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Testing Process Capability Based

on Cpm in the Presence of Random

Measurement Errors
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�Department of Industrial Engineering & Management, National Chiao Tung University,

**Department of Industrial Engineering & Management, National Kaohsiung University of

Applied Sciences, †Department of Industrial Engineering & Management, Cheng Shiu

University, Taiwan

ABSTRACT Process capability indices have been widely used in the manufacturing industry
providing numerical measures on process performance. The index Cp provides measures on
process precision (or product consistency). The index Cpm, sometimes called the Taguchi index,
meditates on process centring ability and process loss. Most research work related to Cp and Cpm

assumes no gauge measurement errors. This assumption insufficiently reflects real situations even
with highly advanced measuring instruments. Conclusions drawn from process capability analysis
are therefore unreliable and misleading. In this paper, we conduct sensitivity investigation on
process capability Cp and Cpm in the presence of gauge measurement errors. Due to the
randomness of variations in the data, we consider capability testing for Cp and Cpm to obtain
lower confidence bounds and critical values for true process capability when gauge measurement
errors are unavoidable. The results show that the estimator with sample data contaminated by the
measurement errors severely underestimates the true capability, resulting in imperceptible
smaller test power. To obtain the true process capability, adjusted confidence bounds and critical
values are presented to practitioners for their factory applications.

KEY WORDS: Gauge measurement error, lower confidence bound, critical value, process capability
analysis.

Introduction

Process capability indices, which establish the relationships between the actual process

performance and the manufacturing specifications, have been the focus of recent research

in quality assurance and process capability analysis. The first process capability index Cp,

which was introduced outside of Japan by Juran et al. (1974) has been defined as

Cp ¼
USL� LSL

6s
(1)
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where USL is the upper specification limit, LSL is the lower specification limit, and s is the

process standard deviation. The numerator of Cp gives the size of the range over which the

process measurements can vary, and the denominator gives the size of the range over

which the process is actually varying. Obviously, it is desirable to have a Cp as large as

possible. Small values of Cp would not be acceptable, since this indicates that the

natural range of variation of the process does not fit within the tolerance band. Under

the assumption of that process data are normal, independent, and in control, Kocherlakota

(1992) developed a general guideline for the percentage NC (non-conforming units)

associated with Cp, assuming that the process is perfectly centred at the midpoint of the

specification range (see Table 1). Mizuno (1988) presented detailed criteria for Cp,

which had been widely used in US industries. Clearly, the index Cp only measures

process potential to reproduce acceptable product and does not take into account

whether the process is centred.

The index Cpm, sometimes called the Taguchi index, adequately reveals the ability of

the process to cluster around the target, which reflects the degrees of process targeting

(centring). The index Cpm incorporates with the variation of production items with

respect to the target value and the specification limits preset in the factory (see Hsiang

& Taguchi, 1985; Chan et al., 1988; Kotz & Johnson, 1993; Kotz & Lovelace, 1998).

The index Cpm is defined in the following:

Cpm ¼
USL� LSL

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ (m� T)2

p (2)

where m denotes the process mean and T refers to the target value often set to the midpoint

of the specification limits (T ¼ m ¼ (USLþ LSL)/2). The capability index Cpm is not pri-

marily designed to provide an exact measure on the number of conforming items, but con-

siders the process departure (m2 T )2 (rather than 6s alone) in the denominator of the

definition to reflect process targeting (Hsiang & Taguchi, 1985; Chan et al., 1988). We

note that s2 þ (m� T)2 ¼ E(X � T)2 which is the major part of the denominator of

Cpm. Since E(X � T)2 is the expected loss of the characteristic, X (missing the target) is

assumed to be based on the well approximated symmetric squared error loss function,

loss(X) ¼ k(X � T)2, the capability index Cpm has been referred to as a loss-based index.

Process Capability with Gauge Measurement Errors

Most research works related to Cp and Cpm have assumed no gauge measurement errors.

For examples, Kane (1986), Kocherlakota (1992), Mizuno (1988), Marcucci & Beazley

(1988), Boyles (1991), Pearn et al. (1992), Zimmer & Hubele (1997), Zimmer et al.

(2001), and Pearn & Shu (2003). Such assumption, however, does not accommodate

Table 1. Minimum proportion NC associated with various values of Cp

Amount of process data

within specification range Cp Minimum % NC

6s 1.00 0.27 � 1022

8s 1.33 0.6334 � 1024

10s 1.67 0.5733 � 1026

12s 2.00 0.1973 � 1028

1004 W. L. Pearn et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

4:
06

 2
6 

A
pr

il 
20

14
 



closely real situations even with highly advanced measuring instruments. Any measure-

ment error has some impacts on the determination of process capability. Montgomery

& Runger (1993, 1993b) noted that quality of the collected data relies very much on

the gauge accuracy. Clearly, conclusions about process capability based on the empirical

index values are not reliable. To analyse the effects of measurement errors on true

capability measure, Mittag (1994, 1997) and Levinson (1995) quantified the percentage

error on process capability indices evaluation with the presence of measurement errors.

Suppose that the measurement errors can be described as a random variable

M � N(0, s2
M), Montgomery & Runger (1993) expressed the gauge capability as

l ¼
6sM

USL� LSL
� 100% (3)

For the measurement system to be deemed acceptable, the measurement variability due to

the measurement system must be less than a predetermined percentage of the engineering

tolerance. The automotive industry action group recommended the following guidelines

(Table 2) for gauge acceptance.

In this paper, we consider sensitivity of the indices Cp and Cpm with gauge measurement

errors. Because of the random variations in the data, we present some statistical analysis to

obtain reliable lower confidence bounds and critical values for capability estimation and

testing purposes.

Testing Cp with Gauge Measurement Errors

Considering the process capability in the measurement error system, we denote X � N(m,

s2) the relevant quality characteristic of a manufacturing process. Because of measure-

ment errors, the observed variable G � N(mG ¼ m, s2
G ¼ s2 þ s2

M) is measured with X

and M stochastically independent, instead of measuring the true variable X. The empirical

process capability index CG
P is obtained after substituting sG for s, and we have the

relationship between the true process capability CP and the empirical process capability

CP
G stated below.

CG
p ¼

Cpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ l2C2

p

q (4)

Since the variation of data observed is larger than the variation of the original data, the

true process capability will be under-estimated. Table 3 lists some process capabilities

with l ¼ 0.05(0.05)0.50 for various true process capability indices Cp ¼ 0.50, 1.00,

1.33, 1.50, 1.67, 2.00, and 2.50. Obviously, the gauge becomes more important as the

true capability improves (Levinson, 1995).

Table 2. Guidelines for gauge capabilities

Gauge capability Result

l , 10% Gauge system O.K.

10% , l , 30% May be acceptable based on importance of application, cost of gauge, cost of

repair, and so on.

30% , l Gauge system needs improvement; make every effort to identify the

problems and have them corrected.

Testing Process Capability 1005
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Sampling Distribution of ĈG
p

Suppose that {Xi, i ¼ 1, . . . , n} denotes the random sample of size n from the quality

characteristics X. To estimate the precision index Cp, we consider the natural estimator

ĈP defined below, where S ¼ ½
Pn

i¼1 (Xi � �X)=(n� 1)�1=2 is the conventional estimator

of s, which may be obtained from a stable process,

Ĉp ¼
USL� LSL

6S
(5)

Chou & Owen (1989) have shown the probability density function (PDF) of ĈP can be

expressed as:

f
Ĉp

(x) ¼ 2
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� 1)=2

p
Cp)n�1

G½(n� 1)=2�
(x)�n exp½�(n� 1)C2

p(2x2)�1� (6)

By adding the well-known correction factor

Dn�1 ¼ G
n� 1

2

� �
G

n� 2

2

� ��1
ffiffiffiffiffiffiffiffiffiffiffi

2

n� 1

r
(7)

to ĈP, such as ~CP ¼ Dn�1ĈP, Pearn et al. (1998) showed that ~CP is the uniformly

minimum variance unbiased estimator (UMVUE) of Cp. In real applications, the sample

observations are not {Xi, i ¼ 1, . . . , n} but {Gi, i ¼ 1, . . . , n}. The estimator of Cp

becomes

~C
G

p ¼ Dn�1

USL� LSL

6SG

� �
(8)

where SG ¼ ½
Pn

i¼1 (Gi � �G)=(n� 1)�1=2. Based on the same arguments used in Chou &

Owen (1989) and Pearn et al. (1998), the PDF of ~C
G

P can be expressed as below

f
ĈG
p
(x) ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� 1)=2

p
Cp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ l2C2

p

q� �n�1

G½(n� 1)=2�
(x)�n exp

�(n� 1)C2
p(2x2)�1

1 þ l2C2
p

" #
(9)

Note that it can be shown that Var( ~C
G

P ) , Var( ~CP).

Table 3. Process capability with l ¼ 0.05(0.05)0.50 for various Cp

l

Cp 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49

1.00 1.00 1.00 0.99 0.98 0.97 0.96 0.94 0.93 0.91 0.89

1.33 1.33 1.32 1.30 1.29 1.26 1.24 1.21 1.17 1.14 1.11

1.50 1.50 1.48 1.46 1.44 1.40 1.37 1.33 1.29 1.24 1.20

1.67 1.66 1.65 1.62 1.58 1.54 1.49 1.44 1.39 1.34 1.28

2.00 1.99 1.96 1.92 1.86 1.79 1.71 1.64 1.56 1.49 1.41

2.50 2.48 2.43 2.34 2.24 2.12 2.00 1.88 1.77 1.66 1.56

1006 W. L. Pearn et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

4:
06

 2
6 

A
pr

il 
20

14
 



Lower Confidence Bound Based on ĈG
p

The 100g% lower confidence bounds of Cp, Lp, can be established as

P(Lp � Cp) ¼ p K � L2
p

Dn�1

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

~Cp

" #2
0
@

1
A ¼ g

where the statistic K ¼ (n2 1)S 2/s2 is distributed as xn21
2 , a chi-square with n2 1

degrees of freedom. Thus, the lower confidence bounds Lp can be obtained as:

Lp ¼
~Cp

Dn�1

ffiffiffiffiffiffiffiffiffiffiffiffi
x2
n�1,g

n� 1

s
(10)

where xn21,g
2 is the upper 100gth percentile of the xn21

2 distribution. However, while

gauge measurement errors are unavoidable, ~C
G

P taken as an estimator of Cp, the lower con-

fidence bounds with measurement errors, Lp
G, are

LGp ¼
~C
G

p

Dn�1

ffiffiffiffiffiffiffiffiffiffiffiffi
x2
n�1,g

n� 1

s
(11)

and the confidence coefficient gG (the probability that the confidence interval contains the

actual Cp value with gauge measurement errors) is

gG ¼ p
~C
G

p

Dn�1

ffiffiffiffiffiffiffiffiffiffiffiffi
x2
n�1,g

n� 1

s
� Cp

0
@

1
A ¼ p K �

1

1 þ l2C2
p

x2
n�1, g

 !

Because of the measurement errors, the confidence coefficients become small. For

instance, when Cp ¼ 2.00, n ¼ 100, and l ¼ 0.50, the confidence coefficient is 0.26%,

which is much smaller than the stated confidence coefficient 95%.

Testing Process Capability Based on ĈG
p

To determine whether a given process meets the present capability requirement and

runs under the desired quality condition. We can consider the following statistical

testing hypothesis, H0:Cp � c versus H1:Cp .c. Process fails to meet the capability

requirement if Cp � c, and meets the capability requirement if Cp . c. The critical

value c0 can be determined by the following with a-risk a(c0) ¼ a (the chance of incor-

rectly judging an incapable process as capable), P( ~Cp � c0jCp ¼ c) ¼ a, and c0 can be

obtained as:

c0 ¼ cDn�1

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

x2
n�1,g

s
(12)

Testing Process Capability 1007

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

4:
06

 2
6 

A
pr

il 
20

14
 



Meanwhile, the power of the test (the chance of correctly judging a capable process as

capable) can be computed as

p(Cp) ¼ p( ~Cp . c0jCp) ¼ p K ,
C2
pD

2
n�1(n� 1)

c2
0

 !

In the presence of measurement errors, however, the a -risk (denoted by aG) and the power

of the test (denoted by pG) are as follows:

aG ¼ p( ~C
G

p � c0jCp ¼ c) ¼ p KG �
x2
n�1,g

1 þ l2C2
p

 !
; and

pG(Cp) ¼ p( ~C
G

p . c0jCp) ¼ p KG ,
C2
px

2
n�1,g

(1 þ l2C2
p)c2

 !

where KG ¼ (n� 1)S2
G=s

2
G is distributed as x2

n�1. Since the process capability index

is estimated by using ~C
G

P instead of ~CP, the true capability of the process is under-

estimated. The probability of ~C
G

P being greater than c0 will be less than that of using
~CP. Thus, the a -risk using ~C

G

P to estimate Cp is less than that of using ~CP when estimating

Cp (aG � a), and the power using ~C
G

P in testing Cp is also less than the power using ~CP

(pG � p).

Adjusted Confidence Bounds and Critical Values of Cp

We showed earlier that the confidence intervals do not meet the stated confidence

coefficients. We also showed that both the a-risk and the test power decrease when

the gauge measurement error increases. If the producers do not take account of the

gauge measurement errors, capability estimation and testing results would be misleading,

thus result in serious loss. In that case, the producers cannot anymore affirm that

their processes meet the capability requirement even if their processes are sufficiently

capable. The producers may incur a lot of cost because quantities of qualified product

units are incorrectly rejected. Improving the gauge measurement accuracy and training

the operators by proper education are essential for reducing the measurement errors.

Nevertheless, measurement errors may be unavoidable in most manufacturing processes.

In the following, we adjust the confidence intervals and critical values in order to

ensure the intervals have the desired confidence coefficients and improve the power

of the test with appropriate a-risk. Suppose that the desired confidence coefficient is

g, the adjusted confidence interval of Cp with lower confidence bounds Lp
A, can be

established as

P(LAp � Cp) ¼ p LAp �
~C
G

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� 1)D2

n�1K
�1
G � (l ~C

G

p )2

q
)

0
B@

1
CA

¼ p KG � (LAp )2 (n� 1)D2
n�1

( ~C
G

p )2(1 þ (lLAp )2

2
4

3
5

0
@

1
A ¼ g

1008 W. L. Pearn et al.
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By some simplification, the 100g% adjusted lower confidence bound can be written as

LAp ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
x2
n�1,g

q
~C
G

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� 1)D2

n�1 � (l ~C
G

p )2x2
n�1,g

q (13)

With adjusted confidence bounds, we can ensure the interval would have the desired

confidence coefficient. Moreover, in order to improve the power of the test, the adjusted

critical values (denoted by c0
A) are proposed to be satisfied c0

A , c0. Since c0
A , c0, the

probability of ~C
G

P being greater than c0
A will be more than the probability of that ~C

G

P

being greater than c0. In addition, both the a -risk and the power increase as c0
A are

taken to be adjusted critical values for testing hypothesis. Suppose that the a-risk by

adjusted critical values c0
A is aA, the revised critical c0

A can be introduced by

aA ¼ p( ~C
G

p � cA0 jCp ¼ c) ¼ p KG �
c2D2

n�1(n� 1)

(cA0 )2(1 þ l2c2)

� �
:

To ensure that the a-risk is within the preset magnitude, we let aA ¼ a, thus c0
A and the

power (denoted by pA) can be obtained as

cA0 ¼ cDn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

(1 þ l2c2)x2
n�1,g

s

pA(CP) ¼ p( ~C
G

P . cA0 jCp) ¼ p KG ,
Cp

c

� �2
1 þ l2c2

1 þ l2C2
p

 !
x2
n�1,g

" # (14)

With adjusted critical values, the a-risk within the preset magnitude is ensured and a

certain degree of power is improved. For the results to be practical and easily used, the

tables of adjusted critical values for some commonly used capability requirements are

tabulated in Tables 4 (a)–(d). Using those tables, the practitioner may skip the complex

calculation and directly select the proper critical values for capability testing.

Extension to Multiple Samples

Many of the existing manufacturing factories have implemented a daily-based production

control plan for monitoring/controlling process stability. A routine-basis data collection

procedure is executed to run �X and S control charts (for moderate sample sizes). The

past ‘in control’ data consisting of multiple samples of ms groups, with variable sample

size ni ¼ (Xi1, Xi2, . . . , Xini ), are then analysed to compute the manufacturing capability.

Thus, manufacturing information regarding the product quality characteristic is derived

from multiple samples rather than one single sample. Under the assumption that these

samples are taken from the normal distribution N(m, s2), we consider the following esti-

mators of process mean and process standard deviation,

�Xi ¼
Xni
j¼1

Xij=ni, Si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXni
j¼1

(Xij � �Xi)
2=(ni � 1)

vuut

Testing Process Capability 1009
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Table 4. Adjusted critical values of Cp

n

l

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

(a) Adjusted critical values c0
A for Cp ¼ 1.00, with n ¼ 10(10)100, l ¼ 0.05(0.05)0.50, and g ¼ 0.95

10 1.502 1.496 1.487 1.474 1.459 1.440 1.419 1.396 1.371 1.345

20 1.314 1.309 1.301 1.290 1.276 1.260 1.242 1.221 1.200 1.177

30 1.245 1.240 1.232 1.222 1.209 1.194 1.176 1.157 1.137 1.115

40 1.207 1.202 1.195 1.185 1.172 1.157 1.140 1.122 1.102 1.081

50 1.182 1.177 1.170 1.160 1.148 1.133 1.117 1.099 1.079 1.058

60 1.164 1.160 1.152 1.143 1.131 1.116 1.100 1.082 1.063 1.042

70 1.150 1.146 1.139 1.129 1.117 1.103 1.087 1.069 1.050 1.030

80 1.140 1.135 1.128 1.119 1.107 1.093 1.077 1.059 1.041 1.021

90 1.131 1.127 1.120 1.110 1.098 1.085 1.069 1.051 1.033 1.013

100 1.124 1.119 1.112 1.103 1.091 1.077 1.062 1.044 1.026 1.006

(b) Adjusted critical values c0
A for Cp ¼ 1.33, with n ¼ 10(10)100, l ¼ 0.05(0.05)0.50, and g ¼ 0.95

10 1.995 1.982 1.961 1.932 1.898 1.857 1.813 1.765 1.716 1.665

20 1.746 1.734 1.716 1.691 1.660 1.625 1.586 1.545 1.501 1.457

30 1.654 1.643 1.626 1.602 1.573 1.540 1.503 1.463 1.422 1.380

40 1.603 1.593 1.576 1.553 1.525 1.492 1.457 1.419 1.379 1.338

50 1.570 1.560 1.543 1.521 1.493 1.462 1.427 1.389 1.350 1.310

60 1.547 1.536 1.520 1.498 1.471 1.440 1.405 1.368 1.330 1.291

70 1.529 1.519 1.502 1.480 1.454 1.423 1.389 1.352 1.314 1.276

80 1.514 1.504 1.488 1.467 1.440 1.410 1.376 1.340 1.302 1.264

90 1.503 1.493 1.477 1.455 1.429 1.399 1.365 1.330 1.292 1.254

100 1.493 1.483 1.467 1.446 1.420 1.390 1.356 1.321 1.284 1.246

(c) Adjusted critical values c0
A for Cp ¼ 1.50, with n ¼ 10(10)100, l ¼ 0.05(0.05)0.50, and g ¼ 0.95

10 2.249 2.230 2.200 2.160 2.112 2.057 1.997 1.934 1.869 1.804

20 1.968 1.951 1.925 1.890 1.848 1.799 1.747 1.692 1.635 1.579

30 1.864 1.849 1.824 1.791 1.750 1.705 1.655 1.603 1.549 1.496

40 1.807 1.792 1.768 1.736 1.697 1.653 1.604 1.554 1.502 1.450

50 1.770 1.755 1.732 1.700 1.662 1.619 1.571 1.522 1.471 1.420

60 1.743 1.729 1.705 1.674 1.637 1.594 1.548 1.499 1.449 1.398

70 1.723 1.709 1.686 1.655 1.618 1.576 1.530 1.482 1.432 1.382

80 1.707 1.693 1.670 1.639 1.603 1.561 1.515 1.468 1.419 1.369

90 1.694 1.680 1.657 1.627 1.590 1.549 1.504 1.456 1.408 1.359

100 1.683 1.669 1.646 1.616 1.580 1.539 1.494 1.447 1.399 1.350

(d) Adjusted critical values c0
A for Cp ¼ 2.00, with n ¼ 10(10)100, l ¼ 0.05(0.05)0.50, and g ¼ 0.95

10 2.992 2.949 2.880 2.792 2.690 2.578 2.463 2.348 2.235 2.126

20 2.618 2.580 2.520 2.443 2.353 2.256 2.155 2.054 1.956 1.860

30 2.480 2.444 2.387 2.314 2.229 2.137 2.042 1.946 1.853 1.762

40 2.404 2.369 2.314 2.243 2.161 2.072 1.979 1.887 1.796 1.709

50 2.355 2.320 2.267 2.197 2.117 2.029 1.939 1.848 1.759 1.673

60 2.319 2.286 2.232 2.164 2.085 1.999 1.909 1.820 1.732 1.648

70 2.292 2.259 2.207 2.139 2.060 1.975 1.887 1.799 1.712 1.629

80 2.271 2.238 2.186 2.119 2.041 1.957 1.870 1.782 1.696 1.614

90 2.253 2.221 2.169 2.103 2.026 1.942 1.855 1.768 1.683 1.601

100 2.239 2.206 2.155 2.089 2.012 1.929 1.843 1.757 1.672 1.591
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for the i– th sample mean and the sample standard deviation, respectively. Then, S2
p ¼Pms

i¼1 (ni � 1)S2
i =
Pms

i¼1 (ni � 1) are used for calculating the manufacturing capability Cp.

For cases with multiple samples the natural estimator of Cp can be expressed below.

The sensitivity investigation, capability testing, and adjusted confidence bounds and criti-

cal values for process capability Cp in the presence of gauge measurement errors based on

multiple samples can be performed using the same techniques for cases with one single

sample, although the derivations and calculations may be more tedious and complicated.

~C
M

p ¼ DPms

i¼1
(ni�1)

USL� LSL

6Sp

Testing Cpm with Gauge Measurement Errors

Similarly, in practice, the empirical process capability index Cpm
G is obtained after substi-

tuting sG for s. The relationship between the true process capability Cpm and the empirical

process capability Cpm
G can be expressed below, where j ¼ (m� T)=s.

CG
pm

Cpm

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ j2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ l2C2

p þ j2
q (15)

Since the variation of data observed is larger than the variation of the original data, the

denominator of the index Cpm becomes larger, and the true capability of the process is

understated if calculation of the process capability index is based on empirical data G.

Figure 1(a) displays the surface plot of the ratio R1 ¼ CG
pm�=Cpm for l in [0, 0.5] for

Cp [ ½1, 2� with j ¼ 0:5. Figure 1(b) plots the ratio R1 versus l for Cp ¼ 1.0(0.2)2.0

with j ¼ 0.0. Those figures show that the measurement errors result in a downward distor-

tion of the index Cpm. Small process variation has the same effect as the presence of

measurement error does. Since R1 would be small if l becomes large, the gauge

becomes more important as the true capability improves. For instance, if l ¼ 0.5,

Cp ¼ 2, and j ¼ 0.5 (the ratio R1 ¼ 0.7454), Cpm
G ¼ 0.7454 with Cpm ¼ 1 (shrinks by

about 25.46%), and l ¼ 0.5, Cp ¼ 2, and j ¼ 0.0 (the ratio R1 ¼ 0.7071),

Figure 1. (a) Surface Plot of R1 versus l in [0,0.5] for Cp ¼ 1.0(0.2)2.0 with j ¼ 0.5.; (b) Plots of R1

versus l in [0,0.5] for Cp ¼ 1.0(0.2)2.0 (top to bottom) with j ¼ 0.0.
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Cpm
G ¼ 1.7678 with Cpm ¼ 2.50 (shrinks by about 29.29%). The empirical process capa-

bility diverges more from the true process capability with large measurement errors.

Sampling Distribution of ĈG
pm

In practice, sample data must be collected in order to estimate the empirical process capa-

bility Cpm
G . The maximum likelihood estimator (MLE) of Cpm

G is defined as the following:

ĈG
pm ¼

USL� LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~S

2

n þ ( �G� T)2

q ¼
d

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~S

2

n þ ( �G� T)2

q (16)

where �G ¼ S
n
i¼1Gi, ~S

2

n ¼ S
n
i¼1(Gi � �G)2=n, and d ¼ (USL� LSL)=2. We note that �G and

~S
2

n are MLEs of m and s2
G respectively. Hence the estimated index ĈG

pm is the MLE of CG
pm.

Furthermore, the term ~S
2

n þ ( �G� T)2 ¼ S
n
i¼1(Gi � T)2=n in the denominator of ĈG

pm is the

UMVUE of s2
G þ (m� T)2 ¼ E(G� T)2 in the denominator of CG

pm. Obviously, if the

sM ¼ 0, then the empirical process capability CG
pm reduces to the basic index Cpm. As

with Boyles (1991), the MLE of Cpm can be expressed in equation (17), where �X ¼

S
n
i¼1Xi=n and S2

n ¼ S
n
i¼1(Xi � �X)2=n:

Ĉ pm ¼
d

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
n þ ( �X � T)2

q (17)

From equation (16), it is easy to show that ĈG
pm is distributed as:

ĈG
pm � d

3sG

ffiffiffiffiffiffiffiffiffiffi
n

x2
n, d2

G

s
¼ ĈG

pm � d

3sG

ffiffiffiffiffiffiffiffiffiffi
n

x2
n, d2

G

s
¼ CG

p

ffiffiffiffiffiffiffiffiffiffi
n

x2
n,d2

G

s
¼ CG

pm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

d2
G

n

s ffiffiffiffiffiffiffiffiffiffi
n

x2
n,d2

G

s

where x2
n,d2

G

denotes the non-central Chi-square distribution with n degrees of freedom and

non-centrality parameter d2
G ¼ nj2

G where jG ¼ (m� T)=sG. We apply the method simi-

larly to that used in Pearn et al. (1992), Vännman (1995), and Chen (1998), the cumulative

distribution function (CDF) of ĈG
pmk can be expressed in terms of a mixture of the Chi-

square distribution and the normal distribution

F
ĈG

pm
(x) ¼ 1 �

ðbG ffiffi
n

p
=(3x)

0

FK

(bG
ffiffiffi
n

p
)2

9x2
� t2

� �
½f(t þ jG

ffiffiffi
n

p
) þ f(t � jG

ffiffiffi
n

p
)�dt (18)

for x . 0 where bG ¼ d/sG ¼ 3Cp
G. FK (†) is the cumulative distribution function of the

ordinary central Chi-square distribution x2
n�1 and f(†) is the PDF of the standard normal

distribution N(0,1), where

jG ¼
m� m

sG

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CG
p

CG
pm

 !2
vuut

� 1, CG
p ¼

Cpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ l2C2

p

q , and CG
pm ¼

Cpm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ j2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ l2C2

p þ j2
q :
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Obviously, if the sM ¼ 0, then the CDF of Ĉpm can be easily obtained as:

F
Ĉpm

(x) ¼ 1 �

ðb ffiffinp
=(3x)

0

FK

(b
ffiffiffi
n

p
)2

9x2
� t2

� �
½f(t þ j

ffiffiffi
n

p
) þ f(t � j

ffiffiffi
n

p
)�dt (19)

for x . 0, where b ¼ d/s ¼ 3Cp and j ¼ m�m
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cp

Cpm

� �2

�1

r
:

Lower Confidence Bound Based on ĈG
pm

The lower confidence bounds estimate the minimum process capability based on sample

data. To find reliable 100g% lower confidence bound Lpm for Cpm, Pearn & Shu (2003)

solved equation (20). Note that the term b can be expressed as b ¼ 3Cp ¼ 3L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ j2

p
.

Since the process parameters m and s are unknown, then the distribution characteristic

parameter j ¼ (m� m)=s is also unknown. To eliminate the need for further estimating

the distribution characteristic parameter j, Pearn & Shu (2003) investigated the behaviour

of the lower confidence bound Lpm against the parameter j. They performed extensive cal-

culations to obtain the lower confidence bound values L for j ¼ 0(0.05)3.00,

Ĉpm ¼ 0.7(0.1)3.0, n ¼ 10(5)200 with confidence coefficient g ¼ 0.95. They found that

the lower confidence bound L obtains its minimum at j ¼ 0.0 in all cases. Thus, for prac-

tical purposes they recommended solving equation (20) with j ¼ ĵ ¼ 0.0 to obtain the

required lower confidence bounds, without having to further estimate the parameter j.

ðb ffiffinp
=(3Ĉ pm

0

FK

(b
ffiffiffi
n

p
)2

9Ĉ2
pm

� t2

 !
½f(t þ j

ffiffiffi
n

p
) þ f(t � j

ffiffiffi
n

p
)�dt ¼ 1 � g (20)

In practice, sample data are observed measurements contaminated with errors to esti-

mate the empirical process capability. Thus, ĈG
pm is substituted into equation (18) and jG ¼

0:0 to obtain the confidence bounds, which can be written as (we denote the bound origi-

nated from ĈG
pm as LGpm) follows,

2

ðbG ffiffi
n

p
=(3ĈG

pm)

0

FK

(bG
ffiffiffi
n

p
)2

9(ĈG
pm)2

� t2

 !
f(t)dt ¼ 1 � g

where bG ¼ 3CG
p ¼ 3LGpm. The confidence coefficient of the lower confidence bound LGpm

(denoted by gG) is the following.

gG ¼ 1 � 2

ðbG ffiffi
n

p
=(3Ĉ pm)

0

FK

(bG
ffiffiffi
n

p
)2

9(Ĉ pm)2
� t2

 !
f(t)dt (21)

The gG is always not less than g

Figures 2 (a), (b) and Figures 3(a), (b) plot Lpm
G versus l [ [0, 0.5] with n ¼ 30, 50, 70,

100, 150 for Ĉpm ¼ 1.00, 1.50 and Ĉp ¼ Ĉpm þ R3, R3 ¼ 0.33 and 0.67 with 95% confi-

dence level. It is noted that for sufficiently large sample size n, we have

ĈĜ
pm ¼ Ĉpm=

p
ð1 þ l2C2

pÞ. Therefore, we set ĈG
pm ¼ Ĉpm=

p
ð1 þ l2C2

pÞ to obtain ĈG
pm in

Figures 2(a), (b) and Figures 3(a), (b). We see that in Figures 2(a), (b) and Figures

3(a), (b), LGpm decreases in l, especially for large Ĉp values, and the decrement of LGpm is
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more significant for large Ĉpm. A large measurement error results in significantly under-

estimating the true process capability.

In current practice, a process is called ‘inadequate’ if Cpm , 1:00, ‘marginally capable’

if 1:00 � Cpm , 1:33, ‘satisfactory’ if 1:33 � Cpm , 1:50, ‘excellent’ if

1:50 � Cpm , 2:00, and ‘super’ if 2:00 � Cpm. In fact, Ruczinski (1996) showed that

Yield �2F(3Cpm) � 1, or the fraction of non-conformities �2F( � 3Cpm). For

example, if a process has capability with Cpm � 1:25, then the production yield would

be at least 99.982%. If capability measures do not include the measurement errors, signifi-

cant underestimation of the true process capability may result in high production

cost, losing the power of competition. For instance, suppose that a process has a 95%

lower confidence bound, 1.250 (Ĉpm ¼ 1.50) with n ¼ 50, which meets the threshold of

an ‘excellent’ process. But the bound may be calculated as 0.985 with measurement

errors l ¼ 0.36 and the process is determined as ‘inadequate’.

Testing Process Capability Based on ĈG
pm

To determine if a given process meets the preset capability requirement, we could consider

the statistical testing with null hypothesis H0:Cpm � c (process is not capable) and

Figure 2. (a) Plots of Lpm
G versus l with n ¼ 30, 50, 70, 100, 150 for Ĉp ¼ 1:33 and Ĉpm ¼ 1:00; (b)

Plots of Lpm
G versus l with n ¼ 30, 50, 70, 100, 150 for Ĉp ¼ 1:67 and Ĉpm ¼ 1:00.

Figure 3. (a) Plots of Lpm
G versus l with n ¼ 30, 50, 70, 100, 150 for Ĉp ¼ 1:83 and Ĉpm ¼ 1:50; (b)

Plots of Lpm
G versus l with n ¼ 30, 50, 70, 100, 150 for Ĉp ¼ 2:17 and Ĉpm ¼ 1:50.
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alternative hypothesis H1:Cpm . c (process is capable), where c is the required process

capability. Given values of capability requirement c, sample size n, and risk a, the critical

value c0 can be obtained by solving equation (2), using the available numerical methods.

ðb ffiffinp
=(3c0)

0

FK

(b
ffiffiffi
n

p
)2

9c2
0

� t2
� �

½f(t þ j
ffiffiffi
n

p
) þ f(t � j

ffiffiffi
n

p
)�dt ¼ a (22)

where b ¼ 3c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ j2

p
. Then, the test power can be expressed as the following,

p(Cpm) ¼ P(Ĉ pm � c0jCpm . c)

¼

ðb ffiffinp
(3c0)

0

FK

(b
ffiffiffi
n

p
)2

9c2
0

� t2
� �

½f(t þ j
ffiffiffi
n

p
) þ f(t � j

ffiffiffi
n

p
)�dt

where b ¼ 3Cpm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ j2

p
.

To eliminate the need for estimating the characteristic parameter j, we follow the

method of Pearn & Lin (2004) to examine the behaviour of the critical values c0

against the parameter j. Extensive calculations to obtain the critical values c0 for

j ¼ 0(0.01)3, c ¼ 1.00, 1.33, 1.50, 1.67, 2.00, 2.5, and 3.0, n ¼ 10(50)300, and

a ¼ 0.05 are performed. The critical value c0 obtains its maximum at j ¼ 0.0 in all

cases. For practice purposes, solving equation (22) with j ¼ 0.0 to obtain the required

critical values is recommended, without having to further estimate the parameter j. In

practice, sample data are contaminated with measurement errors to estimate the empirical

process capability. Thus, the a-risk corresponding to the test using the sample estimate

ĈG
pm becomes P(ĈG

pm � c0jCpm � c) ¼ aG, or

2

ðbG ffiffi
n

p
=(3c0)

0

FK

(bG
ffiffiffi
n

p
)2

9c2
0

� t2
� �

f(t)dt ¼ aG (23)

where

bG ¼
3cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ l2C2
p

q and Cp ¼ c:

The test power (denoted by pG) is: pG(Cpm) ¼ P(ĈG
pm � c0jCpm . c). Thus,

pG(Cpm) ¼ 2

ðbG ffiffi
n

p
=(3c0)

0

FK

(bG
ffiffiffi
n

p
)2

9c2
0

� t2
� �

f(t)dt (24)

where

bG ¼
3Cpmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ l2C2
p

q and Cp ¼ Cpm

Earlier discussions indicate that the true process capability would be severely underes-

timated if ĈG
pm is used. The probability of ĈG

pm being greater than c0 would be less than that

of using Ĉpm. Thus, the a-risk using ĈG
pm is, aG, less than the a-risk if using Ĉpm, a, when

hypothesis testing Cpm. The test power if using ĈG
pm is also less than the test power of using

Ĉpm. That is pG , p. Figures 4(a), (b) are the plots of aG with n ¼ 30, 50, 70, 100, 150, l

[ [0, 0.5] for c ¼ 1.00, 1.50, and a ¼ 0.05. Figures 5(a), 5(b) plot pG versus l with

n ¼ 50, a ¼ 0.05, for c ¼ 1.00, 1.50, and Cpm ¼ (cþ 0.2)(0.20)(cþ 1). Note that for
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l ¼ 0, aG ¼ a and pG ¼ p. In Figures 4(a), (b), aG decreases as l or n increases, and the

decreasing rate is more significant with large c. In fact, for large l, aG is smaller than 1022.

In Figures 5(a), (b), pG decreases as l increases, but increases as n increases. The decre-

ment of pG in l is more significant for large c. In the presence of measurement errors, pG

decreases. For instance, in Figure 9(b), later, the pG values (c ¼ 1.50, n ¼ 50) for

Cpm ¼ 2.1 is pG ¼ 0.9556 if there is no measurement error (l ¼ 0). But, when

l ¼ 0.5, pG decreases to 0.0257, the decrement of the power is 0.9299.

Adjusted Confidence Bounds and Critical Values of Cpm

In this section, we consider the adjustment of confidence bounds and critical values of Cpm

to provide better capability assessment. Suppose that the desired confidence coefficient is

100g% and the adjusted confidence interval of ĈG
pm with the adjusted lower confidence

Figure 4. (a) Plots of aG with n ¼ 30, 50, 70, 100, 150 and l in [0,0.5] for c ¼ 1.00 and a ¼ 0.05;

(b) Plots of aG with n ¼ 30, 50, 70, 100, 150 and l in [0,0.5] for c ¼ 1.50 and a ¼ 0.05.

Figure 5. (a) Plots of pG versus l with n ¼ 50, a ¼ 0.05 for c ¼ 1.00, Cpm ¼ 1.2(0.20)2.00; (b)

Plots of pG versus l with n ¼ 50, a ¼ 0.05 for c ¼ 1.50, Cpm ¼ 1.70(0.20)2.50.
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bound LApm can be established as:

P(ĈG
pm . LApm) ¼ g

1 � 2

ðbA ffiffi
n

p
=(3ĈG

pm)

0

FK

(bA
ffiffiffi
n

p
)2

9(ĈG
pm)2

 !
f(t)dx ¼ g (25)

where bA ¼ 3LApm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ l2C2

p

q
and Cp can be obtained by solving CG

p ¼ CG
pm, thus,

Cp ¼ Lpm. Figures 6 and 7, are the comparisons among Lpm, Lpm
G , and Lpm

A for

Ĉpm ¼ 1:00, 1.50 with n ¼ 50, where Lpm is the 95% lower confidence bound using Ĉpm,

Lpm
G is the 95% lower confidence bound using ĈG

pm, and Lpm
A is the adjusted 95% lower con-

fidence bound using ĈG
pm. It can be noted that ĈG

pm ¼ Ĉpm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ l2Ĉ2

p

q
is used to obtain ĈG

pm

in equation (4). In this case, the probability that the lower confidence interval with bound

Lpm
G contains the actual Cpm value is greater than that of the interval with the bound Lpm or

Lpm
A , while the probability that the lower confidence interval with bound Lpm or Lpm

A contains

the actual Cpm value is 0.95. From Figures 6 and 7, we see that the magnitude of lower

confidence bounds remained underestimated even if it is adjusted. But the magnitude of

underestimation using the adjusted confidence bound is significantly reduced.

In order to improve the test power, we revise the critical values c0
A to satisfy c0

A , c0.

Thus, the probability P(ĈG
pm . cA0 ) is greater than P(ĈG

pm . c0). Both the a-risk and the

test power increase when we use c0
A as a new critical value in the testing. Suppose that

the a-risk using the revised critical value c0
A is aA, the revised critical values c0

A can be

determined by P(ĈG
pm � cA0 jCpm � c) ¼ aA,

2

ðbG ffiffi
n

p
=(3cA

0
)

0

FK

(bG
ffiffiffi
n

p
)2

9(cA0 )2
� t2

� �
f(t)dt ¼ aA (26)

where bG ¼ 3c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ l2C2

p

q
and Cp can be obtained by solving equation Cp

G ¼ Cpm
G , thus,

Cp ¼ c. To ensure that the a-risk is within the preset magnitude, we let aA ¼ a and solve

Figure 6. Plots of Lpm, Lpm
A , and Lpm

G versus l with n ¼ 50 and for Ĉpm ¼ 1:00 and Ĉp ¼ 1:33.
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the equation to obtain c0
A. The power (denoted by pA) can be calculated as the following:

pA(Cpm) ¼ P(ĈG
pm � cA0 jCpm . c)

pA(Cpm) ¼ 2

ðbG ffiffi
n

p
=(3cA

0
)

0

FK

(bG
ffiffiffi
n

p
)2

9(cA0 )2
� t2

� �
f(t)dt (27)

where

bG ¼
3Cpmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ l2c2
p :

Figures 8(a), (b) are plots of pA versus l with n ¼ 50, a ¼ 0.05, for c ¼ 1.00, 1.50 and

Cpm ¼ (cþ 0.2)(0.20)(cþ 1). From those figures, we see that the powers corresponding to

Figure 8. (a) Plots of pA versus l with n ¼ 50, a ¼ 0.05 for c ¼ 1.00, Cpm ¼ 1.2(0.2)2.00 (bottom

to top); (b) Plots of pA versus l with n ¼ 50, a ¼ 0.05 for c ¼ 1.50, Cpm ¼ 1.70(0.20)2.50 (bottom

to top).

Figure 7. Plots of Lpm, Lpm
A , and Lpm

G versus l with n ¼ 100 and for Ĉpm ¼ 1:50 and Ĉp ¼ 1:83.
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Table 5. Adjusted critical values of Cpm

l n 30 50 70 100 120 150

(a) Adjusted critical values c0
A for n ¼ 30, 50, 70, 100, 120, 150, l ¼ 0.05(0.05)0.50, Cpm ¼ 1.00,

and g ¼ 0.95

0.00 1.273 1.199 1.163 1.132 1.119 1.105

0.02 1.273 1.199 1.162 1.132 1.119 1.105

0.04 1.272 1.198 1.162 1.131 1.118 1.104

0.06 1.271 1.197 1.161 1.130 1.117 1.103

0.08 1.269 1.195 1.159 1.129 1.116 1.102

0.10 1.267 1.193 1.157 1.127 1.114 1.100

0.12 1.264 1.190 1.154 1.124 1.111 1.097

0.14 1.261 1.187 1.151 1.121 1.108 1.095

0.16 1.257 1.184 1.148 1.118 1.105 1.091

0.18 1.253 1.180 1.144 1.114 1.102 1.088

0.20 1.248 1.175 1.140 1.110 1.098 1.084

0.22 1.243 1.171 1.135 1.106 1.093 1.079

0.24 1.238 1.166 1.131 1.101 1.088 1.075

0.26 1.232 1.160 1.125 1.096 1.083 1.070

0.28 1.226 1.154 1.120 1.090 1.078 1.064

0.30 1.219 1.148 1.114 1.085 1.072 1.059

0.32 1.213 1.142 1.107 1.078 1.066 1.053

0.34 1.205 1.135 1.101 1.072 1.060 1.046

0.36 1.198 1.128 1.094 1.065 1.053 1.040

0.38 1.190 1.121 1.087 1.058 1.046 1.033

0.40 1.182 1.113 1.079 1.051 1.039 1.026

0.42 1.174 1.105 1.072 1.044 1.032 1.019

0.44 1.165 1.097 1.064 1.036 1.024 1.012

0.46 1.157 1.089 1.056 1.029 1.017 1.004

0.48 1.148 1.081 1.048 1.021 1.009 0.996

0.50 1.139 1.072 1.040 1.013 1.001 0.988

(b) Adjusted critical values c0
A for n ¼ 30, 50, 70,100,120,150, l ¼ 0.05(0.05)0.50, Cpm ¼ 1.33,

and g ¼ 0.95

0.00 1.693 1.595 1.547 1.506 1.489 1.470

0.02 1.693 1.594 1.546 1.506 1.488 1.470

0.04 1.691 1.592 1.544 1.504 1.487 1.468

0.06 1.688 1.589 1.542 1.501 1.484 1.465

0.08 1.684 1.586 1.538 1.498 1.480 1.462

0.10 1.679 1.581 1.533 1.493 1.476 1.457

0.12 1.672 1.575 1.527 1.487 1.470 1.452

0.14 1.665 1.568 1.520 1.481 1.464 1.445

0.16 1.656 1.560 1.513 1.473 1.456 1.438

0.18 1.647 1.551 1.504 1.465 1.448 1.430

0.20 1.637 1.541 1.495 1.455 1.439 1.421

0.22 1.625 1.53 1.484 1.445 1.429 1.411

0.24 1.613 1.519 1.473 1.435 1.418 1.400

0.26 1.600 1.507 1.462 1.423 1.407 1.389

0.28 1.587 1.494 1.449 1.411 1.395 1.378

0.30 1.573 1.481 1.436 1.399 1.383 1.365

0.32 1.558 1.467 1.423 1.386 1.370 1.353

(Table continued)
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Table 5. Continued

l n 30 50 70 100 120 150

0.34 1.543 1.453 1.409 1.372 1.356 1.339

0.36 1.527 1.438 1.395 1.358 1.343 1.326

0.38 1.511 1.423 1.380 1.344 1.329 1.312

0.40 1.495 1.408 1.365 1.33 1.314 1.298

0.42 1.478 1.392 1.35 1.315 1.300 1.283

0.44 1.462 1.376 1.335 1.300 1.285 1.269

0.46 1.445 1.360 1.319 1.285 1.270 1.254

0.48 1.427 1.344 1.303 1.269 1.255 1.239

0.50 1.410 1.328 1.288 1.254 1.240 1.224

(c) Adjusted critical values c0
A for n ¼ 30, 50, 70,100,120,150, l ¼ 0.05(0.05)0.50, Cpm ¼ 1.50,

and g ¼ 0.95

0.00 1.910 1.798 1.744 1.699 1.679 1.658

0.02 1.909 1.798 1.743 1.698 1.678 1.657

0.04 1.907 1.795 1.741 1.696 1.676 1.655

0.06 1.902 1.791 1.737 1.692 1.672 1.651

0.08 1.896 1.786 1.732 1.687 1.667 1.646

0.10 1.889 1.779 1.725 1.680 1.661 1.640

0.12 1.880 1.770 1.717 1.672 1.653 1.632

0.14 1.869 1.760 1.707 1.662 1.643 1.623

0.16 1.857 1.749 1.696 1.652 1.633 1.612

0.18 1.844 1.736 1.684 1.640 1.621 1.601

0.20 1.829 1.723 1.671 1.627 1.608 1.588

0.22 1.814 1.708 1.656 1.613 1.595 1.575

0.24 1.797 1.692 1.641 1.598 1.580 1.560

0.26 1.779 1.675 1.625 1.583 1.564 1.545

0.28 1.761 1.658 1.608 1.566 1.548 1.529

0.30 1.742 1.640 1.591 1.549 1.531 1.512

0.32 1.722 1.621 1.572 1.531 1.514 1.495

0.34 1.701 1.602 1.554 1.513 1.496 1.477

0.36 1.681 1.582 1.535 1.495 1.477 1.459

0.38 1.659 1.562 1.515 1.476 1.459 1.440

0.40 1.638 1.542 1.496 1.457 1.440 1.422

0.42 1.616 1.522 1.476 1.437 1.421 1.403

0.44 1.594 1.501 1.456 1.418 1.401 1.384

0.46 1.572 1.480 1.436 1.398 1.382 1.365

0.48 1.550 1.459 1.415 1.378 1.363 1.345

0.50 1.528 1.439 1.395 1.359 1.343 1.326

(d) Adjusted critical values c0
A for n ¼ 30, 50, 70,100,120,150, l ¼ 0.05(0.05)0.50, Cpm ¼ 2.00,

and g ¼ 0.95

0.00 2.547 2.398 2.326 2.265 2.239 2.211

0.02 2.545 2.396 2.324 2.263 2.237 2.209

0.04 2.539 2.390 2.318 2.258 2.232 2.204

0.06 2.529 2.381 2.309 2.249 2.223 2.195

0.08 2.515 2.368 2.297 2.237 2.211 2.183

0.10 2.497 2.351 2.281 2.221 2.196 2.168

0.12 2.477 2.332 2.262 2.203 2.177 2.150

(Table continued)
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the adjusted critical values c0
A remain stable in measurement error. We improve the test

power to a certain degree. For instance, when we compare the pG values in Figure 5(b)

(c ¼ 1.50, n ¼ 50, Cpm ¼ 2.1) to the pA values in Figure 8(b) (c ¼ 1.50, n ¼ 50,

Cpm ¼ 2.1), we obtain that pG ¼ 0.0257 and pA ¼ 0.9557 with l ¼ 0.5. In this case,

using the adjusted critical values c0
A, we improve the test power by 0.930 (which is

rather significant). For our results to be practical, we tabulate the adjusted critical

values for some commonly used capability requirements in Tables 5(a)–(d). Using

those tables, the practitioner may omit the complex calculation and simply select the

proper critical values for capability testing.

Application Example on a pH Sensor

The product investigated is the pH sensor combining process-hardened pH electrodes, a

double junction reference electrode, temperature compensation element, and a solution

ground in a durable, reliable, high performance design. It is ideal for process control

applications in the most aggressive streams found in traditional processing industries,

including chemicals, paper, metals and mining, utilities, food, pharmaceutical, and

others. For a wide range of measurements where high accuracy is required at either

both extreme ends of the pH scales, or a spherical glass with minimal sodium error. For

applications involving abrasive processes, a rugged glass with a thicker membrane is

recommended. The rugged glass is most accurate in the range of 1 to 12 pH. High

temperature construction allows the sensor to be used for process pH measurements at

temperatures up to 1208C (2508F). An integral 100 platinum RTD (resistance temperature

detector), compatible with many common pH transmitters and monitors, is a standard

feature. The reference electrode utilizes a double junction design to inhibit silver ions

from contacting the process solution, thereby preventing junction fouling from silver

Table 5. Continued

l n 30 50 70 100 120 150

0.14 2.453 2.309 2.240 2.181 2.156 2.129

0.16 2.426 2.284 2.215 2.157 2.132 2.106

0.18 2.396 2.256 2.188 2.131 2.107 2.080

0.20 2.365 2.226 2.159 2.103 2.079 2.053

0.22 2.331 2.195 2.129 2.073 2.049 2.024

0.24 2.296 2.162 2.097 2.042 2.018 1.993

0.26 2.260 2.128 2.063 2.010 1.986 1.961

0.28 2.222 2.092 2.029 1.976 1.953 1.929

0.30 2.184 2.056 1.994 1.942 1.920 1.896

0.32 2.145 2.020 1.959 1.908 1.886 1.862

0.34 2.106 1.983 1.923 1.873 1.851 1.828

0.36 2.067 1.946 1.887 1.838 1.817 1.794

0.38 2.028 1.909 1.852 1.803 1.783 1.760

0.40 1.989 1.872 1.816 1.769 1.748 1.726

0.42 1.950 1.836 1.781 1.734 1.714 1.693

0.44 1.912 1.800 1.746 1.700 1.681 1.660

0.46 1.874 1.765 1.712 1.667 1.648 1.627

0.48 1.837 1.730 1.678 1.634 1.615 1.595

0.50 1.801 1.696 1.644 1.602 1.583 1.563
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compound precipitates. To help facilitate a noise-free signal, the sensor incorporates a

solution ground post of titanium metal. 3/4 NPT threads are provided at both sensor

ends to allow connection to insertion or submersion type mountings. The pH sensor is

depicted in Figure 9.

The measuring accuracy of the pH sensor is an important factor that has significant

effect on the pH sensor quality. A type of the pH sensor has the specification limits,

T ¼ 0.0 pH, USL ¼ 0.05 pH, and LSL ¼ 20.05 pH. A total of 70 observations

are collected and displayed in Table 6. Histogram and normal probability plots show

that the collected data follow the normal distribution. The Shapiro–Wilk test is applied

to further justify the assumption. To determine whether the process is ‘excellent’

(Cpm . 1.33) with unavoidable measurement errors l ¼ 0.30, we first determine

that c ¼ 1.33 and a ¼ 0.05. Then, based on the sample data of 70 observations, we

obtain the sample mean �G ¼ 0:0200, the sample standard deviation ~Sn ¼ 0:0109, and

the point estimator ĈG
pm ¼ 1:4629. From Table 5(b), we obtain the critical value

c0
A ¼ 1.436 based on a, l and n. Since ĈG

pm . cA0 , we therefore conclude that

the process is ‘excellent’. We also see that if we ignore the measurement errors and evalu-

ate the critical value without any correction, the critical value may be calculated as

c0 ¼ 1.547. In this case we would reject that the process is ‘excellent’ since ĈG
pm is no

Table 6. 70 observations for the measuring accuracy (unit: pH)

0.0236 0.0433 0.032 0.0157 0.0129 0.0085 0.0406 0.0047 0.0047 0.0254

0.0257 0.0281 0.0246 0.0198 0.0335 0.0253 0.0115 0.0306 0.0097 0.0194

0.0304 0.0198 0.0172 0.0234 0.0311 0.0278 0.0035 0.0289 0.0044 0.0188

0.0289 0.0227 0.0186 0.0066 0.0265 0.0399 0.0168 0.0240 0.0040 0.0235

0.0057 20.0018 0.0385 20.0086 0.0178 0.0130 0.0240 0.0317 0.0200 0.0137

0.0188 20.0046 0.0322 0.0136 0.0187 0.0249 0.0157 0.0250 0.0167 0.0083

0.0204 0.0153 0.0154 0.0413 0.0089 0.0344 0.0273 0.0236 0.0158 0.0185

Figure 9. The pH sensor.
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greater than the uncorrected critical value 1.547. Moreover, input T ¼ 0.0pH,

USL ¼ 0.05pH, and LSL ¼ 20.05pH, 70 observations, l ¼ 0.30 (provided by the

gauge manufacturing factory), and the desired confidence coefficient g ¼ 0.95 into the

Matlab computer program (available upon request), the 95% lower confidence bound of

the true process capability can be obtained as 1.415. We thus can ensure that the

production yield is 99.9978%, and the number of the non-conformities is less than

21.78 PPM (Parts Per Million).

Conclusions

Gauge measurement errors have a significant impact on estimating and testing manufac-

turing reproduction capability. In this paper, we conducted the sensitivity study for process

capability Cp and Cpm in the presence of gauge measurement errors. We investigated the

statistical properties and capability testing of estimating Cp and Cpm to obtain lower con-

fidence bounds and critical values for true process capability testing when gauge measure-

ment errors are unavoidable. In estimating the capability, the estimator ĈG
p and ĈG

pm using

the sample data contaminated with the measurement error severely underestimates the true

capability in the presence of measurement errors. The statistical testing is performed to

determine whether the process meets the capability requirement, the test power decreases

in the presence of gauge measurement errors. Since the measurement errors are unavoid-

able in most industry applications, lower confidence bounds and critical values must be

adjusted to improve the accuracy of capability assessment. For practical purposes, some

adjusted critical values for Cp and Cpm are tabulated to the engineers for their factory

applications.
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