Wavelet tree classification and hybrid coding

for image compression

C.-K. Su, H.-C. Hsin and S.-F. Lin

Abstract: A hybrid coding system that uses a combination of set partition in hierarchical trees
(SPIHT) and vector quantisation (VQ) for image compression is presented. Here, the wavelet
coefficients of the input image are rearranged to form the wavelet trees that are composed of the
corresponding wavelet coefficients from all the subbands of the same orientation. A simple tree
classifier has been proposed to group wavelet trees into two classes based on the amplitude
distribution. Each class of wavelet trees is encoded using an appropriate procedure, specifically
either SPIHT or VQ. Experimental results show that advantages obtained by combining the
superior coding performance of VQ and efficient cross-subband prediction of SPIHT are
appreciable for the compression task, especially for natural images with large portions of textures.
For example, the proposed hybrid coding outperforms SPIHT by 0.38 dB in PSNR at 0.5 bpp for the
Bridge image, and by 0.74 dB at 0.5 bpp for the Mandrill image.

1 Introduction

With the rapid growth of modern communications
applications and computer technologies, image compression
was (and still is) increasingly in demand. Three categories
of image compression techniques have been developed:
differential pulse code modulation, transform coding and
subband coding [1-3]. State-of-the-art techniques are able
to compress typical images by a factor ranging from 10 to 50
with acceptable quality [4]. The Joint Photographic Experts
Group (JPEG) standard is the most widely used transform-
coding algorithm. It shows good performances at moderate
compression ratios [5]. Recently, the wavelet-based multi-
resolution representation has received a lot of attention
for compression applications. In wavelet domain, the higher
detailed components of images are projected onto the
shorter basis functions with higher spatial resolutions, and
the lower detailed components are projected onto the larger
basis functions with narrower bandwidths. This kind of
trade-off between the space and spatial-frequency resol-
utions matches the characteristics of the human visual
system [6]. Many wavelet-based image coders such
as embedded zero-tree wavelets (EZW) [7], set partitioning
in hierarchical trees (SPIHT) [8], morphological represen-
tation of wavelet data (MRWD) [9], group testing for
wavelets (GTW) [10] and modulated wavelet subband
image coding (MWSIC) [11] have been proposed with a
great success.

It is noted that both EZW and SPIHT take advantage of
the following hypothesis. If a wavelet coefficient at the
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coarse resolution is insignificant with respect to a given
threshold, then all the corresponding wavelet coefficients at
the finer resolutions are likely to be insignificant with
respect to the same threshold. Consequently, these insig-
nificant wavelet coefficients can be efficiently coded as a set
of insignificant coefficients by using a single code symbol:
zero-tree. The SPIHT algorithm has been modified for
encoding large images in constrained memory environments
[12], which is one of the important requirements in the
JPEG 2000 standard [13, 14]. A vector extension of SPIHT,
called VSPIHT [15], has been proposed to further improve
the coding performance. It groups the wavelet coefficients
of greyscale images into vectors and then performs
successive refinement vector quantisation in the set
partitioning framework. Moreover, for colour images,
VSPIHT is able to exploit both the cross-subband
dependency of each spectral component and the inter-
component redundancy to improve on the scalar SPIHT. For
video applications, a 3-D extension of SPIHT has been
proposed [16]. It provides many advantages including
scalability in both time and space for progressive trans-
mission, precise rate control, and low complexity.

For natural images with textures composed mainly of the
middle and high frequency components, however, zero trees
of insignificant wavelet coefficients are rare, and therefore
the compression performances of both EZW and SPIHT are
usually unacceptable. A different, more appropriate coding
strategy is therefore desirable for the aforesaid images,
where the insignificant wavelet coefficients are found to be
scattered as well as isolated in the tree representation. In this
paper, a simple tree classifier is proposed to group the
wavelet trees of images into two classes based on the
amplitude distributions; and a hybrid, image coding system
is thus developed by coding each class of trees with
appropriate procedure to improve the compression
performance.

2 Overview of wavelet transform and SPIHT

Wavelet transform is well known as a multiresolution
analysis that provides many advantages: joint space-spatial
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frequency localisation, clustered wavelet coefficients of
significance with strong correlations between subbands,
and exact reconstruction, which are truly beneficial to
image compression. Discrete wavelet transform (DWT)
decomposes a signal: S;(n) at resolution ¢ into two
components:

Dyiy(n) = Sy(k) g(2n — k) (1)
k

where S,,;(n) is its approximation at the next coarser
resolution ¢+ 1, D, ;(n) is the detail information
between the two successive resolutions: ¢ and /+ 1,
h(}’l) =< d)a qs—lA—n >, g(l’l) =< lp? d)—l‘—n > <> is an
inner product opérator,  is a valid (mother) wavelet, ¢ is
the scaling function, and ¢_, _,(x) =27"2¢(27'x — n).
The original signal Sy(n) can be exactly reconstructed from
S;.1(n) and Dy, (n) by using the following inverse DWT
(IDWT):

Se(n) = Ses1(k)h(n—2k) + ) Dyy (k)g(n —2k) (2)
k k

where h(n) = h(—n) and g(n) = g(—n).

For image applications, the two-dimensional DWT can be
obtained by using the tensor product of two one-dimen-
sional DWT, i.e. the row processing followed by column
processing, or vice versa. Figure la shows a 3-level, 2-D
DWT in a pyramid structure. HL,,LH, and HH, are the
wavelet subbands composed of the wavelet coefficients
D} (m,n), D}(m,n) and Dj(m,n), representing the detail
information at resolution ¢ in the horizontal, vertical and
diagonal directions, respectively. LL; is composed of the
scaling coefficients S3(m, n) representing the approximation
at the coarsest resolution 3, and the original image is usually
considered the scaling coefficients Sy(m,n) at the finest
resolution 0. Sy(m,n) can be decomposed into S, (m,n),
Dy, (m,n), D} (m,n) and D, (m,n) by using the 2-D
DWT. And, the 2-D IDWT obtained by using the tensor
product of two 1-D IDWT exactly reconstructs S,(m,n)
from S, (m,n), DL, (m,n), D, (m.n) and Df.., (m,n).

In wavelet domain, an image is decomposed into
subbands with orientation selectivity. Wavelet coefficients
taken from all the subbands of the same orientation are
rearranged to form the wavelet trees. The tree hierarchy is
based on the resolution level. The wavelet coefficients at
coarse resolution are called parent nodes, each of which has
four children nodes at the next finer resolution. Tree roots
are at the coarsest resolution, and tree leaves are at the finest
resolution. Figure 15 shows a wavelet tree in the diagonal
direction. Many natural images are composed of large
portions of homogeneous regions, textures, together with a
small portion of edges, which are typically the low, middle
and high frequency components, respectively. The signifi-
cant wavelet coefficients of the homogeneous regions are
usually at the coarser resolutions, i.e. in the lower frequency
subbands, while those near the noticeable edges are usually
clustered in the higher frequency subbands with strong
similarities across subbands. If a non-leave node is
insignificant, then all the descendants at the finer resolutions
are likely to be insignificant. This cross-subband
dependency of wavelet coefficients can be exploited to
improve the image compression performance.

The SPIHT algorithm has received a lot of attention since
its introduction for image compression in 1996. It contains
two passes: the sorting pass and refinement pass, which can
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Fig. 1 Example of 3-level, 2-D DWT and a wavelet tree in the
diagonal direction

a 3-level, 2-D DWT with subbands delimited by thick lines
b A wavelet tree in the diagonal direction

be combined to form a single scan pass. Three symbols: zero
tree (ZT), insignificant pixel (IP) and significant pixel (SP)
are used to code the wavelet tree structure of images, which
are stored in their respective lists: list of insignificant sets
(LIS), list of insignificant pixels (LIP) and list of significant
pixels (LSP). Below is the encoding algorithm presented in
four steps [8].

(1) Compute b = [log,(max,, ,|c,,,|)], where c,,, is the
wavelet tree node at coordinate (m,n). Set the initial
threshold 7 = 2".

(2) Sorting pass: identify the coefficients such that
T<|c,.| <2T; output their respective coordinates and
signs.

(3) Refinement pass: output the b™ (most significant) bit of
all the tree nodes with |c,, ,| =2T following the same order
used to output the coordinates in previous sorting passes.
(4) Decrease b by one, halve the threshold T and go to
Step 2.

The scan pass (i.e. Step 2 followed by Step 3) of SPIHT is
performed in a recursive manner until the expected bit rate
is reached. In the sorting pass, the coefficients in LIS and
LIP are evaluated as follows. For coefficients whose
magnitudes are greater than or equal to the current
threshold, they become significant and will be moved to
LSP. For insignificant coefficients whose magnitudes are
less than the current threshold, they will be stored in LIS if
all their descendants are also insignificant with respect to
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the same threshold; or otherwise, stored in LIP. A sequence
of successively smaller thresholds can be obtained by using
the following recursive equation:

T, = 0.5T;_, 3)

where the initial threshold 7 must be greater than or equal
to half the maximum magnitude of the transform coeffi-
cients. After the kth sorting pass, tree nodes whose
magnitudes are in the range: [T}, T;_,) for k>1 (or [T},00)
for k = 1) will be stored in LSP with one bit per node to
indicate their respective signs. In refinement pass, the
significant nodes stored in LSP are refined with one bit per
node to update their respective information. The great
success of SPIHT is attributed to the important
hypothesis of wavelet transform: if a parent node is
insignificant, then all its descendants are likely to be
insignificant with respect to the same threshold and
therefore these insignificant nodes can be efficiently coded
with a single symbol ZT.

3 Proposed hybrid coding

For images with textures composed mainly of the middle
and high frequency components, there are many signifi-
cant nodes whose ancestors are insignificant. It follows
that zero trees of insignificant nodes are very rare.
Figure 2a, for example shows a 256 x 256 greyscale
Mandrill image with large portions of high frequency
textures. Empirically, we have classified the wavelet trees
into two classes based on the magnitude distribution. The
compression performance of SPIHT is evaluated for each
class of wavelet trees. As shown in Fig. 2b, where the
horizontal and vertical axes are the compression rates
measured in bits per pixel (bpp) and peak-signal-to-noise-
ratio (PSNR) values measured in dB, respectively, the
SPIHT algorithm is much more effective for one class of
wavelet trees than the other.

3.1 Wavelet tree classification

High quality image compression at low bit rates can be
achieved by coding each individual wavelet tree using a
distinct, suitable procedure. It is noted that the SPIHT
algorithm will not be suitable for coding wavelet trees with
a large amount of significant nodes scattered in the higher
frequency subbands, and therefore a different coding
strategy is desirable. Moreover, a tree classifier that can
efficiently divide the wavelet trees of images into two
classes based on the magnitude distribution of the dominant
wavelet coefficients is required.

For computation simplicity, a tree classifier based on the
average magnitude of wavelet coefficients of each subband
has been utilised to divide the wavelet trees of images into
two classes: low frequency tree and high frequency tree,
which is given as follows:

Arg{max ocg-Avg{‘D}?(m,n)|}}<L,, —
! (4)

high frequency tree

where |D? (m, n) } is the wavelet coefficient magnitude at tree
node coordinate (m,n), £ =1,2,...,L denotes the resol-
ution level with larger meaning coarser, L is the number of
decomposition levels, d =1,2,3 denotes the wavelet
subband orientation in the horizontal, vertical and diagonal
directions, respectively, o, is a weighting factor with respect
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Fig. 2 Rate-distortion curves of the low frequency (dotted line)
and high frequency (solid line) wavelet trees of Mandrill image by
using the SPIHT algorithm

a 256 x 256 greyscale image
b Rate - distortion curves

to the resolution level, L,, is a threshold value, and Avg{-} is
an average operator.

3.2 MVQ coding for high frequency wavelet
trees

Even though it is noted that wavelet transform provides de-
correlation property, i.e. most of the correlation between
image pixels can be removed in the wavelet domain, there
may still be some residual correlation between neighbouring
coefficients across subbands of the same orientation. In order
to get a good quality of the reconstructed images at
relatively low bit rates, the residual correlation between
wavelet coefficients must be exploited. According to
Shannon’s theory, VQ can significantly reduce the coding
bits of signals over scalar quantisation. The VQ approach is
therefore suitable for coding the high frequency wavelet
trees of images.

Our strategy is as follows. First, group the high frequency
wavelet trees into three categories according to their
respective subband orientations: horizontal, vertical
or diagonal. Second, partition each category of high
frequency wavelet trees into small vectors based on the
standard deviation distribution. Third, encode the small
vectors of high frequency wavelet trees by using multistage
VQ (MVQ). Figure 3 shows the MVQ structure with
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Fig. 3 Multistage VQ structure

successive refinements. Here, the input vector is quantised
at the first stage, and the residual information is quantised at
the following stages in a recursive manner.

3.3 MVQ codebook generation

A representative collection of images is utilised as training
images for codebook generation. After 2-D DWT, the high
frequency wavelet trees will be partitioned into small
vectors to alleviate the computation complexity.
The partitions chosen for each of the three categories of
high frequency trees are determined in such a manner that
tree nodes that have similar standard deviations are grouped
into a single vector. Thereafter, a unique codebook is
constructed for each vector because the intrinsic statistics
and dimensions of vectors are different.

By taking into account that one of the key issues of the
proposed hybrid image coding system, which is presented in
Section 3.4, is the bit allocation between two different coding
procedures, the codebook size for each MVQ stage is 2. In
other words, each vector will be coded in a progressive
manner by using MVQ with one code bit per stage. The MVQ
codebooks are constructed by using the LBG algorithm [17],
stored in tables on both encoder and decoder sides, and
therefore not transmitted along with the bit stream header.

3.4 Hybrid image coding

After wavelet tree classification, the low frequency trees can
be coded efficiently by SPIHT, and the high frequency trees
are to be coded by MVQ. A hybrid coding system that
combines SPIHT and MVQ is then proposed to improve the
overall compression performance. Figure 4 shows the block
diagram. The input image is decomposed into a set of
subbands with orientation selectivity using 2-D DWT. The
scaling coefficients at the coarsest resolution are coded by
using the differential pulse code modulation algorithm.
The corresponding wavelet coefficients taken from all the
subbands of the same orientation (i.e. horizontal, vertical or
diagonal) are rearranged to form wavelet trees. While
SPIHT coding is suitable only for wavelet trees with a large
amount of significant nodes in the lower frequency
subbands, the MVQ approach seems promising for coding

scaling coefficient

» DPCM »
wT [
low frequency trees
image
> SPIHT >
»|  Classifier
wavelet trees
- MvQ >

high frequency trees

Fig. 4 Block diagram of the proposed hybrid image coder by
combining SPIHT and MVQ for coding the low and high frequency
wavelet trees, respectively
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Fig. 5 Bitstream structure

wavelet trees with many nodes of significance in the higher
frequency subbands.

In MVQ, the high frequency wavelet trees are partitioned
into small vectors. These partitions have been determined
previously in the training process for codebook generation.
Initially, each vector is coded progressively using the MVQ
algorithm with B; stages, which is determined in such a
manner that the norm of the residual quantisation error will
not be greater than the initial threshold 7', of SPIHT. After
one MVQ pass followed by one scan pass of SPIHT
(for coding the high frequency wavelet trees and low
frequency wavelet trees, respectively), the threshold of
SPIHT is halved, and based on which the corresponding
parameter of MVQ is determined similarly for the next MVQ
pass. The alternate coding of high frequency wavelet trees
and low frequency wavelet trees will go on until the expected
bit rate (or the quality of the reconstructed image) is reached.

Bit allocation between the SPIHT and MVQ coding
procedures needs to be truly adaptive in order to generate an
improved, embedded bit stream. During hybrid coding, both
sequences of SPIHT thresholds, 7}, and MVQ parameters,
By, are adapted to the input image since T} is determined by
the wavelet coefficient magnitudes of the input image, and
By is determined by 7). In our experiments, the parameter
By is often about 1 or 2 for k = 2,3,... if the sequence of
successively smaller thresholds 7}, is obtained by using (3),
therefore, they can be set constant. The side information that
is required to be transmitted along with the bit stream will be
the number of wavelet decomposition levels, the tree
classification threshold, one bit per wavelet tree to indicate
the tree class, the initial SPIHT threshold 7, and the MVQ
parameter B,. Figure 5 shows the embedded bit stream
structure, where the side information is stored in the header
portion.

4 Experimental results

The proposed hybrid coding system is evaluated on natural
256 x 256 greyscale images. A set of nine training images is
utilised to determine the partitions of the high frequency
wavelet trees into small vectors, and to construct the MVQ
codebooks for encoding these vectors. The partition strategy
is as follows. For each of the three categories of high
frequency wavelet trees, the standard deviation values are
uniformly quantised with nine quantisation levels. All the
wavelet coefficients that have the same standard deviation
level are grouped into a single vector. Consequently, the
high frequency wavelet trees are partitioned into nine small
vectors. The test 256 x 256 greyscale images; Mandrill
(shown in Fig. 2a), Bridge, and Lena, which represent
natural images with a large amount of high frequency,
middle frequency, and low frequency components, respect-
ively, are outside the training set.

The compression performance is compared with the
SPIHT coding algorithm. The compression rate is measured
in bpp. The distortion is measured by peak-signal-to-noise-
ratio (PSNR), which is given by
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Fig. 6 Rate-distortion curves of the test images Mandrill, Bridge
and Lena by using the proposed hybrid coder (dotted lines) and
SPIHT (solid lines)

255
RMSE )

where RMSE is the root mean squared error between the
original and reconstructed images. The computed com-
pression rates and PSNR values are collected to generate the
rate distortion curves. The linear phase, biorthogonal wavelet
with 9/7-coefficient filter set is utilised. The number of
wavelet decomposition levels is 4. The tree classification
threshold L, is 3. The weighting factors are empirically
obtained by o, | = 0.5¢, with oy = 1. The infinite norm is
used to compute the norms of the residual quantisation error
vectors. The maximum wavelet coefficient magnitude is
halved and then used for the initial SPIHT threshold 77, and
the successively smaller thresholds are obtained by using (3).

Figure 6 shows the rate-distortion curves. The horizontal
and vertical axes are the compression rates (in bpp) and
PSNR values (in dB), respectively. For the Lena image that
is relatively smooth and most of the significant wavelet
coefficients are in the lower frequency subbands, only a
small number of wavelet trees are classified into the high
frequency class. The performances of the hybrid coder and
SPIHT coder are comparable, as expected. For the texture-
rich images, e.g. Bridge and Mandrill that contain a large
amount of significant wavelet coefficients in the middle and
high frequency subbands, the hybrid coder is superior to the
SPIHT algorithm in general. As indicated by the simulation
results, the hybrid coder outperforms SPIHT by 0.38 dB at
0.5 bpp for the Bridge image and by 0.74 dB at 0.5 bpp for
the Mandrill image.

It has been shown that when the textured images are
encoded, 2-D DWT is unlikely to yield many large zero
trees owing to lack of homogeneous regions. Thus, the
advantage of encoding zero trees of insignificant wavelet
coefficients by using SPIHT is weakened. Alternatively, the
high frequency wavelet trees can be efficiently sought out by
using the proposed tree classifier, and then can be encoded
by using MVQ to improve the overall compression
performance.

5 Conclusion
Wavelet transform provides an efficient multi-resolution

analysis. It decomposes images into subbands with orien-
tation selectivity in addition to joint space-frequency
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localisation. Many efficient wavelet coders, e.g. EZW and
its improved version SPIHT have been developed by taking
advantage of the following hypothesis: if a wavelet
coefficient is insignificant with respect to a given threshold,
then all the corresponding wavelet coefficients at the finer
resolutions are likely to be insignificant with respect to the
same threshold. However, natural images are often com-
posed of textures with rapid variations in greyscale. For such
images, there are many significant wavelet coefficients
scattered in the higher frequency subbands. Consequently,
the coding performances of both EZW and SPIHT are usually
not adequate since groups of insignificant wavelet coeffi-
cients in the tree structure are very rare. A hybrid image coder
by combining SPIHT and MVQ with their respective
advantages is proposed, in which trees with a large amount
of significant wavelet coefficients in the higher frequency
subbands are to be identified by using a simple tree classifier,
and then coded by using a different, more suitable method
instead of SPIHT. Experimental results show that the
proposed hybrid coding is superior to SPIHT coding for
images with textures composed of the middle and high
frequency components. It improves the overall compression
performance at the cost of additional computations, i.e. the
computation of (4) for classifying wavelet trees into two
classes, and the computation of norms of MVQ error vectors
for determining the MVQ parameters Bj,.
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