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a b s t r a c t

Let m be a positive integer and let G be a graph. We consider the question: can the edge
set E(G) of G be expressed as the union of a setM of matchings of G each of which has size
exactlym? If this happens, we say that G is [m]-coverable and we callM an [m]-covering of
G. It is interesting to considerminimum [m]-coverings, i.e. [m]-coverings containing as few
matchings as possible. Such [m]-coverings will be called excessive [m]-factorizations. The
number of matchings in an excessive [m]-factorization is a graph parameter which will be
called the excessive [m]-index and denoted by χ ′

[m]. In this paper we begin the study of this
new parameter as well as of a number of other related graph parameters.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper graphs are understood to be simple, finite and undirected. We use the term multigraph when multiple
edges (but not loops) are allowed. Thus a graph is a particular type of multigraph. It is convenient, for our purposes, to
exclude from our consideration graphs with no edges. Therefore we shall adopt the convention that, throughout this paper,
the term ‘‘graph’’ has the meaning ‘‘graph with at least one edge’’. The set of positive integers will be denoted by Z+. If
α ∈ Z+, β ∈ Z+ ∪ {∞}, by [α, β)we shall denote the set

{x ∈ Z+ : α ≤ x < β}.

The notations (α, β), [α, β], (α, β] are defined analogously.
If G is a graph, we denote by V (G) the vertex set and by E(G) the edge set of G. If E1 ⊂ E(G), by G − E1 we denote the

graph Gwith all edges in E1 deleted. Similarly, if V1 ⊂ V (G), by G−V1 we denote the graph Gwith all the vertices in V1 (and
all their incident edges) deleted. We use the notation Kn to denote the complete graph of order n, the notation Kp,q to denote
the complete bipartite graph whose partite classes contain p and q vertices, respectively, the notations Cn and Pn to denote,
respectively, the cycle and path on n vertices, and the notation K(n1, n2, n3, . . . , nt) to denote the complete multipartite
graph whose partite sets consist, respectively, of n1, n2, . . . , nt vertices, where we assume n1 ≥ n2 ≥ · · · ≥ nt and t ≥ 3.
The symbol P will denote the Petersen graph.
Amatching M in a multigraph G is a set of mutually nonincident edges. IfM is a matching of G and v ∈ V (G), we say that

v is saturated byM if v is incident to an edge ofM , and we say that v is unsaturated byM otherwise. For a reference book on
Matching Theory, we refer the reader to Lovász and Plummer [6]. A k-edge colouring of amultigraphG is amap ϕ : E(G)→ C,
where C is a set of cardinality k and ϕ(e) 6= ϕ(f ) for any pair of mutually incident edges e, f of G. If α ∈ C, the set of edges
coloured α, i.e. the set ϕ−1({α}), is called a colour class of ϕ. Clearly every colour class of an edge colouring is a matching.
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The least nonnegative integer k for which G admits a k-edge colouring is called the chromatic index of G and denoted by
χ ′(G). Notice that χ ′(G)may be defined as the minimum number of matchings whose union is E(G). It is sometimes useful
to consider edge colourings whose colour classes have ‘‘approximately’’ the same size. More precisely, a k-edge colouring ϕ
is called equalized if it has the property that, for every colour class C ,

b|E(G)|/kc ≤ |C | ≤ d|E(G)|/ke. (1)

We shall often use the following lemma, due to de Werra [8] and (independently) McDiarmid [7].

Lemma 1. Let G be a multigraph. Then G has an equalized k-edge colouring if and only if k ≥ χ ′(G).

Thus, if G is k-edge colourable, we can always guarantee the existence of a k-edge colouring in which any two colour
classes have either the same size or differ in size by at most 1. This may be a desirable situation for many practical purposes,
e.g. in scheduling problems. However, it may be the case that the problem at hand demands ‘‘absolute uniformity’’, i.e. that
every matching corresponding to a colour class should have exactly the same size. This is obviously a very stringent
restriction. By (1), this may be achieved by an edge colouring only if |E(G)| is a multiple of the number of colour classes,
in which cases such a colouring is called a decomposition of G into matchings of sizem. For example, if G = Kn andm | n(n−1)2
then such a decomposition always exists (see [5]). In all other cases, in order to satisfy this requirement, we need to alter
the definition of edge colouring, by allowing different colour classes to ‘‘overlap’’. This motivates the following definition.
Let m be a positive integer. An [m]-covering of a graph G is1 a set M = {M1,M2, . . . ,Mk} of matchings of G, where

|Mi| = m for each i = 1, 2, . . . , k and
⋃k
i=1Mi = E(G). The integer kwill be called the order of the [m]-covering.

Obviously, not all graphs admit an [m]-covering. More precisely, a necessary and sufficient condition for a graph G to
admit an [m]-covering is that every edge of G belongs to a matching of size at least m (and hence to a matching of size
exactly m). If a graph G admits an [m]-covering, we say that G is [m]-coverable. It is natural and of practical interest to
consider [m]-coverings of smallest order. Any such [m]-covering will be called2 an excessive [m]-factorization. The order of
any excessive [m]-factorization of Gwill be denoted by χ ′

[m](G) and called excessive [m]-index. In other words, we let

χ ′
[m](G) = min{|M| :M is an [m]-covering of G},

wherewe adopt the standard set-theoretic convention thatmin∅ = ∞. In such away the parameter χ ′
[m](G) is now defined

on all graphs.3
The purpose of the present paper is to begin the investigation of excessive [m]-factorizations and of the parameter χ ′

[m].
The following fact, which we state in the form of a proposition, will be frequently used.

Proposition 1. Let m, k be positive integers and let G be a graph. The following are equivalent conditions for G:

(i) χ ′
[m](G) ≤ k;

(ii) G has a k-edge colouring whose colour classes are all of size at most m, and such that each colour class is contained in a
matching of size m;

(iii) G is the underlying simple graph of a multigraph G̃ such that |E (̃G)| = km and G̃ is k-edge colourable.

Proof. Assume that χ ′
[m](G) ≤ k. LetM = {M1,M2, . . . ,Mk} be an [m]-covering (where, if necessary, we allow the same

matching to appear several times as an element ofM). Define a function φ : E(G)→ [1, k] by

φ(e) = min{i ∈ [1, k] : e ∈ Mi}.

It is easily seen that φ is an edge colouring satisfying the desired conditions. Thus (i) implies (ii). Now, define themultigraph
G̃ to be the spanning supermultigraph of G satisfying the following property: any two distinct vertices x, y are joined in G̃
by as many edges as there are matchings Mi inM containing the edge xy if xy ∈ E(G), and by no edges if xy 6∈ E(G). It is
easily seen that G̃ satisfies the conditions stated in (iii). Hence (i) implies (iii). Conversely, if a multigraph G̃ as stated in the
proposition exists, andφ is an equalized k-edge colouring of G̃, then it is easily seen that the colour classes ofφ (when viewed
asmatchings) constitute an [m]-covering of G of order k, thus proving that (iii) implies (i). Similarly, if φ is an edge colouring
satisfying the conditions stated in (ii), then, by simply extending the colour classes of φ to matchings of size exactly m, we
obtain an [m]-covering of G, proving that (ii) implies (i). �

Clearly, if the graph G admits a decomposition into matchings of sizem, then this will be an excessive [m]-factorization
and we have

χ ′
[m](G) = |E(G)|/m.

1 The use of square brackets here ismotivated by the fact that other (not equivalent) notions ofm-cover orm-covering are in commonuse in the literature.
2 Also here the choice of the square brackets is imposed by the necessity of avoiding confusion with the term ‘‘m-factorization’’, which has another
meaning in the literature.
3 We could conventionally define χ ′

[m](G) = ∞ if E(G) = ∅, but, for our purposes, it is still convenient to consider only the case E(G) 6= ∅.
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In this paper m is assumed to be a fixed positive integer and G is allowed to vary. When m is not independent of G but is
assumed to be equal to the size of a 1-factor of G (i.e. n/2, where n is the number of vertices) the corresponding parameter,
denoted by χ ′e(G), was introduced by Bonisoli and the first author in [1], and called excessive index. Inter alia it was proved
in [1] that the problem of determining χ ′

[e](G) is NP-hard. The present authors recently computed the excessive index
χ ′e(G) for all complete multipartite graphs G [3], and in [2] they extended the investigations to graphs of odd order and
[m]-coverings, where m = (n − 1)/2, i.e. the size of a near 1-factor. Thus the present work may be seen as an extension
of the works cited above when m is allowed to assume any arbitrary (but fixed) integer value. We remark, however, that
the NP-hardness of χ ′e does not seem to imply in an obvious way any fact about the complexity of computing χ

′

[m] for fixed
m, and the latter problem is presently open. In particular Rizzi (personal communication) has asked what is the minimum
value ofm for which the computation of χ ′

[m](G) is NP-complete (assuming that such an integer exists).
The paper is organized as follows. In Section 2 we discuss the coverability index of G, that is the maximum value ofm for

which G has an excessive [m]-factorization. In Section 3 we study the compatibility index, that is the maximum value of m
for which the identity

χ ′
[m](G) = max{χ

′(G), d|E(G)|/me}

holds. In Section 4 we introduce the augmentability index and show its relation with the other parameters introduced. The
augmentability index is themaximumvalue ofm forwhich anymatching of size less thanm can be extended to amatching of
sizem. Further results concerning particular classes of graphs are considered in Section 5. Finally, in Section 6 we introduce
a partition of the positive integers naturally associated to the above parameters and prove a useful theorem.

2. Coverability index

Let ν(G) denote the matching number of G, i.e. the size of a maximum matching. It is well known that ν(G) can be
computed in polynomial time [4]. Clearly, if m is an integer and m > ν(G), then G cannot be [m]-coverable. Let4 cov(G)
denote the maximum integer m with the property that G is [m]-coverable. We call this number the coverability index of G.
In other words we let

cov(G) = max{m ∈ Z+ : G is [m]-coverable}.

Notice that every graph G is [1]-coverable. Since, ifm ≥ 2, every matching of sizem contains a matching of sizem− 1, we
have that G is [m]-coverable if and only if 1 ≤ m ≤ cov(G). The following proposition gives a formula for the coverability
index in terms of the matching number.

Proposition 2. For any graph G, we have

cov(G) = min
xy∈E(G)

{1+ ν(G− x− y)}. (2)

Proof. Letm = cov(G). By definition, G is [m]-coverable but not [m+ 1]-coverable. By the fact that G is [m]-coverable, for
any edge e = xy, there exists a matching of sizem containing e, i.e. there exists a matching of sizem− 1 in G− x− y, thus
proving that cov(G) is greater than or equal to the right-hand side of (2). However, by the fact that G is not [m+1]-coverable,
there also exists an edge e = xy in G which is not contained in any matching of sizem+ 1. This implies that G− x− y has
matching number at mostm− 1, proving the reverse inequality in (2). �

Corollary 1. For every graph G, ν(G)− 1 ≤ cov(G) ≤ ν(G).

Proof. The fact that cov(G) ≤ ν(G) is obvious. By Proposition 2, in order to prove that cov(G) ≥ ν(G)− 1, it will suffice to
prove that, for every x, y ∈ V (G) such that xy ∈ E(G), there exists a matching of G− x− y of size at least ν(G)− 2. IfM is a
matching of size ν(G), thenM contains at most two edges incident with either x or y. HenceM contains a submatchingM ′
of size at least ν(G)− 2 which contains neither x nor y. This is the required matching. �

Clearly cov(G) = ν(G) if and only if every edge of G belongs to a maximum matching. This is certainly the case, for
example, if G is edge-transitive (e.g. G = P). The path P3 provides an example of a graph G satisfying cov(G) = ν(G)− 1.
In the following proposition, whose easy proof is left to the reader, we express the coverability index and matching

number of a few simple classes of graphs.

Proposition 3. We have

1. cov(Kn) = bn/2c = ν(Kn);
2. cov(Kp,q) = min{p, q} = ν(Kp,q);
3. cov(Cn) = bn/2c = ν(Cn);

4 Here the implicit assumption that E(G) 6= ∅ guarantees that cov(G) always exists and is a positive integer.
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4. cov(Pn) = b(n− 1)/2c ≤ ν(Pn) = d(n− 1)/2e.
5. cov(P) = 5 = ν(P), where P is the Petersen graph.

As a further example, we consider the class of complete multipartite graphs.

Proposition 4. We have
(a) ν(K(n1, n2, . . . , nt)) = min{bn/2c, n− n1};
(b) cov(K(n1, n2, . . . , nt)) = min{bn/2c, n− 1− n1},
where n =

∑t
i=1 ni.

Proof. Let G = K(n1, n2, . . . , nt) and let n =
∑t
i=1 ni be the order of G. Assume first

bn/2c >
t∑
i=2

ni = n− n1

i.e.

n1 > (n− n1).

Then, bymatching exactly n−n1 vertices of the largest partite set V1with all the remaining vertices, we construct amatching
which is clearly maximum, therefore confirming the truth of (a) in this case. On the other hand, if

n1 ≤ (n− n1)

then there exists (see [3] for details) a 1-factor if n is even, or a near 1-factor if n is odd, thereby completing the proof of (a).
We now prove (b). Using Proposition 2, we have

cov(G) = min
i<j
{ν(Gij)} + 1,

where

Gij = K(n1, n2, . . . , ni − 1, . . . , nj − 1, . . . nt).

But, by (a), we have

ν(Gij) = min{b(n− 2)/2c, n− 2− n1 + δ1i},

where δ1i = 1 if i = 1 and δ1i = 0 if i > 1. It follows that

min
1≤i<j≤t

ν(Gij) = min{b(n− 2)/2c, n− 2− n1}

and hence

cov(G) = min{b(n− 2)/2c, n− 2− n1} + 1 = min{bn/2c, n− 1− n1},

which proves (b). �

3. Compatibility index

We now establish a fundamental lower bound on the excessive [m]-index of a graph.

Theorem 1. For any graph G and any positive integer m, we have

χ ′
[m](G) ≥ max{χ

′(G), d|E(G)|/me}. (3)

Proof. We can clearly assume that χ ′
[m](G) = k < ∞. LetM = {M1,M2, . . . ,Mk} be an excessive [m]-factorization of G.

Then

|E(G)| =

∣∣∣∣∣ k⋃
i=1

Mi

∣∣∣∣∣ ≤ k∑
i=1

|Mi| = km,

so that (using the fact that k is an integer) we have

k ≥ d|E(G)|/me. (4)

Now, let ϕ : E(G)→ [1, k] be defined by

ϕ(e) = min{i ∈ [1, k] : e ∈ Mi}.

It is straightforward to verify that ϕ is an edge colouring of G. Hence k ≥ χ ′(G), which, combined with (4), proves the
theorem. �
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The inequality of Theorem 1 can be strict, even if χ ′
[m](G) is finite. For example, as proved in [1], the Petersen graph P

satisfies χ ′
[5](P) = 5, whereas the quantity max{χ

′(P), d|E(P)|/5e} equals 4. It will be useful to distinguish those graphs for
which the inequality (3) holds strictly from those for which it does not, for any fixed value of m. This distinction turns out
to be crucial in the present context. Accordingly, we introduce the following notation, which will be used extensively in the
sequel. Namely, for any positive integerm, we let the parameterΛm(G) be defined as follows:

Λm(G) = max{χ ′(G), d|E(G)|/me}. (5)

We say that a graph G ism-compatible if χ ′
[m](G) = Λm(G), i.e. if inequality (3) holds as an equality. Notice that, knowing

that a given graph G ism-compatible reduces the task of computing χ ′
[m](G) to the task of computing χ

′(G), which (despite
the fact that computing χ ′(G) is still NP-hard in general) is a substantial simplification.
It is natural to ask (and it is not obvious a priori that this should be the case) whether any graph Gwhich ism-compatible

is alsom′-compatible for any positive integerm′ < m. This question is answered affirmatively by the following theorem.

Theorem 2. Let m ≥ 2 be an integer. Let G be an m-compatible graph. Then G is (m− 1)-compatible.

Proof. Letm ≥ 2 and assume G ism-compatible. LetΛm−1(G) be defined as in (5), i.e.

Λm−1(G) = max{χ ′(G), d|E(G)|/(m− 1)e}. (6)

We split the proof into two cases.
Case 1.Λm−1(G) = χ ′(G). Let

k = χ ′(G) = Λm−1(G).

We have, by assumption,

χ ′(G) ≥ d|E(G)|/(m− 1)e ≥ d|E(G)|/me, (7)

and hence (since G ism-compatible) we have

χ ′
[m](G) = χ

′(G) = k. (8)

Let G̃ be a multigraph obtained from G as in the statement of Proposition 1(iii), which exists by Proposition 1. We claim that
there exists a multigraph Ĝ such that

1. G ⊂ Ĝ ⊂ G̃;

2. |E (̂G)| = k(m− 1).

To see this, it suffices to notice that, by Proposition 1, |E (̃G)| = km, and G satisfies, by (7) and (8), the condition

χ ′(G) = χ ′
[m](G) = k ≥ d|E(G)|/(m− 1)e ≥ |E(G)|/(m− 1),

which implies that

|E(G)| ≤ k(m− 1) = |E (̃G)| − k.

To obtain Ĝ, we delete k arbitrary edges from G̃ − E(G). Notice that, by Proposition 1, G is an underlying simple graph
of G̃, and, by construction, G is also an underlying simple graph of Ĝ. Since G̃ is k-edge colourable, Ĝ is k-edge colourable.
Therefore, by Proposition 1 applied to the integers k andm− 1 and to the multigraph Ĝ, we have

χ ′
[m−1](G) ≤ k = χ

′(G).

The reverse inequality follows directly from Theorem 1. Therefore

χ ′
[m−1](G) = k = Λm−1(G),

i.e. G is (m− 1)-compatible.
Case 2.Λm−1(G) = d|E(G)|/(m− 1)e > χ ′(G). Let k = χ ′(G). Write |E(G)| in the form

|E(G)| = (m− 1)x+ y,

where x, y are integers with 0 ≤ x, 0 ≤ y < m− 1. By assumption, we have

x = b|E(G)|/(m− 1)c ≥ χ ′(G) = k,

where the inequality can hold as an equality only if y > 0. If y = 0 and φ is an equalized Λm−1(G)-edge colouring, then
the colour classes of φ provide the required excessive [m − 1]-factorization of G, thus proving that χ ′

[m−1](G) = Λm−1(G),
i.e. that G is (m − 1)-compatible. If y > 0, adding to G an arbitrary matching of size m − 1 − y yields a multigraph G̃ with
the following properties:
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1. G is the underlying simple graph of G̃;
2. χ ′(̃G) ≤ χ ′(G)+ 1 = k+ 1;
3. |E (̃G)| = (m− 1)(x+ 1).
Therefore, by Proposition 1 and the assumption, we conclude that

χ ′
[m−1](G) ≤ x+ 1 ≤ d|E(G)|/(m− 1)e = Λm−1(G),

which, by Theorem 1, implies that G is (m− 1)-compatible. �

Since, for every graph G, trivially
χ ′
[1](G) = |E(G)|,

every graph is 1-compatible. Therefore it follows from Theorem 2 that, for any graph G, there exists an integerm∗ such that
G is m-compatible if and only if 1 ≤ m ≤ m∗. Such integer m∗ will be called the compatibility index of G and denoted by
com(G). By the above remark, we have

com(G) = max{m ∈ Z+ : G ism-compatible}.
Obviously com(G) ≤ cov(G) for any graph G. If this inequality holds as an equality, i.e. if com(G) = cov(G), we say that G

is fully compatible.Wewill show later that complete graphs, complete bipartite graphs, cycles and paths are fully compatible.

4. Augmentability index

An auxiliary concept, which can be very useful when trying to calculate the [m]-excessive index, is the following. Recall
that a graphG is [m]-coverable if and only if every edge belongs to amatching ofG of sizem. Thismay be rephrased by saying
that every matching of size 1 can be extended to a matching of size m. But suppose that G has the (stronger) property that
every matching of size less thanm can be extended to a matching of sizem. We then say that G ism-augmentable. Clearly, if
G ism-augmentable andm ≥ 2, then G is also (m− 1)-augmentable. Hence there always exists an integerm+ such that G is
m-augmentable if and only if 1 ≤ m ≤ m+. Such integer will be called the augmentability index of G and denoted by aug(G).
By the above remark, we have

aug(G) = max{m ∈ Z+ : G ism-augmentable}.
Clearly aug(G) ≤ cov(G) for every graph G. If aug(G) = cov(G), we say that G is fully augmentable. The following

proposition expresses the augmentability index in a different fashion. We say that a matching ismaximal if it is not properly
contained in another matching.

Proposition 5. For any graph G, aug(G) is the size of a smallest maximal matching of G.
Proof. LetM be a maximal matching of smallest size and let m = |M|. ClearlyM cannot be extended to a larger matching,
hence aug(G) ≤ m. On the other hand, any matching of size smaller than m is contained in a matching of size at least m,
proving that aug(G) ≥ m. �

Rizzi (personal communication) informed us that the problem of finding the size of a smallest maximal matching in a
graph is, in general, APX-hard and, in particular, NP-hard. This fact indicates that it may be very hard to determine aug(G)
in general. However, it appears that computing aug(G) is still simpler than computing the excessive [m]-index of G, or even
the compatibility index of G. The following theorem justifies the introduction of the concept of augmentability.

Theorem 3. Every m-augmentable graph is m-compatible.
Proof. Let G be anm-augmentable graph. Then, by definition,

Λm(G) ≥ χ ′(G),

and hence G isΛm(G)-edge colourable. Thus G has an equalizedΛm(G)-edge colouring ϕ. We claim that

d|E(G)|/Λm(G)e ≤ m. (9)

This follows immediately from

Λm(G) ≥ d|E(G)|/me ≥ |E(G)|/m,

together with the fact thatm is an integer.
Since ϕ is an equalizedΛm(G)-edge colouring, every colour class has size at most

d|E(G)|/Λm(G)e,

and hence at mostm by (9).
By assumption, each such colour class can be extended to a matching of size exactly m, which yields an [m]-covering

of G of order Λm(G). Hence χ ′[m](G) ≤ Λm(G), where we must necessarily have equality by Theorem 1. This concludes the
proof. �
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Fig. 1. A maximal matching of P of size 3.

Fig. 2. A maximal matching of size 2 in P7 .

Theorem 3 implies the inequality aug(G) ≤ com(G) for all graphs G. This is not an equality in general. For example, if P
is the Petersen graph, then, by Proposition 8 below, χ ′

[4](P) = χ
′(P) = 4, which implies that com(P) ≥ 4, but it is easy to

see that aug(P) = 3 (see Fig. 1).
An easy lower bound for aug(G) is obtained as follows. We first recall some standard definitions. A dominating set in a

graph G is a set S ⊂ V (G)with the property that every vertex of G is either in S or adjacent to an element of S. The domination
number of G, denoted by γ (G), is the cardinality of a smallest dominating set. The line graph of G, denoted by L(G), is the
graph whose vertex set is E(G) and where two vertices are adjacent if and only if the corresponding edges of G are incident.

Theorem 4. For any graph G, aug(G) ≥ γ (L(G)).

Proof. It is an elementary observation that, if I is a maximal independent set in G, then I is a dominating set. Hence, if k is
the size of a smallestmaximal independent set, we have

γ (G) ≤ k.

Applying the above inequality to the line graph L(G) and using Proposition 5, we obtain

γ (L(G)) ≤ aug(G),

which is the required inequality. �

A corollary of the above theorem is the following.

Corollary 2. Let G be a graph. Then aug(G) ≥ d|E(G)|/(2∆(G)− 1)e.

Proof. Let E1 be a dominating set for L(G). We claim that

|E1|(2∆(G)− 1) ≥ |E(G)|. (10)

Indeed, if e ∈ E1, then e is incident with at most 2∆(G)− 2 distinct edges and hence e dominates at most 2∆(G)− 1 edges.
It follows that E1 dominates at most |E1|(2∆(G)−1) edges and, since E1 is a dominating set for L(G), inequality (10) follows.
Now, taking E1 to be a smallest dominating set for L(G) and using Theorem 4 and (10), we obtain the desired inequality. �

We now calculate aug(G) for some simple classes of graphs.

Proposition 6. We have

(i) aug(Kn) = bn/2c = cov(Kn), i.e. Kn is fully augmentable;
(ii) aug(Kp,q) = min{p, q} = cov(Kp,q), i.e. Kp,q is fully augmentable;
(iii) aug(Cn) = dn/3e;
(iv) aug(Pn) = d(n− 1)/3e;
(v) aug(P) = 3, where P is the Petersen graph.

Proof. (i) and (ii) are immediate. (v) follows from the fact that P is, by Corollary 2, 3-augmentable, and by the existence of
the maximal matching of P displayed in Fig. 1. For the cases (iii) and (iv), the≥ part of the equality follows from Corollary 2.
A maximal matching of size d(n− 1)/3e for Pn is shown in Fig. 2 for n = 7. A similar idea works for any value of n and can
be used to prove also that aug(Cn) = dn/3e, thus proving the≤ part of the equality in (iii) and (iv). �
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Proposition 7. The augmentation number of G = K(n1, n2, . . . , nt) is the integer

aug(G) = max{d(n− n1)/2e, n2}.

Proof. LetM be a maximal matching of G of minimum size. ThenM cannot leave two vertices in two different partite sets
unsaturated, because it is maximal. Hence all the unsaturated vertices must be in the same partite set, and thus there are at
most n1 unsaturated vertices. This proves that

2|M| ≥ n− n1.

Suppose thatM leaves only nodes in the partite set Vi unsaturated, where 1 ≤ i ≤ t . We claim thatM consists of:

• a maximummatchingM0 of G− Vi;
• as many edges as possible joining Vi to G− Vi − V (M0);

Indeed, let M∗ be the matching obtained from M by deleting all the edges incident vertices in Vi. We prove that M∗ is a
maximummatching of G− Vi. For, if there was a matchingM+ of G− Vi of size larger thanM∗, thenM+ could be extended
(by adding as many edges as possible from Vi to G− Vi − V (M+)) to a matching of Gwhich is clearly maximal and has size
smaller thanM , contradicting the assumption thatM is a smallest maximalmatching. ThereforeM∗ is amaximummatching
of G− Vi.
It follows from this claim that the size ofM is easily computed as

|M| = |M0| + (|V (G− Vi)| − 2|M0|) = n− ni − |M0|. (11)

Since

|M0| = ν(G− Vi) = ν(K(n1, n2, . . . , ni−1, ni+1, . . . nt)),

we have, by Proposition 4,

|M0| = min{b(n− ni)/2c, n− ni − nx}, (12)

where x = 2 if i = 1 and x = 1 if i 6= 1. Hence, using (11) and (12), we see that

|M| = max{d(n− ni)/2e, nx}. (13)

Clearly the left-hand side of (13) has the minimum value when i = 1, i.e. when

|M| = max{d(n− n1)/2e, n2}. (14)

Thus the proposition will be proved if we can convince ourselves that there exists a maximal matchingM of Gwhich leaves
some nodes on V1 unsaturated. Such amatching is easy to construct, e.g. taking amaximummatching ofG−V1 and following
the procedure described above. By (14), this matching has the required size. �

5. Further results

Using the results proven so far, we can now express the excessive [m]-index for some simple classes of graphs.

Proposition 8. We have

(i) χ ′
[m](Kn) = Λm(Kn) for 1 ≤ m ≤ bn/2c and∞ otherwise, i.e. Kn is fully compatible;

(ii) χ ′
[m](Kp,q) = Λm(Kp,q) for 1 ≤ m ≤ min{p, q} and∞ otherwise, i.e. Kp,q is fully compatible;

(iii) χ ′
[m](Cn) = Λm(Cn) for 1 ≤ m ≤ bn/2c and∞ otherwise, i.e. Cn is fully compatible;

(iv) χ ′
[m](Pn) = Λm(Pn) for 1 ≤ m ≤ b(n− 1)/2c and∞ otherwise, i.e. Pn is fully compatible.

(v) χ ′
[m](P) = Λm(P) for 1 ≤ m ≤ 4, χ

′

[5](P) = 5 and χ
′

[m](P) = ∞ for m > 5.

Proof. (i) and (ii) follow immediately by Proposition 6 and Theorem3. To prove (iii), since aug(Cn) = dn/3e by Proposition 6,
we can restrict ourselves, without loss of generality, to the case

dn/3e < m ≤ bn/2c.

Under these conditions it is easily seen that

Λm(Cn) = max{χ ′(Cn), d|E(Cn)|/me} =
{
2 if n is even andm = n/2;
3 otherwise.

In the first case Cn is clearly m-compatible, since a 1-factorization of Cn is an excessive [m]-factorization of order 2. In the
latter case, in order to prove that χ ′

[m](Cn) ≤ 3 we shall use Proposition 1 and prove that Cn has a 3-edge colouring whose
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Fig. 3. An excessive [4]-factorization of the Petersen graph.

Fig. 4. An example of a [3]-coverable graph which is not 3-compatible.

colour classes have size at most m, and such that each colour class can be extended to a matching of size m. To see this, let
e1, e2, . . . , en be the edges of Cn in circular order. Define ϕ : E(Cn)→ {α, β, γ } by letting

ϕ(ei) =

α if i = 1, 3, 5, . . . 2m− 1
β if i = 2m+ 1, 2m+ 3, . . . n∗, 2, 4, 6, . . . 2s
γ if i = 2s+ 2, 2s+ 4, . . . n+

where n∗, n+ are, respectively, the largest odd and even integer less than or equal to n, and s is chosen in such a way that
the β- colour class has size precisely m. It is easily seen that the above colouring is a proper 3-colouring of G satisfying the
required properties. This terminates the proof of (iii). In a similar way one can prove that Pn is fully compatible, i.e. (iv). To
prove (v), notice that, by Proposition 6 and Theorem 3, P is m-compatible, for m ≤ 3. Since cov(P) = 5 by Proposition 3,
we are left only with the cases m = 4 and m = 5 of (v). The case m = 5 was established in [1]. Thus, we are only left with
the proof that χ ′

[4](P) = Λ4(P) = 4. By Theorem 1, we only need to prove that χ
′

[4](P) ≤ 4. A [4]-covering of P of order 4 is
shown in Fig. 3. This completes the proof. �

The determination of the parameter χ ′
[m], when G is a complete multipartite graph and m is an arbitrary integer, seems

to be an interesting unsolved problem (as mentioned above, we solved this problem completely in [3] only when G has
even order n andm = n/2). For no classes of graphs, other than those listed in Proposition 8, we have evaluated χ ′

[m] for all
possible values ofm. We shall now restrict our attention to particular values ofm, in the attempt to be able to say something
more specific about the parameter χ ′

[m], at least for some classes of graphs.
We have already noticed that every graph G is 1-compatible. However, not all graphs are 2-compatible, since there are

obvious examples of graphs which are not even 2-coverable. But this is the only limitation in this respect, i.e. we have the
following.

Proposition 9. Every [2]-coverable graph is 2-compatible.
Proof. The truth of the statement of the proposition follows immediately from the observation that every [2]-coverable
graph is 2-augmentable and by Theorem 3. �

An obvious question at this point is whether every [3]-coverable graph is also 3-compatible. The answer to this question
is negative, as shown by the graph G depicted in Fig. 4.
If this graph was 3-compatible, then we would have χ ′

[3](G) = 3, but it is easy to see that any [3]-covering of G contains
at least 4 matchings, since no pair of the edges of the 4-cycle of G can be included in the same matching of size 3. Similar
examples can be easily produced for anym ≥ 3. Thus the question ‘‘is every [m]-coverable graphm-compatible?’’ is better
rephrased as ‘‘which [m]-coverable graphs are m-compatible?’’. This seems to be a fundamental question for which we do
not have a satisfactory answer at present. However, we can prove the following.
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Fig. 5. A [5]-coverable tree which is not 5-compatible. An excessive [5]-factorization is shown.

Theorem 5. Every [3]-coverable tree is 3-compatible.

Proof. Let T be a [3]-coverable tree. If T is 3-augmentable, then we are done by Theorem 3. Hence we can assume, without
loss of generality, that T is not 3-augmentable, and hence (since T is necessarily 2-augmentable by the fact that it is
[2]-coverable) T contains a matching {e, f } which is not contained in a matching of size 3. Let k = Λ3(T ). By Proposition 1
and (9), itwill suffice to prove the existence of an equalized k-edge colouring of T such that every colour class can be extended
to a matching of size 3. Notice that every edge in T is incident or coincident to either e or f , otherwise the matching {e, f }
would be 3-augmentable. Let e = xeye and let f = xf yf , where we assume that ye and xf are at the shortest distance in T
(it is easily seen that such distance must be either 1 or 2). Since the matchings {e} and {f } are, by the [3]-coverability of T ,
contained in matchings of size 3, there must be, for each of xe, ye, xf , yf , one incident edge, which is different from the edges
e, f . We claim the following:
Claim. The only maximal matching in T of size 2 is {e, f }. To see this, suppose that {λ,µ} is a maximal matching of T .
Let {xe, ye, xf , yf } be the endpoints of e, f . It is easily seen that λ and µ together must be incident to all the vertices in
{xe, ye, xf , yf }, otherwise (by the above remark) the matching {λ,µ} would not be a maximal matching of T . But, since T is
a tree, the only possibility is that {λ,µ} = {e, f }, thus proving our claim.
Let now ϕ be an equalized k-edge colouring of T . Notice that, by (9), every colour class of ϕ has size at most 3. If ϕ does

not contain {e, f } as a colour class, then, by the Claim and Proposition 1, we are done. Hence we can assume that one of the
colour classes is {e, f }. Now, we can easily obtain a new equalized k-edge colouring of T which does not contain {e, f } as a
colour class as follows. Starting with the colouring ϕ, we simply exchange the colours between f and one of the other edges
incident with xf (more precisely, we choose any edge not on the path joining ye and xf if such an edge exists, or the only
edge incident with xf and different from f otherwise). In this way we always obtain the desired colouring of T , and hence,
arguing as above, we can claim that T is 3-compatible. �

An open problem is to see whether the statement of Theorem 5 remains true when m is assumed to be 4, i.e. to prove
(or disprove) that every [4]-coverable tree is 4-compatible. However, for m = 5 the same statement is certainly false,
as the example of Fig. 5 shows. As proved in [2] such tree T has excessive [5]-index equal to 4, whereas the quantity
max{χ ′(T ), d|E(T )|/5e} equals 3, proving that T is not 5-compatible.
Now, for any class G of graphs, one may ask the following question: ‘‘what is the maximum positive integerm such that

every graph G ∈ Gwhich is [m]-coverable is alsom-compatible?’’
We propose to call such integer the compatibility level of the class G and denote it by m(G). For example, we have seen

earlier that, if G denotes the class of all graphs, we have

m(G) = 2,

By what we have just shown, if T denotes the class of trees, we have

m(T ) = 3 or 4,

according to whether there exists a [4]-coverable tree which is not 4-compatible or not, respectively.
Since the graph of Fig. 4 is bipartite, we also have

m(B) = 2,

whereB denotes the class of bipartite graphs. Indeed, we also have

m(Q) = 2,
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Fig. 6. The three intervals associated to a graph G.

Fig. 7. The subdivision of the compatibility interval in the intervals Ia and Ic .

where Q denotes the class of complete multipartite graphs, since, using theorem, one can easily see that the complete
multipartite graph K(2, 1, 1, 1, 1) is [3]-coverable but not 3-compatible.
For the class of paths, cycles, complete graphs and complete bipartite graphs, or (more generally) for any class of graphs

H with the property that all its members are fully compatible, we obviously have

m(H) = ∞.

6. Intervals of integers

As a consequence of Theorem 2, for any graph G, one can subdivide the set of positive integersm into three intervals (see
Fig. 6):

1. The interval [1, com(G)], which we call the compatibility interval, consisting of those values of m such that G is
m-compatible, i.e.

χ ′
[m](G) = Λm(G).

2. The interval (com(G), cov(G)], which we call the incompatibility interval, consisting of those values of m such that G is
[m]-coverable but notm-compatible, i.e.

Λm(G) < χ ′
[m](G) <∞.

3. The interval (cov(G),∞), which we call the infinity interval, consisting of those values of m such that G is not
[m]-coverable, i.e.

χ ′
[m](G) = ∞.

Notice that the incompatibility interval may be empty (when G is fully compatible), but the other two intervals are always
non-empty.
We may further subdivide the compatibility interval into two subintervals, namely the interval where the parameter

Λm(G) takes the value d|E(G)|/me and the interval where it takes the value χ ′(G). Strictly speaking, however, these two
intervals may not always be disjoint, so we introduce a convention. Let the integerΩ(G) be defined by

Ω(G) = b|E(G)|/χ ′(G)c.

We define achromaticity interval, denoted by Ia, the interval [1,Ω(G)] ∩ [1, com(G)] and chromaticity interval, denoted by
Ic , the interval (Ω(G), com(G)] (see Fig. 7).
Notice that Ic is empty if and only if the identity

b|E(G)|/χ ′(G)c = com(G)

holds, which may sometimes occur (e.g. when G = C4). However, Ia is never empty since it always contains the integer 1.
It is easy to see that

χ ′
[m](G) =

{
d|E(G)|/me ifm ∈ Ia;
χ ′(G) ifm ∈ Ic .

Thus the partition of the compatibility interval in the intervals Ia and Ic satisfies the desired condition. Notice that a positive
integerm belongs to Ia if and only if the following two conditions are satisfied:

(a) m ≤ com(G);
(b) m ≤ Ω(G).
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However, as we shall prove now, condition (a) is redundant.

Theorem 6. Let G be a graph and let m be a positive integer. If |E(G)|/m ≥ χ ′(G), then G is m-compatible.

Proof. Let G and m be as in the statement of the theorem. We first prove that G is [m]-coverable. By Lemma 1 we can
edge-colour Gwith colour classes of size b|E(G)|/χ ′(G)c and d|E(G)|/χ ′(G)e. Since b|E(G)|/χ ′(G)c ≥ m by assumption, we
have in particular that every edge belongs to a matching of sizem, and hence G is [m]-coverable. Now, assume that

|E(G)|/m = dE(G)/me = χ ′(G).

Then G has a decomposition in matchings of sizem, and hence ism-compatible. We may then assume

d|E(G)|/me > χ ′(G). (15)

Let k = Λm(G) = d|E(G)|/me. We need to prove that χ ′[m](G) = k. By Theorem 1, it will suffice to prove that χ
′

[m](G) ≤ k.
By (15) and the assumption,

k = Λm(G) = d|E(G)|/me > χ ′(G). (16)

Write

|E(G)| = mx+ y, (17)

where 0 ≤ y < m. By (16) and (17) we have

k = x+ dy/me =
{
x if y = 0
x+ 1 otherwise. (18)

If y = 0, we have |E(G)| = km by (18). Since, by (16), k ≥ χ ′(G), there exists an equalized k-edge colouring of G and hence
a decomposition into matchings of sizem, and we are done. Thus we can assume, without loss of generality, that y > 0. Let
M be a matching of G of sizem− y. By duplicating precisely those edges in Gwhich are inM , we obtain a multigraph G̃with
the property that:

(i) G is the underlying simple graph of G̃;

(ii) |E (̃G)| = |E(G)| +m− y = mx+ y+ (m− y) = m(x+ 1) = mk;

(iii) χ ′(̃G) ≤ χ ′(G)+ 1 ≤ k.

Therefore, by Proposition 1, χ ′
[m](G) ≤ k, whence the proof is completed. �

Corollary 3. com(G) ≥ b|E(G)|/χ ′(G)c = Ω(G).

Notice that the condition of Theorem 6, which is equivalent to m ≤ Ω(G), cannot be relaxed to m ≤ d|E(G)|/χ ′(G)e,
since the graph of Fig. 4 provides (form = 3) a counterexample. This fact (together with Theorem 6) provides an additional
justification for the choice ofΩ(G) as the integer delimiting the intervals Ia and Ic .
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