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Abstract

High availability is becoming an essential part of network services because even a little downtime may lead to a great loss of
money. According to previous research, network failure is one of the major causes of system unavailability. In this paper, we pro-
pose a framework called HANet for building highly available network services. The main goal of HANet is to allow a server to
continue providing services when all its network interfaces to the outside world (i.e., public interfaces) have failed. This is achieved
by two techniques. First, a network interface can be backed up not only by other public network interfaces, but also by other inter-
server I/O communication interfaces (i.e., private interfaces) such as Ethernet, USB, RS232, etc. Therefore, IP packets can still be
transmitted and received via these 1/O links, even when all of the public network interfaces have failed. Second, HANet allows a
server to take over the packet transmission job of another network-failed server.

The benefit of HANet is that a network-failed server will not lose any requests which are being processed. And, it is efficient since
no synchronization overhead or replaying process is required. Moreover, it is totally transparent to server applications and clients.
To demonstrate the feasibility of HANet, we implemented it in the Linux kernel. According to the performance results, using a pri-
vate Fast Ethernet interface for data communication leads to only 1% overhead in user-perceived latency when the public Fast
Ethernet interface of the server has failed. This indicates that HANet is efficient, and hence is feasible for commercial network

services.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, the development of E-commerce has
led to the emergence of many business websites. How-
ever, the services they provide may not always available
due to the hardware or software component errors.
According to previous research (Performance Techno-
logies, 2001), a few minutes of downtime for a website
can lead to a great loss of money for the business.

Therefore, much research effort has been addressed to
the problem of how to improve the availability of a net-
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work service. Clusters (Cristian, 1991) use machine
redundancy to achieve high availability, so when one
machine fails, another machine takes over the job. How-
ever, the requests being processed in the failed machine
will be discarded, and in most of the cases, the requests
will be issued again. With connection migration
(Snoeren et al., 2001), a request can be migrated or
recovered. However, a migrated request still has to be
replayed again from the beginning, which increases the
request-serving delay and may cause the client to time-
out. The problem of the existing clusters is that they dis-
card the request states in the failed machine. However, a
previous study (Oppenheimer et al., 2003) showed that
network failure is one of the major reasons for the serv-
ice errors. If a system failure is caused by the network
problem, the server process in the failed machine will
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still work and the request states will remain correct. In
this case, the service will still be available as long the
request states can be obtained from the failed server.

Another technique that improves system availability
is component redundancy (Intel Corporation, 2003;
Jann et al., 2003; Patterson et al., 1989). Since network
cards are one of the most important components of a
network service, many network systems use network
card redundancy to improve their availability. Thus,
the systems are available as long as one network card
works correctly. However, this approach has some lim-
itations. First, most computers have very limited slots
(i.e., usually 2-4) for network cards, which prevents
them from providing extremely reliable network
services. Second, according to previous research
(Engler et al., 2000), drivers are the most error-prone
part of an operating system. If the same driver is used
for all of the network cards, a problem in the driver
may cause all of the cards to stop working at the same
time.

In this paper, we propose a framework named
HANet for building highly available network services.
Based on a cluster architecture, HANet allows a server
to continue providing services while all its network inter-
faces to the outside world (i.e., public interfaces) have
failed. It consists of two techniques: Packet Transmis-
sion Agent (PTA) and Uniform Communication Chan-
nel (UCC). The former allows a server to take over the
packet transmission job of another network-failed ser-
ver. The latter extends the network interface redundancy
mechanism. It allows a public network interface to be
backed up by not only other public interfaces, but also
other inter-server communication links (i.e., private
interfaces) such as USB, RS232, wireless, etc. These
two techniques together help service providers to pro-
vide extremely highly available network services. More-
over, the techniques are transparent to both client-side
systems and server-side applications. In order to demon-
strate the feasibility of the proposed framework, we
implemented it in the Linux kernel. According to the
performance results, the system can achieve the desired
functionality with little overhead.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the design of the framework. Section
3 presents the implementation details, which are fol-
lowed by the performance evaluation shown in Section
4. In Section 5, we discuss some extensions to the cur-
rent HANet implementation. Section 6 presents some
works related to ours, which is followed by the conclu-
sions in Section 7.

2. Design of HANet

In this section we first give an overview of HANet,
which is followed by the description of the uniform com-
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Fig. 1. Overview of HANet.

munication channel and the packet transmission agent
techniques.

2.1. Overview of HANet

Fig. 1 illustrates the system architecture of HANet. It
consists of a cluster of server machines, which are con-
nected via more than one communication interface.
Some interfaces (i.e., public interfaces) connect directly
to the public network, while the others (i.e., private
interfaces) are for inter-server communication. The un-
ique feature of HANet is that it uses various kinds of
I/O communication channels, ' instead of using network
interface cards (NIC) only, for packet transmission. In
Fig. 1, serverl originally serves the clients via the Ether-
net interface. If the interface suddenly fails, the server
will select a sibling, say server2, to handle the packet
transmission job for it. As a result, packets sent by ser-
verl to the client will reach server2 first (via the USB
interface), and then server2 will forward the packets
through its Ethernet interface. Incoming packets are
sent to server2, which forwards the packets back to
serverl.

It is significant that serverl does not lose any requests
or connections while its NIC fails. Therefore, there is no
need to re-construct any connections or re-dispatch any
requests. Moreover, this approach is transparent to both
clients and server applications.

2.2. Uniform communication channel
As we have mentioned above, the UCC architecture

allows a network interface to be backed up by not only

"' In current implementation, the I/O channels include Ethernet,
RS232, and USB links.
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Fig. 2. UCC architecture.

other public network interfaces, but also other private
communication links such as USB, RS232, wireless,
etc. In the UCC architecture, a virtual communication
channel is mapped to multiple physical links with differ-
ent types (e.g., Ethernet, USB, and RS232), which are
responsible for packet transmission and reception. The
channel is available as long as at least one physical link
works correctly. This approach can improve the avail-
ability of a network system greatly.

Fig. 2 shows the concept of the UCC. As shown in
the figure, we add a virtual communication interface
(VCI) layer on top of the link layer. This layer is respon-
sible for managing multiple physical interfaces of differ-
ent types. At any time, only one of the physical
interfaces is active, while others act as backups. If the
active interface fails, the VCI layer will detect the error
and activate another backup interface.

There are two components, namely the fault detector
and the interface manager, in the VCI layer. Below we
give detailed descriptions on them.

2.2.1. Fault detector

The fault detector is responsible for detecting failures
and maintaining the status of different I/O communi-
cation devices. We refer to these devices as network
devices in the rest of the paper since they can be used
for packet transmission. The fault detector executes
the fault detection routines periodically, and records
the status of the managed network devices.

The status of a network device includes two flags:
ACTIVE and GOOD. If the ACTIVE flag is set, the net-
work device is currently the active interface. That is, the
device is currently responsible for transmitting/receiving
packets to/from the outside world. The GOOD flag indi-
cates that the device is alive and can be used as an active
interface. Note that only one network interface can be
active at any time.

After updating the status of the network interfaces
according to the results of fault detection routines, the
fault detector will decide whether or not to change the

active network interface. If a change is needed, it will
ask the interface manager to determine which network
interface is the next active one.

2.2.2. Interface manager

The interface manager determines the next active
interface (from the current GOOD interfaces) according
to the following rules. First, high bandwidth links are
preferred. For example, a 100 Mbps Fast Ethernet link
is better than a 12Mbps USB 1.1 link, which in turn is
better than a 115.2kbps RS232 link. Second, public
interfaces are preferred. If no public interfaces are avail-
able, a private interface will be selected. As we describe
in the next section, a network packet from a server can
be transmitted to the client via the private interfaces.
However, transmitting packets via private interfaces
has more overhead since the packets must be routed to
the sibling first. Therefore, a server will try its best send-
ing packets via its public interfaces unless all of them
have failed.

When the next active network interface is determined,
the interface manager must set the attributes of the vir-
tual network interface according to the link-layer type of
the active interface. There are two link-layer types,
broadcasting (e.g., Ethernet) and point-to-point (e.g.,
USB, and RS232). The attributes include the hardware
header length, MAC address length, etc. After the attri-
butes are set, packets can be transmitted and received
via the new active interface.

2.3. Packet transmission agent

The PTA technique allows a server to take over the
packet transmission job for its sibling while the latter
can not access the public network. As we mentioned
above, if the active interface of serverl fails, and there
are no public interfaces available, the interface manager
of serverl will select a private interface. Then, it will ask
the other end of the private interface (i.e., the sibling
server) to perform packet transmission and reception
for it. To take over the packet transmission job, the sib-
ling server must configure itself to be able to forward
packets sent by the serverl as well as deliver packets
to the serverl. After the configuration is done, serverl
can send and receive packets through the sibling com-
puter. Fig. 3 illustrates this procedure and the resulting
packet flow. Note that, in this figure, when the Ethernet
adapter of the server revives, the active network inter-
face will be set back to ethO for performance
consideration.

Functionality of the PTA technique is achieved by the
cooperation of the two components: the transmission
agent requester on the network-failed server, and the
transmission agent responder on the sibling server.

Transmission agent requester. The responsibility of
the transmission agent requester is to ask the sibling
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Fig. 3. Packet transmission take-over and the resulting packet flow.

computer to send and receive packets for it. It tells the
sibling computer which network interface is the new
active communication channel, so the sibling computer
can route packets to the server through the new active
channel instead of the failed one.

Transmission agent responder. The transmission
agent responder on the sibling computer receives
the request, and performs reconfiguration to take
over the packet transmission job. Specifically, the
reconfiguration includes enabling IP forwarding,
enabling proxy ARP, adding a routing path that
reaches the server via the new active link, and invali-
dating its routing cache entries. After the reconfigu-
ration is complete, it broadcasts a gratuitous ARP
packet through one of its public interfaces in order
to update the ARP cache entries of the other comput-
ers on the same LAN. This allows all the IP packets to
the server to be sent to the sibling. Therefore, the ser-
ver can send and receive packets through the sibling
computer.

3. Implementation of HANet

To demonstrate the feasibility of HANet, we imple-
mented it in the Linux kernel. The implementation is
based on the Linux bonding driver (Davis, 2003), which
has the ability to detect Ethernet link failures and re-
route network traffic to another Ethernet link in a man-
ner that is transparent to applications. We extended the
Linux bonding driver so that it has the following new
capabilities. First, it can manage not only Ethernet links
but also other types of I/O interfaces. Second, a new
fault detection method is used to detect errors of all
the communication links. In the following, we describe
the position of HANet in the Linux kernel and the
implementation details of HANet.

HANet sits between the TCP/IP and link layers, as
shown Fig. 4. All the packets from the TCP/IP layer will
reach the VCI (Virtual Communication Interface) layer
first and be transmitted using the active communication
channel in the link layer.
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3.1. Supporting multiple link types

In the Linux bonding driver, a virtual device named
bonding device enslaves one or more Ethernet devices.
We extend the bonding driver implementation so that
a bonding device can enslave not only Ethernet devices,
but also RS232 and USB devices. Since a bonding device
is viewed by the upper layer kernel code as an ordinary
network device, it provides a net_device structure for
communication with the kernel. And, each slave of the
bonding device also has a corresponding net_device
structure. When the kernel wants to send a packet to
the bonding device, it invokes the hard_start xmit( )
function in the net_device structure of the bonding de-
vice. This function finds out the current active slave of
the bonding device, and invokes the hard_start xmit( )
function in the net device structure of that slave, which
actually sends the packet out.

In order to support other kinds of I/O links in the
bonding device, we must construct a net_device struc-
ture for each I/O device. For RS232 links, we start a
PPP daemon (Mackerras, 2004) on the ttySO serial de-
vice (COM1). This causes two modules to be loaded into
the kernel, ppp_generic and ppp_async. The former
creates a net_device interface for the serial device, while
the latter is responsible for transmitting and receiving
data on the serial link. For USB links, we use the
USB host-to-host link driver, which is also called the
USBnet driver (Brownell, 2002). The driver is used for
transmitting and receiving network packets on USB
links. Therefore, it creates a net_device structure for
the USB device.

We do not change the formats of the packets that are
transferred on the private links. Instead, we follow the
packet formats used by the link-layer drivers. For exam-
ple, a packet on the RS232 link does not contain an
Ethernet header. Only a 4-byte header (which contains
the protocol number) is put in front of the IP header.
In contrast, a packet on the USB link does contain an
Ethernet header because the USBnet driver puts Ether-
net headers on their packets.

Note that some I/O links may not have correspond-
ing drivers that can provide the net device interface.
Integrating these links into the VCI layer requires mod-
ifications to the corresponding drivers to create and
manage the net device structures, which needs more
effort.

3.2. Fault detector

Originally, the Linux bonding driver supports two
kinds of fault detection methods: ARP monitoring and
MII link status monitoring. Since both of them have
some limitations, we added another method: host ping
file, as proposed in (Milz, 1998). Moreover, our fault
detector is extensible in that it allows system designers
to add their own fault detection methods. In the follow-
ing, we describe each of the methods.

ARP monitoring. In this method, a host tests the sta-
tus of its links by periodically sending ARP requests to a
target host on the same LAN. If no ARP reply is re-
ceived, the link will be regarded as bad. This method
has some limitations. First, it can only be used in a
LAN environment. Second, a false positive will occur
if the target host has failed or powered off. Finally, this
method can not be used in point-to-point links such as
RS232, USB, parallel, etc. since it is useful only for
broadcast type links.

MII link status monitoring (Scyld Computing Corpo-
ration, 2003): In this method, the fault detector detects
the link status by periodically polling the MII status reg-
ister of the Ethernet network adapters. The drawback of
this method is that it is only suitable for Ethernet cards.
Many other kinds of links are not equipped with such
registers.

Host ping file. In this method, the server periodically
pings a list of other computers listed in a file, and the
network interface is regarded as bad if the server does
not get any replies. Different from the other two meth-
ods, this approach does not require special hardware
support, and it can be used in both broadcast and
point-to-point type links. The disadvantage of this
approach is that it has higher fault-detection time.

It is worth mentioning that, in addition to the fault
detection approaches described above, our fault detector
allows system designers to register their own fault detec-
tion methods for some specific network devices. This
makes our fault detector extensible for future use.

3.3. Deciding the active interface

As we mentioned before, the interface manager pre-
fers public and high-speed interfaces when choosing a
new active device. Although it may be possible for the
interface manager to figure out the speed of each inter-
face, the interface manager does not know whether a
given interface is public or not. We solve this problem
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by allowing the system administrator to send such infor-
mation to the VCI layer by using the proc file system
interface. For each slave interface, the administrator
can transmit to the VCI layer the following information:
whether the interface is public or not, and the speed of
the interface. Therefore, the interface manager can select
the next active interface accordingly when the current
one has failed.

3.4. Interface switching

As we mentioned above, the interface manager will
reconfigure the attributes of the VCI when the active
network interface is changed. The attributes represent
the information stored in the net_device structure. This
reconfiguration is required since the Linux network sub-
system uses these attributes for packet construction be-
fore it transmits the packet to the bonding device. For
example, the field hard_header_len specifies the number
of bytes that should be reserved for the hardware MAC
header, and the field hard_header is a function pointer
for constructing the hardware header. Therefore, the at-
tributes of the bonding device should reflect the attri-
butes of its current active slave. Since different I/O
links have different attributes, a reconfiguration is
needed when the type of the active slave changes. Note
that the reconfiguration is not required for the original
bonding driver implementation since it manages only
Ethernet devices.

Switching to a RS232 Interface:

bond->device->hard_header_len =PPP_HDRLEN; [F=4%

bond->device->mtu =1500;
bond->device->addr_len =0;
bond->device->type = ARPHRD_PPP;
bond->device->change_mtu =0;
bond->device->hard_header =0;
bond->device->rebuild_header =0;
bond->device->set_mac_address =0;
bond->device->hard_header_cache =0;
bond->device->header_cache_update =0;
bond->device->hard_header_parse =0;

bond->device->flags= IFF_UP | IFF_POINTOPOINT | IFF_NOARP |

IFF_MULTICAST | IFF_MASTER;

Switching to an USB Interface:

slave_t* usbslave = newslave;

ether_setup(bond->device);

bond->device->tx_queue_len =0;

bond->device->change_mtu = usbslave->dev->change_mtu;

bond->device->watchdog_timeo = usb_slave->dev->watchdog_timeo;
bond->device->tx_timeout = usb_slave->dev->tx_timeout;
bond->device->flags |=IFF_UP | IFF_MASTER;
Switching to an Ethernet Interface:

ether_setup(bond->device);

bond->device->tx_queue_len =0;

bond->device->flags |= IFF_UPIIFF_MASTER;

Fig. 5. Code for VCI reconfiguration.

Fig. 5 shows the reconfiguration code that will be exe-
cuted when switching to different kinds of active inter-
faces. The code is derived from the original driver
implementation for the corresponding links. For exam-
ple, the code for switching to a RS232 link is derived
from the generic PPP driver, while the code for switch-
ing to an USB link is derived from the USBnet driver.
Before describing the code, it is worth emphasizing that
the code will not modify the attributes of the slaves. It
only sets the attributes of the bonding device according
to those of the current active slave.

From Fig. 5 we can see that, when switching to a
RS232 link, the hard_header_len field of the bonding
device is set to 4. This makes the kernel reserve a 4-byte
room for the hardware header before it sends the packet
to the bonding device. The room will be filled by the
hard_start_xmit( ) function of the generic PPP driver.
The flag setting follows that in the generic PPP driver
except for the IFF_MASTER flag. This flag is set since
a bonding device is a master device. The remaining
fields are all the same with those in the generic PPP
driver.

When switching to an USB interface, the ether_set-
up( ) function is invoked. The function will set the at-
tributes of the bonding device according the Ethernet
information. The USBnet driver calls this function be-
cause it uses Ethernet header as the hardware headers
for its packets. Because a bonding device is a virtual de-
vice without a TX queue, the tx_queue len should be
set as 0. However, the ether_setup( ) function will set
the value as 100. Therefore, the value should be reset
to 0 after the invocation of the ether_setup( ) function.

The code for switching to an Ethernet interface is
quite simple. It just invokes the ether_setup( ) function,
and resets the tx_queue len and the flags.

This description shows that the general principle for
writing the reconfiguration code is to follow the code
of the original driver implementation. Therefore, adding
a new I/O link to the VCI layer is easy providing that the
original driver for the new I/O link has managed the
net_device structure.

3.5. Packet transmission takeover

In order to take over the packet transmission job, the
sibling computer must perform the following tasks. First,
the sibling computer should turn on the IP forwarding
option, which allows it to forward packets from the ser-
ver to the destination hosts. This is done by setting the
global kernel variable for the IP forwarding option
(i.e., ipv4_devconf.forwarding) as 1 and invoking the
kernel function inet forward_change( ) to reflect the
changes of the variable. Second, it has to add a routing
path to the server, which enables it to forward packets
to the server. This is done by calling the kernel function
ip_rt_ioctl( ) with the SIOCADDRT command and the
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new route path as the parameters. The SIOCADDRT
command is used to add the given route path into the
host. Third, it should add a proxy ARP entry so that it
can answer ARP requests for the server. This is achieved
by calling the kernel function inet dgram_ops.ioctl( )
with the SIOCSARP command and an ARP mapping
as the parameters. The SIOCSARP command is used
for adding an ARP mapping entry to the local host,
and the ARP mapping contains the IP address of the ser-
ver and the MAC address of the sibling. As a result, the
sibling computer will reply with its own MAC address
when an ARP request with the server’s IP address is seen.
Fourth, the sibling computer should invalidate its rout-
ing cache entries by calling the rt_ cache flush( ) kernel
function. Finally, it has to invalidate or update the ARP
cache entries of the other servers on the same LAN by
broadcasting a gratuitous ARP (Stevens, 1994) packet
(Horman, 2000). This packet is constructed by hand
and sent through one of the public interfaces of the sib-
ling computer. After all these operations are finished,
the sibling computer can perform packet transmission
and reception for the server.

3.6. Transmission agent responder

The transmission agent responder is responsible for
accepting requests from the server and taking over the
packet transmission/reception job for the server. We
implemented it as an in-kernel UDP server. The reason
why we use UDP instead of TCP is that the latter re-
quires a 3-way handshake procedure during the connec-
tion setup, which causes the following problem. When
the active link switches from a public interface to a pri-
vate one, the server will open a TCP connection and
send a request to the sibling computer via the new active
link. However, the SYN/ACK of the 3-way handshak-
ing from the sibling computer will be transmitted via
the failed routing path to the server. Therefore, the ser-
ver can not receive the SYN/ACK, so the connection
can not be established. By using UDP, the server can

Server Sibling

Do IP forwarding,
proxy ARP, etc.

Interface
Manager

Transmission
Agent
Requester

Fault
Detector

Transmission
Agent
Responder

ethO | | pppO |

usb0 |
|

Fig. 6. Flow of changing the active link from ethO to usb0.

send a request (containing the name of the new active
link) to the sibling computer. After knowing the new ac-
tive link, the sibling computer can update the routing
path to the server accordingly.

3.7. Control flow for interface switching

In the last part of this section, we show the overall
control flow of HANet when the active interface
changes from a public one, say eth0, to a private one,
say usb0. Fig. 6 illustrates this flow.

1. The fault detector detects an error on ethO and
changes the status of eth0 to bad.

2. The fault detector consults the interface manager to
determine the new active channel. The interface man-
ager then chooses usb0 as the new active channel and
switches the active channel to usb0.

3. The interface manager notifies the transmission agent
requester.

4. The transmission agent requester adds ARP entries
into the server to direct all the output packets to
the sibling. Then, it flushes the routing cache entries
since the output interface is changed.

5. The transmission agent requester asks the sibling
computer via the new active channel (usb0) to take
over its packet transmission job through usb0.

6. The transmission agent responder (i.e., the in-kernel
UDP server) receives the request and takes over the
packet transmission/reception job for the server.
From this point on, the server can send and receive
packets through the sibling computer.

4. Performance evaluation

To measure the performance of HANet, we setup an
experimental WWW document-serving testbed, which
consists of server and client machines. The major goal
of the experiment is to show that even when the public
network of a server fails, the WWW server that runs
on top of it can still provide services (with little perform-
ance degradation) via the network channels of the sib-
ling computers.

The testbed consists of two servers (each of which
acts as the sibling of the other), and five clients. All of
the machines are connected to a 100 Mbps Fast Ethernet
switch. In addition, there are two private channels: an
USB link (USB 1.1) and a Fast Ethernet link, * between

2 The private Ethernet link is used for measuring the overhead of
transmitting/receiving packets via a private interface. Since the link
type does not change after switching to the private interface, the
performance degradation after the interface switching reflects the
overhead of using private links for data transmission.
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Fig. 7. Different parts of the failover time.

the servers. Each machine is equipped with a 1.6GHz
Pentium 4 CPU and 256 MB DRAM. The operating
system is Linux (kernel version 2.4.18-18.8.0), and the
HTTP server on the server machine is Apache (version
2.0.40).

In the first experiment, we measure the time required
by different parts of the failover procedure. We assume
that the original active interface of the server, say
eth0, fails, and the next active interface is the private
Ethernet link. As shown in Fig. 7, the failover time in-
cludes the following components. 7d is the time between
the fault occurs and the invocation of the fault detection
routine, which depends mainly on the invocation fre-
quency of the fault detection routine. Since fault detec-
tion is triggered every 100ms in HANet, the average
value of Td can be regarded as 50ms. Tsrv is the time
that the server spends in detecting failure, changing
the active network interface, flushing the routing cache,
and sending a request to the sibling computer. Tmid is
the time spent in transmitting the request on the net-
work media, invoking the interrupt service routine in
the sibling computer for receiving the request packet,
and scheduling the execution of the transmission agent
responder. Finally, 7sib is the time that the transmission
agent responder spends in parsing the request, adding a
proxy ARP entry, flushing the routing caches, and send-
ing the gratuitous ARP packets.

Note that the time Tmid involves both the server and
the sibling hosts that are not time-synchronized, so it
can not be measured directly. In order to get an accurate
result, we use the same machine for the server and the
sibling when measuring Tmid. That is, the server sends
requests from one network interface to another on the
same machine via a private link. In this way, we can
ignore the timing synchronization problem between
the server and the sibling. Table 1 shows the results,
which are measured by using the Pentium Timestamp
Counter (Rubini, 2000). This table shows that, the total
failover time is about 0.66us plus 7d, which is 50ms in
average in the current implementation. Therefore, in

Table 1

Results of different parts of the failover time

Tsvr (ns) Tmid (ns) Tsib (ns) Ttotal (ns)
293.5 69.28 304.55 667.33

our current implementation, the failover time is domi-
nated by the fault detection time.

In the second experiment, we measure the overhead
of HANet. Specifically, we compare the performance
of a HANet server with the original server under the
condition that the public interfaces are alive. Therefore,
they serve HTTP requests through their public inter-
faces. In this experiment, the five client machines are
used to simulate the web users. The workload is ob-
tained from the Surge benchmark (Barford and
Crovella, 1998). The experiment time for each round is
1h.

Fig. 8 shows the throughput results. This figure
shows that, adding HANet code into the Linux kernel
does not incur visible performance degradation. This is
not surprising since the major overhead under this con-
dition is the invocation of the fault detection routines,
which consumes little time. Fig. 9 shows the average re-
quest processing latency perceived by the users. Similar
to Fig. 8, the user-perceived latency is almost the same
for the HANet server and the original one, which im-
plies the overhead of HANet is extremely little and
can be ignored.

In the third experiment, we measure the server per-
formance under the condition that the public interfaces
of the server have failed. In this case, packets go through
the private interface. Two private interfaces are used in
this experiment, namely a 12Mbps USB interface and a
100Mbps Fast Ethernet interface. Fig. 10 show the
throughput results. From the figure we can see that,
except for the second case, the server throughputs are
almost the same. It is because that the bandwidth
of USB link is only 12Mbps, which limits the server
throughput. The third case shows that the server using
a Fast Ethernet link does not incur throughput degrada-
tion since the speed of the Fast Ethernet is sufficiently
high.

Fig. 11 shows the latency results. This figure shows
that, owing to the low bandwidth, the latency of the
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Fig. 8. Throughput of the HANet server with public interface.
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USB link is clearly higher than the other cases. And,
packet transmission through the private Ethernet link
is only about 1% slower than the original case when
the load of the server is heavy (e.g., 400 users). This indi-
cates that there is very little overhead introduced by the
packet transmission agent.
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Fig. 11. User-perceived latency of the HANet server through private
interface.

5. Discussion

In this section, we address on the issues of applying
HANet on a multi-LAN system. We also provide discus-
sions on the bandwidth of the inter-server private chan-
nels. Finally, we discuss the support of multiple active
interfaces in the HANet framework.

5.1. Multiple LAN support

Currently, HANet is based on the assumption that
the servers (including the siblings) are all located on
the same LAN. However, it is possible to extend the cur-
rent implementation and then apply it on a system that
across multiple LANs. The goal of putting servers on
different LANs is that if the LAN in which the server
is located fails to work, the packet transmission job
can still be achieved by the sibling computer located
on another LAN. This is useful in an organization or
a building, where servers may be located on different
LANSs but are in close proximity.

Taking over the packet transmission job from an-
other LAN raises a problem. That is, packets from the
client can not reach the sibling because they will follow
the original routing path, and hence be routed to the
failed LAN. To solve this problem, HANet must be ex-
tended to include the help of the edge router that corres-
ponds to the sibling computer. Fig. 12 illustrates this
idea. After determining that LAN A has failed, the ser-
ver notifies the sibling, which in turn notifies router B.
Then, router B sends routing messages to its neighbor-
ing routers to update their routing tables. For example,
if Routing Information Protocol (Malkin, 1994) is used,
router B can send a routing update message (server-sub-
net, router B, 1) to each of its neighboring routers. The
message specifies that the destination subnet address is
the subnet of the server, the next hop is router B, and
the distance between the server subnet and router B is
1 (i.e., the minimum distance). If Border Gateway Pro-
tocol (Rekhter and Li, 19995) is used, router B can send
link state update messages with the similar settings in

LANB LANA

o : Server

© : Sibling computer @ : Other computers

Fig. 12. HANet for a Multi-LAN system.
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the AS PATH attribute and the NEXT_ HOP attribute.
As a result, packets to the server will be routed to LAN
B first, and then be forwarded to the server by the sib-
ling computer.

In our future research, we will investigate more
implementation issues for the multiple LAN support,
and integrate the support into HANet.

5.2. Private channel bandwidth

In the current prototype implementation, we use
RS232, USB, and Ethernet links as the inter-server pri-
vate channels. However, other kinds of channels can
also be used. For example, high-speed inter-server links
such as Myrinet (Myricom, 2003) and high-throughput
wireless technologies such as 802.11a and UWB are
good candidates for private links.

In general, high-speed links are preferred because
they provide better performance. With the rapid devel-
opment of network technology, various types of high
speed links have emerged. For example, a Myrinet link
already has a 2 Gbps bandwidth in both directions. Both
the specifications of USB 2.0 and UWB (i.e.,, IEEE
802.15.3a) have defined a 480 Mbps bandwidth, and
the data rate of an IEEE 1394 device can reach
400 Mbps. By implementing the corresponding drivers
that provide the net device interface, these links can
be integrated into our framework easily.

Even when such links are not available on the server
system of the service provider, low bandwidth links such
as RS232 can still be used. However, under this condi-
tion, a server process may decide not to accept any
new requests once all of its public interfaces have failed.
It can perform a clean shutdown (i.e., process all of the
pending requests, sending all the results back, and then
shutdown). New requests can be handled by other server
processes on the other servers. The clean shutdown pre-
vents the loss of the on-line requests, which is beneficial
for transaction-based requests (e.g., requests involving
database transactions) or dynamic-object requests
(e.g., CGI requests). Recovering these requests correctly
requires a large effort (Luo and Yang, 2001).

5.3. Multiple active interfaces

In our current implementation, at most one interface
is active at any given time. Therefore, the server will not
try to send packets simultaneously via multiple inter-
faces. However, a server does have the ability to utilize
multiple interfaces simultaneously for packet transmis-
sion and reception. And, the Linux bonding driver also
has a round-robin mode that allows the packets to be
transmitted through multiple interfaces in a round-robin
manner. We did not add this capability into our current
implementation due to the following two reasons. First,
transmitting packets simultaneously on multiple inter-

faces requires special support (i.e., link aggregation)
from the layer-2 switches (Mehaffey, 2002), and not all
of the switches support this functionality. Second, sup-
porting various types of I/O links and multiple active
interfaces at the same time requires much more imple-
mentation effort. The original bonding driver can easily
support multiple active interfaces since its slaves are all
of the same type (i.e., Ethernet). As a result, there is
no problem for a bonding device to reflect the attributes
of its slaves since the attributes of all the slaves are the
same. However, different types of I/O links have differ-
ent attributes. For ease of implementation, we have
the bonding device reflect the attributes of its current ac-
tive slave. Once the active interface changes, the attri-
butes of the bonding device are reconfigured to reflect
those of the new active slave. This leads to the support
of only one active interface at a time in our current
implementation.

To support multiple active interfaces in our frame-
work, a bonding device may need to reflect the attributes
of all the available slaves. For example, the hard_
header len field of the net _device structure should be
set to the maximum length of all the hardware headers.
And, there should be a universal hard_header( ) func-
tion that can build the hardware header of a given pack-
et according to the type of the link on which the packet
will be transmitted. Furthermore, some additional issues
must be addressed. For example, we should develop a
policy to determine whether or not to reroute part of
the traffic to the sibling if some public interfaces of the
server have failed. In the future, we will research the
issues of extending our framework to support multiple
active interfaces.

6. Related work

Previous work on improving server availability can
be divided into several categories: round-robin DNS,
Autonomic Computing, software state redundancy,
and device redundancy. In the following, we describe
them in detail.

Round-robin DNS and DNS aliasing (Brisco, 1995;
Garland et al., 1995; McGrath et al., 1995) are used to
dispatch user requests to one of multiple redundant
servers. Although these approaches increase service
availability, the requests being processed will get lost if
the corresponding server fails. The lost requests must
be re-issued by the user.

Autonomic Computing (Kephart and Chess, 2003)
was proposed by IBM, which enables systems to manage
themselves according to the administrator’s goals. The
self-managing means self-configuring, self-healing, self-
protecting, and self-optimizing. Especially, the self-heal-
ing techniques automatically detect, diagnose, and
repair software and hardware problems. Some efforts
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related to the self-healing are SRIRAM (Verma et al.,
2003) which is a method that facilitates instantiating
mirroring and replication of services in a network of
servers, K42 (Appavoo et al., 2003) which allows soft-
ware codes including system monitoring and diagnosis
functions to be inserted and removed dynamically with-
out shutting down the running system, and Dynamic
CPU Sparing (Jann et al., 2003) that detects failures of
a CPU and replaces it with a spare one.

Recovery-Oriented Computing (Patterson et al.,
2002) proposed by U.C. Berkeley and Stanford Univer-
sity is an effort related to autonomic computing. It pro-
poses new techniques to deal with hardware faults,
software bugs, and operator errors. These techniques in-
clude Pinpoint (Chen et al., 2002), which finds the root
cause of a system failure in an efficient way; System
Undo (Brown and Patterson, 2003), which can perform
system recovery from operator errors; and Recursive
Restart (Candea et al., 2002), which reduces the service
downtime. In addition, they also proposed on-line fault
injection and system diagnosis to improve the robust-
ness of the system. The proposed techniques can be inte-
grated with HANet to improve the system availability
further.

Software state redundancy is another technique to in-
crease service availability. Process pair (Gray and Siew-
iorek, 1991) duplicates and synchronizes software states
between two servers. If the active server process fails,
another backup process takes over its service. However,
synchronizing states between two servers has large over-
head. Some researchers (Aghdaie and Tamir, 2001; Luo
and Yang, 2001; Yang and Luo, 2000) addressed this
problem and proposed methods to reduce the synchroni-
zation overhead. Although these techniques are trans-
parent to clients, modification to server applications is
required. FT-TCP (Alvisi et al., 2001; Zagorodnov
et al., 2003) places codes in the Linux kernel to record
the I/O of the server application, including packets
and some system call return values. If the server fails,
it re-produces the server state by running a new copy
of the server application from the beginning and feeding
it with the logged I/O requests. That is, it replays the
process before the server crashes. The advantage of this
approach is that it does not need to modify the server
applications. However, the replaying process may take
a long time.

Device redundancy uses extra copies of hardware de-
vices to increase the system availability. The devices in-
clude CPUs, memories, disks, network adapters, etc. If a
device fails, the system software can operate on another
copy of the device. This approach is a technique funda-
mental to many other ones. For example, it is the basis
of the network bonding driver (Davis, 2003), which pro-
vides a fault-tolerant Ethernet network by grouping
multiple Ethernet cards into a single Ethernet interface.
The limitation of the bonding driver is that it only

supports Ethernet cards, but does not support point-
to-point communication links such as RS232, parallel,
and USB links.

Our work is unique in that it allows network packets
to be transmitted and received through all types of com-
munication channels, and it enables a sibling computer
to take over the packet transmission job when the public
network of the server fails. It requires no modifications
to server applications and client systems. Moreover, it is
efficient since it eliminates the synchronization over-
heads and the replaying process.

7. Conclusion

Network failure is one of the major causes of system
faults. In this paper, we propose HANet, a framework
that masks network failures and hence improves the reli-
ability of network services. It provides a uniform com-
munication interface so that network packets can be
transmitted on different kinds of links such as RS232,
USB, Ethernet, etc. In addition, it allows a sibling com-
puter to take over the packet transmission job from a
server while the public network of the latter is broken.
The techniques are transparent to both client-side sys-
tems and server-side applications.

In contrast to existing approaches, HANet does not
lose any requests. And, the time-consuming replaying
process is not needed. In addition, HANet is extensible
in the following ways. First, it does not put any con-
straints on the type of the private interface. The private
interface can be an USB link, a Myrinet interface, an
IEEE 1394 link, a parallel interface, an Ethernet card,
or even a wireless interface such as 802.11 or UWB. Sec-
ond, new fault detection methods can easily be inte-
grated into the framework.

According to the experimental results, there is no
visible throughput degradation and the user-perceived
latency can also be neglected as long as the speed of
the private interface is not slower than the public one.
This indicates that HANet is very efficient and suitable
for commercial network services.
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