Fn in Eqs. (5) and (13) becomes straight forward without iterative

calculations. This section presents an approximating technique to evaluate the parameter a
used in the equations of the proposed simplified approach.

The tangent modulus in Eq. (3) can be rewritten as

Et Z
EoFy

Fy C0:002nEoðFn=FyÞ
nK1

Z
Eo

1 C0:002n Eo

Fy

� �
Fn

Fy

� �nK1
(15)

By comparing Eqs. (12) and (15), the parameter a can be expressed as

a Z 0:002n
Eo

Fy

� �
Fn

Fy

� �nK1

(16)

Substituting the value of Fn in Eq. (13), Eq. (16) can be rewritten as

a Z 0:002n
Eo

Fn
y

� �
p2Eo

C2ð1 CaÞ

� �nK1

(17)

From the above equation, it is noted that the parameter a can be combined to form a new

polynomial function as

f ðaÞ Z að1 CaÞnK1 Z 0:002n
p2

C2

� �nK1
Eo

Fy

� �n

(18)

Eq. (18) is a function of a with degree of n (nZconstant coefficient, used for determining

tangent modulus as specified in ASCE Standard). Due to the complexity of the function,

approximating polynomial method is used to solve this equation. Therefore, Eq. (18) can

be approximately expressed by using Taylor series expansion as follows:

að1 CaÞnK1 Z
XN

iZ0

f iðaÞ

i!
ai C/ (19)

in which fi(a)is the ith derivative of the function f(a).
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The correlation between both sides of Eq. (19) is carefully evaluated in order to obtain a

better approximated solution. Higher degrees of derivatives are neglected as common

engineering practice. Then, Eq. (19) can be approximately expressed as, for NZ2,

að1 CaÞnK1 ya C ðnK1Þa2 (20a)

and, for NZ3,

að1 CaÞnK1 ya C ðnK1Þa2 C
ðnK1ÞðnK2Þ

2
a3 (20b)

Eqs. (20a) and (20b) are numerically evaluated for two specified n values as given in

Tables 3 and 4. These calculated values contain f(a)Za(1Ca)nK1,aC(nK1)a2, and aC
(nK1)a2C(nK1)(nK2)a3/2 for a values varies from 0 to 0.2 at intervals of one-

hundredth. As compared with the actual values of f(a), the approximating values

calculated from Eq. (20b) provide better agreement than those calculated from Eq. (20a). It

is an obvious outcome for this typical series expansion, i.e. the more expanded terms are

used; the better approximation can be achieved. In this study, Eqs. (20a) and (20b) are

separately used to determine the a value for specified column buckling mode.

3.4. Numerical approximation

It is well known that, for columns having larger slenderness ratio, the elastic buckling

failure mode frequently controls the column strength. This buckling stress can be
Table 3

Comparisons of calculated values of Eqs. (20a) and (20b) for nZ4.58

a f(a)Za(1Ca)nK1 aC(nK1)a2
aC ðnK1Þa2 C ððnK1Þ!

ðnK2Þ=2Þa3

0.00 0.00000 0.00000 0.00000

0.01 0.01036 0.01036 0.01036

0.02 0.02147 0.02143 0.02147

0.03 0.03335 0.03322 0.03335

0.04 0.04603 0.04573 0.04602

0.05 0.05954 0.05895 0.05953

0.06 0.07392 0.07289 0.07389

0.07 0.08919 0.08754 0.08913

0.08 0.10538 0.10291 0.10528

0.09 0.12253 0.11900 0.12236

0.10 0.14066 0.13580 0.14042

0.11 0.15983 0.15332 0.15946

0.12 0.18005 0.17155 0.17953

0.13 0.20136 0.19050 0.20065

0.14 0.22379 0.21017 0.22284

0.15 0.24739 0.23055 0.24614

0.16 0.27219 0.25165 0.27056

0.17 0.29823 0.27346 0.29615

0.18 0.32554 0.29599 0.32293

0.19 0.35417 0.31924 0.35091

0.20 0.38415 0.34320 0.38015



Table 4

Comparisons of calculated values of Eqs.(20a) and (20b) for nZ4.76

a f(a)Za(1Ca)nK1 aC(nK1)a2
aC ðnK1Þa2 C ððnK1Þ!

ðnK2Þ=2Þa3

0.00 0.00000 0.00000 0.00000

0.01 0.01038 0.01038 0.01038

0.02 0.02155 0.02150 0.02155

0.03 0.03353 0.03338 0.03352

0.04 0.04636 0.04602 0.04635

0.05 0.06007 0.05940 0.06005

0.06 0.07470 0.07354 0.07466

0.07 0.09028 0.08842 0.09020

0.08 0.10685 0.10406 0.10672

0.09 0.12444 0.12046 0.12424

0.10 0.14310 0.13760 0.14279

0.11 0.16286 0.15550 0.16240

0.12 0.18376 0.17414 0.18311

0.13 0.20583 0.19354 0.20494

0.14 0.22913 0.21370 0.22793

0.15 0.25370 0.23460 0.25211

0.16 0.27956 0.25626 0.27751

0.17 0.30678 0.27866 0.30416

0.18 0.33539 0.30182 0.33209

0.19 0.36544 0.32574 0.36133

0.20 0.39696 0.35040 0.39191
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determined by using Eq. (13) with a relatively small value of a. As noted in Tables 3 and 4,

the approximating values of aC(nK1)a2calculated in Eq. (20a) are very close to the

function values of f(a)Za(1Ca)nK1 when a value becomes smaller. Therefore, in this

case, Eq. (20a) is used to calculate the a value for numerical approximation. Thus, it

becomes

a C ðnK1Þa2 Z 0:002n
p2

C2

� �nK1
Eo

Fy

� �n

(21)

This equation is a typical second order equation and can be solved by quadratic formula

a Z
K1 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C4ðnK1Þ0:002n p2

C2

� �nK1
Eo

Fy

� �n
r

2ðnK1Þ
(22)

This a is used for determining the buckling stress in Eq. (13) as shown in Fig. 4.

On the other hand, a relatively large a value is found to be needed for calculating the

buckling stress in the inelastic buckling mode. Because more accurate approximation is

needed for this case, Eq. (20b) is used to determine the value of a. However, this equation

cannot be solved with a simple formula. A reasonable estimation is needed to minimize the

error of the numerical approximation. It is tentatively recommended that the maximum

error between the approximating and actual values be limited to G0.3%. To meet this

convergence requirement, the following limitation is required:
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ðnK1ÞðnK2Þa3=2

a C ðnK1Þa2
%5% (23)

Assume that the maximum value of the parameter a determined from Eq. (23) is equal to

b. It yields

amax Z b Z
1 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C 2ðnK2Þ

0:05ðnK1Þ

q
nK2

!0:05 (24)

in which b is a constant, which depends only on the n value for different types of stainless

steels. This b value is the maximum value of a and is used to calculate the buckling stress

of F1 in Eq. (11) and the limiting slenderness ratio of C1 in Eq. (14).
4. Proposed design formulas

The flexural buckling stress of cold-formed stainless steel compression members can be

determined based on the above-mentioned simplified approach. By using the proposed

formulas, design calculation is no longer tedious because no iterative process is needed.

The following design provisions are proposed herein to determine the flexural buckling

stress, Fn, for austenitic types of cold-formed stainless steel compression members.

For doubly symmetric sections, closed cross sections, and any other sections which can

be shown not to be subjected to torsional or torsional–flexural buckling, the flexural

buckling stress, Fn, shall be determined as follows:

For KL/r%C1:

Fn Z Flo
y F

l1

1 %Fy (25)

For KL/rOC1:

Fn Z
p2Eo

KL
r

� 
2
ð1 CaÞ

(26)

where:

lo Z
C1KKL=r

C1KCo

(27)

l1 Z 1Klo (28)

Co Z p

ffiffiffiffiffiffi
Ey

Fy

s
(29)

C1 Z p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eo

F1ð1 CbÞ

s
(30)
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Ey Z
Eo

1 C0:002n Eo

Fy

(31)

F1 Z Fy

bFy

0:002nEo

� �1=nK1

(32)

a Z
K1 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C4ðnK1Þ0:002n p2

ðKL=rÞ2

h inK1
Eo

Fy

� �n
r

2ðnK1Þ
(33)

b Z
0:05 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0025 C 0:1ðnK2Þ

ðnK1Þ

q
nK2

(34)
5. Comparisons and discussions

In this study, comparisons are made between the predicted flexural buckling stresses of

cold-formed stainless steel columns obtained from the ASCE Standard design equations

and the proposed simplified design formulas. Eqs. (2) and (3) are used for the ASCE

Standard predictions. The proposed design formulas provided in Section 4 of the paper are

used to determine the flexural buckling stresses. It shows that, without having iterative

calculations, the proposed equations give satisfactory predictions as compared with the

ASCE Standard results.

A commonly used Type 304, austenitic stainless steel column is used for the

comparison. The specified material properties of the column are previously given in

Table 2. The design parameters for the same materials determined from the proposed

design equations are listed in Table 5. For columns with this type of stainless steel, the

computed buckling stresses, Fn,ASCE and Fn,prop, and the ratios of Fn,prop/Fn,ASCE for

different slenderness ratios, KL/r, in longitudinal and transverse compression are given in

Tables 6 and 7, respectively. In these tables, Fn,ASCE and Fn,prop are predicted flexural
Table 5

Design parameters used in the proposed design formulas for type 304 stainless steels

Type of stress b C0 C1 F1 (MPa)

Longitudinal compression Annealed 0.1500 32.8 176.6 53.12

1/16 Hard 0.1500 32.0 137.3 87.94

1/4 Hard 0.1252 29.9 115.0 123.48

1/2 Hard 0.1429 30.2 98.4 165.91

Transverse compression Annealed 0.0526 23.2 136.1 97.72

1/16 Hard 0.0526 22.9 108.2 154.55

1/4 Hard 0.1179 27.8 80.5 259.62

1/2 Hard 0.1270 27.2 67.3 373.58



Table 6

Comparisons of flexural buckling stresses for type 304 stainless steel columns in longitudinal compression

Annealed 1/16 Hard 1/4 Hard 1/2 Hard

KL/r Fn,ASCE

(MPa)

Fn,prop

(MPa)

Fn,prop/

Fn,ASCE

Fn,ASCE

(MPa)

Fn,prop

(Mpa)

Fn,prop/

Fn,ASCE

Fn,ASCE

(MPa)

Fn,prop

(MPa)

Fn,prop/

Fn,ASCE

Fn,ASCE

(MPa)

Fn,prop

(MPa)

Fn,prop/

Fn,ASCE

20 193.1 193.1 1.00 282.7 282.7 1.00 344.4 344.5 1.00 448.2 448.2 1.00

40 173.4 181.0 1.04 249.1 258.6 1.04 296.3 305.4 1.03 378.5 388.4 1.03

60 137.4 151.2 1.10 193.7 207.2 1.07 232.1 239.9 1.03 283.4 290.3 1.02

80 114.2 126.4 1.11 156.7 166.0 1.06 186.0 188.4 1.01 215.6 217.0 1.01

100 96.9 105.6 1.09 128.4 133.0 1.04 148.2 148.0 1.00 162.2 161.5 1.00

120 82.9 88.3 1.07 105.0 106.5 1.01 116.0 115.7 1.00 121.3 121.3 1.00

140 71.0 73.8 1.04 85.5 85.1 1.00 90.1 90.1 1.00 91.8 91.8 1.00

160 60.7 61.7 1.02 69.4 69.4 1.00 70.6 70.6 1.00 71.1 71.1 1.00

180 51.7 51.5 1.00 56.7 56.6 1.00 56.3 56.3 1.00 56.5 56.5 1.00

200 44.0 43.9 1.00 46.7 46.7 1.00 45.8 45.8 1.00 45.8 45.8 1.00

AVG 1.05 1.02 1.01 1.01

COV 0.041 0.027 0.013 0.011
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buckling stresses determined from the ASCE Standard and proposed design equations,

respectively.

Based on the results of comparison, it is observed that the proposed design formulas

predict slightly larger buckling stresses than those determined by the ASCE design

provisions for Type 304 annealed and 1/16 Hard stainless steel columns having medium

range of KL/r. The maximum ratio of Fn,prop/Fn,ASCE for annealed type is equal to 1.11 at

KL/rZ80, and for 1/16 Hard, the maximum ratio of Fn,prop/Fn,ASCE is equal to 1.07 at

KL/rZ60 as given in Table 6. These larger predictions of Fn,prop for annealed and 1/16

Hard types are mainly due to the relative low values of Fy and n specified in ASCE

Standard. However, for 1/4 Hard and 1/2 Hard, the proposed design formulas can provide

good predictions as compared with those obtained from the ASCE design equations. Their
Table 7

Comparisons of flexural buckling stresses for Type 304 stainless steel columns in transverse compression

Annealed 1/16 Hard 1/4 Hard 1/2 Hard

KL/r Fn,ASCE

(MPa)

Fn,prop

(MPa)

Fn,prop/

Fn,ASCE

Fn,ASCE

(MPa)

Fn,prop

(MPa)

Fn,prop/

Fn,ASCE

Fn,ASCE

(MPa)

Fn,prop

(MPa)

Fn,prop/

Fn,ASCE

Fn,ASCE

(MPa)

Fn,prop

(MPa)

Fn,prop/

Fn,ASCE

20 206.9 206.9 1.00 310.3 310.3 1.00 613.7 613.7 1.00 827.4 827.4 1.00

40 180.2 185.1 1.03 267.4 269.8 1.01 499.8 504.4 1.01 641.0 641.6 1.00

60 160.3 162.0 1.01 234.3 229.2 0.98 368.1 364.9 0.99 434.9 431.6 0.99

80 144.8 141.9 0.98 204.9 194.6 0.95 264.4 264.0 1.00 284.1 284.0 1.00

100 130.0 124.2 0.96 171.0 165.3 0.97 184.6 184.5 1.00 188.5 188.5 1.00

120 113.6 108.8 0.96 130.5 130.5 1.00 131.2 131.2 1.00 131.9 131.9 1.00

140 93.7 93.6 1.00 97.1 97.1 1.00 97.0 97.0 1.00 97.1 97.1 1.00

160 74.0 74.0 1.00 74.4 74.4 1.00 74.4 74.4 1.00 74.4 74.4 1.00

180 58.8 58.8 1.00 58.8 58.8 1.00 58.8 58.8 1.00 58.8 58.8 1.00

200 47.6 47.6 1.00 47.7 47.7 1.00 47.6 47.6 1.00 47.6 47.6 1.00

AVG 0.99 0.99 1.00 1.00

COV 0.023 0.019 0.004 0.003
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maximum ratio of Fn,prop/Fn,ASCE is equal to 1.03 as given in Table 6. The computed

flexural buckling stresses versus slenderness ratios for Type 304 stainless steel columns,

annealed, 1/16 Hard, 1/4 Hard and 1/2 Hard in longitudinal compression, are also shown in

Fig. 5.

Table 7 gives predicted flexural buckling stresses and their corresponding stress

ratios for Type 304 stainless steels columns in transverse compression. It is found that

the proposed design equations provide good agreements with the ASCE design formulas

for annealed, 1/16 Hard, 1/4 Hard and 1/2 Hard types. The lowest ratio of Fn,prop/

Fn,ASCE for annealed type is equal to 0.96 at KL/rZ100 and 120, and for 1/16 Hard, the

lowest ratio of Fn,prop/Fn,ASCE is equal to 0.95 at KL/rZ80 as given in Table 7. For 1/4

Hard and 1/2 Hard, it is noted that the proposed design formulas provide good

predictions as compared with those obtained from the ASCE design equations. Fig. 6

shows the predicted flexural buckling stresses, Fn, versus the slenderness ratio, KL/r, for

Type 304 stainless steel columns, annealed, 1/16 Hard, 1/4 Hard and 1/2 Hard in

transverse compression.

To demonstrate the adequacy of proposed design formulas discussed above, a design

example is included in the appendix of the paper. It provides detailed calculations for

determining a cold-formed stainless steel column buckling strength by using the ASCE

Standard design equations and the proposed simplified formulas.
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6. Conclusions

For the design of cold-formed stainless steel compression members, the flexural

buckling stress is determined based on the tangent modulus theory. Because of the

nonlinear stress-strain behavior of the materials, the determination of flexural buckling

stress usually requires iterative process, which is often tedious and time-consuming for a

typical column design. In order to simplify the iterative calculation, newly developed

formulas utilizing the Taylor series expansion theory are proposed herein to determine

flexural buckling stress for austenitic type of cold-formed stainless steel columns. This

paper presents detailed derivations of the mathematical formulation and numerical

approximation. Comparisons are made between the predicted column flexural buckling

stresses determined from he ASCE design formulas and the proposed design equations. It

shows that the predicted flexural buckling stresses determined by the proposed design

equations are in good agreement with those calculated by the ASCE design formulas. The

proposed equations can be used as an alternative to determine the flexural buckling stress

for austenitic type of cold-formed stainless steel columns.
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Appendix. Design example

The following design example is to determine the design axial strength of a cold-

formed stainless steel column subjected to flexural buckling. The flexural buckling

stress used to calculate the design axial strength is determined by the following two

methods: (A) the design equations specified in the ASCE Standard Specification, and

(B) the proposed simplified design approach presented in the paper.

Given:

1. Square tube dimensions: 101.6 mm!101.6 mm!1.65 mm as shown in Fig. 7.

2. Sectional properties: AZ652.9 mm2, IxZIyZ1,081,369 mm4, rxZryZ40.7 mm.

3. Material properties: Type 304, 1/4-Hard stainless steel, FyZ344.8 MPa, EoZ186,

200 MPa and nZ4.58 in longitudinal compression.

4. Effective length: KxLxZKyLyZ3048 mm; and KxLx/rxZKyLy/ryZ74.9.

The sectional properties of square tubular section given above are determined by

using the information given in Part I of the AISI Cold-Formed Steel Design Manual

(2002) [11].

Solution:
101.6mm

10
1.

6m
m

1.65mm

R=1
.59

mm

w= 95.1mm 

Sectional Properties: A = 652.9 mm2 

Ix = Iy = 1081369 mm4

rx = ry = 40.7 mm

Effective Length:KxLx= KyLy = 3048 mm

Fig. 7. Square tube used for design example.
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(A). The ASCE standard specification

The square tube is a doubly symmetric closed section, which is not subjected to

torsional or torsional-flexural buckling. The flexural buckling stress, Fn, can be determined

by Equation 3.4.1K1 of the ASCE Standard as given in Eq. (2) above. The tangent

modulus Et used for this example is determined by using the Modified Ramberg–Osgood

equation as given in Eq. (3). Due to the nature of the iterative process, try-and-error

calculations are necessary to determine the buckling stress, Fn.

For the first try, assume a buckling stress of FnZ230 MPa and its corresponding

tangent modulus in Eq. (3) is calculated as

Et Z ð186200!344:8Þ=½344:8 C0:002!4:58!186200!ð230=344:8Þ3:58�

y86167 MPa

Thus, the computed buckling stress in Eq. (2) is equal to

ðFnÞ1 Z ðp2 !86167Þ=ð74:9Þ2 Z 151:6 MPa!assumed buckling stress 230 MPa

ðN:G:Þ

Because the computed buckling stress is not close enough to the assumed value, further

iteration is needed.

For the second try, it is assumed that FnZ191 MPa. The corresponding tangent

modulus becomes

Et Z ð186200!344:8Þ=½344:8 C0:002!4:58!186200!ð191=344:8Þ3:58�

y116599 MPa

The computed buckling stress is equal to

ðFnÞ2 Z ðp2 !116599Þ=ð74:9Þ2 Z 205:1 MPaOassumed buckling stress 191 MPa

ðN:G:Þ

For the third try, it is assumed that FnZ198.1 MPa. The corresponding tangent modulus is

calculated as follows:

Et Z ð186200!344:8Þ=½344:8 C0:002!4:58!186200!ð198:1=344:8Þ3:58�

y110817 MPa

The computed buckling stress is

ðFnÞ3 Z ðp2 !110817Þ=ð74:9Þ2 Z 195:0 MPa! assumed stress 198:1 MPaðN:G:Þ

The buckling stress is repeatedly assumed until it reaches the minimum convergence to the

calculated value. After several try-and-error iterations, a buckling stress of FnZ
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196.8 MPa is obtained, and the tangent modulus is calculated as

Et Z ð186200!344:8Þ=½344:8 C0:002!4:58 �186200!ð196:8=344:8Þ3:58�

y111872 MPa

Thus, the buckling stress is equal to

Fn Z ðp2 !111872Þ=ð74:9Þ2 Z 196:8 MPa ðO:K:Þ

To determine the effective area of the member, the design provisions of Section 2.2 in the

ASCE Standard are used to calculate the effective widths of flanges and webs of the tubular

section. Based on the results of calculation, it is found that the flanges and webs of the

section are not fully effective. The effective area of the tubular section is calculated in

accordance with the ASCE Standard provisions as follows:

k Z 4:0; f Z Fn Z 196:8 MPa

l Z
1:052ffiffiffi

k
p

� �
w

t

� � ffiffiffiffiffiffi
f

Eo

s !
Z 1:052=

ffiffiffiffiffiffiffi
4:0

p� �
ð95:1=1:65Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
196:8=186200

p

Z 0:986O0:673 (A1)

r Z
1K0:22=l

l
Z ð1K0:22=0:986Þ=0:986 Z 0:788 (A2)

b Z rw Z 0:788!95:1 Z 75:2 mm (A3)

Ae Z AK4ðwKbÞt Z 652:9K4ð95:1K75:2Þ!1:65 Z 521:6 mm2

The design axial strength, fcPn, is determined from Eq. (1) as

fc Z 0:85; Pn Z Ae Fn Z 521:6!196:8 Z 102651 N Z 102:7 kN

ðfcPnÞASCE Z 0:85!102:7 Z 87:3 kN
(B). The proposed simplified approach

By using the proposed design formulas presented in Section 4 of this paper, the flexural

buckling stress of cold-formed stainless steel column can be easily calculated without

iterations.

(1) Calculate the design parameters:

Design parameters used in this example are calculated from the proposed formulas as

follows:

b Z
0:05 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0025 C 0:1ð4:58K2Þ

ð4:58K1Þ

q
4:58K2

Z 0:1252
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Ey Z
186200

1 C0:002!4:58! 186200
344:8

Z 31312 MPa

Co Z p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
31312

344:8

r
Z 29:9

F1 Z 344:8
0:1252!344:8

0:002!4:58!186200

� �1=4:58K1

Z 123:5 MPa

C1 Z p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
186200

123:5ð1 C0:1252Þ

s
Z 115

(2) Calculate the flexural buckling stress:

Since the column slenderness ratio KL/rZ74.9!C1, the flexural buckling stress is

determined from Eq. (25) as follows:

Fn Z Flo
y F

l1

1 %Fy

where:

lo Z
C1KKL=r

C1KCo

Z
115K74:9

115K29:9
Z 0:471; and l1 Z 1 lo Z 0:529

Thus,

Fn Z 344:80:471 !123:50:529 Z 200:3 MPa

(3) Determine the effective area:

The effective area of the tubular section is calculated as follows:

k Z 4:0; f Z Fn Z 200:3 MPa

l Z
1:052ffiffiffi

k
p

� �
w

t

� � ffiffiffiffiffiffi
f

Eo

s !
Z 1:052=

ffiffiffiffiffiffiffi
4:0

p� �
ð95:1=1:65Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200:3=186200

p

Z 0:994O0:673

r Z
1K0:22=l

l
Z ð1K0:22=0:994Þ=0:994 Z 0:783

b Z rw Z 0:783!95:1 Z 74:5 mm

Ae Z AK4ðwKbÞt Z 652:9K4ð95:1K74:5Þ!1:65 Z 516:9 mm2
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(4) Find the design axial strength:

The design axial strength, fcPn, is determined as follows:

fc Z 0:85; Pn Z Ae Fn Z 516:9!200:3 Z 103535 N Z 103:5 kN

ðfPnÞprop: Z 0:85!103:5 Z 88:0 kN

This design example provides detailed calculations to determine the design axial strength

for a typical cold-formed stainless steel tubular column. Two methods are used in this

example: (A) the ASCE Standard design equations and (B) the proposed design formulas

presented herein. There is no iterative calculation used in the proposed design formulas.

The flexural buckling stress calculated from the proposed design formulas is easier than

that determined from ASCE Standard design equations. For this design example, the

design axial strength determined by using the proposed design formulas is 0.8% larger

than that found by using the design equations stipulated in the ASCE Standard.
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