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ABSTRACT 

Boundary element methodr (BEM) in conjunction with optimization algorithms 
are employed for active noise control of sound fields in three-dimensional 
enclosures. Total time-averaged acoustic potential energy is chosen as the cost 
function for the optimization procedure. The BEM is used to model the mono- 
chromatic sound field generated by noise sources in the enclosure. The con- 
strained steepest descent method proves to be eflective when both positions 
and amplitudes of the secondary sources are to be optimized, while the direct 
matrix inversion, the steepest descent method, and the conjugate gradient 
method prove to be useful when only the amplitudes of secondary sources 
are to be optimized. The developed BE&&based optimization techniques are 
applied to control the noise in a rectangular enclosure and a vehicle cabin. 

Keywords: Boundary element method, optimization algorithms, enclosed 

harmonic fields, active noise control. 

INTRODUCTION 

Active noise control (ANC) involves the use of secondary sources to 
attenuate the sound field generated by the primary source. There has been 
a vast amount of literature on the subject of ANC.’ Nelson and Elliott2 
calculated the optimal monopole amplitude of a secondary source in the 
free field by minimizing the total power output. Tohyama and Suzuki3 
used the modal expansion technique to minimize the power output of a 
monopole in an enclosure. It was demonstrated that the power output can 
be reduced to zero if .the secondary source is very close to the primary 
source. Nelson et ~1.~ proposed another ANC method for free-field noise 
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sources. In another paper,5 the same authors attempted to calculate the opti- 
mal positions of the secondary sources, based on the total time-averaged 
acoustic potential energy in an enclosed monochromatic noise field. It was 
found that, above the Schroeder’s cut-off frequency, the distance between 
the primary source and secondary source must be less than half a wave- 
length. Elliott et aL6 investigated active minimization of the total power out- 
put and active absorption of sound. Recently, Cunefare and Koopmann7 
developed an ANC method based on boundary element methods (BEM) for 
the noise output near the surfaces and in the far field of extended radiators. 

In this study, we seek to perform ANC of the noise field radiated by 
noise sources in enclosures with known normal specific acoustic impe- 
dance. The direct BEM is employed for modeling. In optimization 
schemes, the total time averaged acoustic potential energy is chosen as the 
cost function. The constrained steepest descent method is used if both the 
positions and amplitudes of the secondary sources are to be optimized. 
The direct matrix inversion algorithm, the steepest descent algorithm, and 
the conjugate gradient algorithm are used if only optimal amplitudes of 
secondary sources (at prescribed positions) are of concern. In a simula- 
tion, a rectangular enclosure with known analytical solution and a vehicle 
cabin of complex geometry are selected to verify the developed techniques. 

It is pointed out by the reviewer that two existing papers by Molo and 
Bernhard8,9 are closely related to this study. However, the major advances 
of this paper in comparison with the previous work are that this research 
emphasizes more the optimization schemes, e.g. the constrained steepest 
decent method. In addition, a vehicle cabin is used as a more realistic test 
case to illustrate the necessity and versatility of BEM. 

THE MODELING TECHNIQUE 

From linear acoustics, a monochromatic sound field containing N point 
sources can be described byi 

(V2 + k2>p(x) = 5 SjG(X - Xj), (1) 
j=l 

where k is the wave number, sj is the amplitude of the jth source, x is the 
position vector of the field point, xj is the position vector of the jth point 
source, and 6 is the Dirac delta function. Assume that the enclosure is 
bounded with the surfaces of known normal specific acoustic impedance 
z, = -ipckp, where p is the density of medium, c is the speed of sound, 
p = p/(Sp/Gn), i = -I, and Sp/Sn = n.Vp is the directional derivative with 
n being the unit outward normal to the boundary. 
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From Green’s function theory, the solution to the boundary-value 
problem in eqn (1) reads 

+ S[ G(xp, xq) -$bq) - dxq) Y& G(xp, x9) dS 
4 4 I 

S 

(2) 

where R(x,) is the solid angle at the point xP, V is a volume bounded by 
the surface S, and G(x,, xq) = exp(ikr)/47rr is the three-dimensional free- 
space Green’s function satisfying 

(V2 + k2)G(xP, x9) = -6(x, - x9) (3) 

where xP and x9 denote the field point and the source point, respectively, and 

r= Ixp-xql 

In this study, discretization of boundary integral equation is done by 
means of isoparametric transformation.” Dividing the boundary into N, 
elements with N, nodes, taking the field points to the boundary, and 
carrying out nodal collocation, we may rewrite eqn (2) into the following 
matrix form: 

where A = [A,,] = 

B = [B,,J = 

N, 

c 
.e=l 

J Wxpm x&N . n&>IJ(W(t> d 
Sk-1 

Sp=Ap,-Bp+c (4) 

(5) 

(6) 
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C = [Cm] = 
[ 

eWXpm-Xjl 2 sj 4nlx 

j=l Pm - xjl 1 
(7) 

where S is an N, x N, diagonal matrix whose diagonal terms are com- 
posed of R(xp)/4n, p and pn are the acoustic pressure vector and its gra- 
dient vector on the surface, respectively, < = (II, J2) are the natural 
coordinates, H(c) is a row vector with shape function as its components, 
J(t) is the Jacobian matrix associated with the coordinate transformation, 
and m, n = 1, 2,.. ., N,. 

On the other hand, the impedance-type boundary condition is expressed 
as 

pn - Rp = 0 Q-9 

where R = diag(l/Pi, I/&..., l/,0&. Thus eqn (4) can be reduced to 

If 
field 

[(S + B) - AR]p = c (9) 

the surface pressure is solved from eqn (9) then the pressure at the 
point can be recovered from eqn (2). 

OPTIMIZATION TECHNIQUES 

To attenuate the sound field generated by noise sources, we choose to find 
the optimal control by secondary sources that minimizes the following 
total time averaged acoustic potential energy in the enclosure:’ 

1 
Ep = - 

4pc2 s 
V 

IP( dV (10) 

This function basically sums the squared pressures at all points within 
the enclosure. 

Various types of constraints are incorporated into the optimization 
algorithm. For instance, one may require the secondary sources to be 
confined within the enclosure and the monopole amplitudes to be within a 
certain limit, i.e. 

XjED, j= 1,2,...,M 

lsjl < Smax, j = 1,2, . ..) A4 
(11) 
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where si is the amplitude of the jth source, M is the number of secondary 
sources, s,, is the maximum amplitude of secondary sources, and D 
denotes the geometric extent of the enclosure. An additional constraint 
that may arise in practice is that, due to the physical sizes of acoustic 
sources, the distance between the primary source and secondary source 
may be within a certain number, i.e. 1 r I> E. 

To solve the above constrained optimization problem, the constrained 
steepest descent (CSD) method was adopted.‘* This method requires the 
following Pshenichny’s descent function (a(z) to monitor the progress of 
the algorithm towards the optimum:13 

Q(z) = f(z) + e V(z) (12) 

where z is the vector of design variables,f(z) is the original cost function, 
Q is a positive number called the penalty parameter, and V(z) > 0 is the 
maximum constraint violation. 

The optimization process iteratively updates the position vector z by the 
following recursive formula: 

Z(k+i) = Z(k) + t&(k) (13) 

where d@) is the search direction at the point z@) and tk is the acceptable 
step size at dck). Next, the search direction d is obtained by solving the 
quadratic programming subproblem. I3 At the kth iteration, one deter- 
mines an acceptable step size +, j being the smallest integer satisfying the 
descent condition 

@k+lj 2 @k - tj @k; j= 0, 1,2, . . . . (14) 

The constant ,& is determined by the search direction ,& = yld@12, where 
y is a constant between 0 and 1. 

In general, it is not an easy task to find the global minimum in a highly 
non-linear problem. To obviate this difficulty, a Bayesian criterion is 
employed to determine if the local minimum found by CSD is possibly the 
global minimum. l3 Let Y be the number of random samples that converge, 
after n points have been sampled, to the same region near a local mini- 
mum f. The Bayesian criterion states that the probability for which the 
local minimum E found by CSD is actually the global minimum F* is 
bounded from below as 

Pr[F= F] 1 q(n,r) = 1 - 
[(n + 1)!(2n - r)!] 

[(2n + l)!(n - r)!] (15) 
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In the study, 0.98 was selected as the threshold. Namely, if the calculated 
value of q(n, r) is greater than 0.98, then the result is regarded as the global 
minimum. 

Evidently, the implementation of the total time-averaged acoustic 
potential energy requires a large number of sensors to detect the sound 
pressures throughout the enclosure. It is more desirable to restrict the 
number of sensors and to focus only on some quiet zones, e.g. the vicinity 
of the ears of a car driver. A further simplification can be done by opti- 
mizing only the amplitudes of secondary sources at prescribed positions. 
This is a reasonable approach since the optimal amplitudes of secondary 
sources are generally more difficult to determine than the positions, which 
will become clear shortly. In addition. the amplitude constraint in eqn (11) 
is also removed to simplify the optimization problem into a fully uncon- 
strained type. Let the complex pressure output from the Ith sensor el be 
the superposition of the complex pressure dl due to the primary source and 
the pressure due to the M secondary sources. By writing the complex 
amplitude of the mth secondary source as y,, the total output from the Ith 
sensor can be expressed as’ 

el+ 4 + GYI + GYZ + Gy3 + . . . . + GYM (16) 

where the frequency response function Cl,,,, m = 1, 2, . . . . M, is determined 
by measuring the complex pressure output of the Ith sensor with the mth 
secondary source operating alone, leaving all the other sources inactive. In 
matrix notation 

e=d+Cy (17) 

Here, the cost function can be defined as the sum of the squared moduli of 
the pressure outputs from all sensors 

J= (18) 

In general, the number of sensors L must not be less than the number of 
the secondary sources M in order to admit an overdetermined problem. 
For this quadratic cost function, there exists a unique solution’ 

y. = -(CHC)-‘CHd (19) 

which leads to the minimum cost function 
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Jo = &eHII - C(C?C)-'CH]d 

If the elements of d and C are calculated in advance by using BEM, then 
the optimal amplitudes of the secondary sources can be determined via 
eqn (19). This approach is referred to as the direct matrix inversion 
algorithm. 

In practice, ill-conditioned problems may arise when two columns of 
the matrix CHC are very similar due to, for example, poor positioning 
of the secondary sources. This motivates the use of iterative methods such 
as the steepest descent method and the conjugate gradient method to 
optimize the amplitudes of the secondary sources.12 Both methods require 
definition of a complex gradient gj for the jth element 

(21) 

where UjR and yjz, are the real part and imaginary part of y, respectively. In 
the optimization process, the amplitudes of the secondary sources are 
iteratively updated by the following recursive formula: 

y&+1) = y(k) + tkd(k) (24 

where yck) and yck +‘I are the amplitudes of the secondary sources at the 
kth and the (k + 1)th iterations, respectively, dck) is the search direction at 
the kth iteration, and tk is the step size at the kth iteration. 

The direction of steepest descent (i.e. the negative gradient) is computed 
at the design point 

where g@) is the complex gradient defined in eqn (21) at the kth iteration. 
If dck) is a non-zero vector, the design point is moved along that direction 
with a proper step size to reduce the cost function. Although the proce- 
dure is simple, in some cases convergence may be excessively slow for 
practical applications. 

Another attractive approach that provides faster convergence than the 
steepest descent method is the conjugate gradient method. This method 
incorporates a scaled direction vector of the last iteration into the current 
direction of steepest descent. 

dk) = -@I + pkd(k_‘) (24) 

where cck) = gck) d(O)= -g(O) and pk = (11 cck) 11 / 11 c(lc-l) II)“. 
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In the steepest descent algorithm and the conjugate gradient algorithm, 
either constant step sizes or dynamic step sizes can be used. Dynamic step 
sizes corresponding to the largest reduction of cost function along the 
search direction can be determined by the method of golden section 
search.12 This amounts to the minimization of 

f(y@) + td@))f (t) (25) 
with respect to the step size t. 

COMPUTER SIMULATION 

Rectangular enclosure 

A 3 m x 2 m x 1 m rectangular enclosure is selected for the computer 
simulation, as shown in Fig. 1. The origin is located at the center of the 
rectangular enclosure whose boundary is divided into 22 elements with 68 
nodes. 

In this simulation, a special type of impedance boundary condition is 
adopted.8 It is well known that acoustic resistance contributes to acoustic 
damping and reduces the resonant peak, while the acoustic reactance 
slightly alters the resonant frequencies from those of the rigid-walled 
enclosure. In this study, acoustic reactance was chosen to be a constant for 
simplicity and the acoustic resistance is assumed to be inversely propor- 
tional to the frequency. That is, the acoustic impedance z, is expressed as 
p/k + iq, where p and 7 are constants. 

The total time averaged acoustic potential energy defined in eqn (10) is 
selected as the cost function that is evaluated by using 24-point trapezoi- 
dal integration (see Fig. 2). Consider a case where only a primary source is 
present in the rectangular enclosure. It is desired to control the noise field 
by using one secondary source. Assume that the position of the primary 
source is (1.5, 0.5, 0.2), the amplitude of the primary source is 1, the wave 

_- -- 3.00 rll -~ ~~~ 1 

Fig. I. Dimensions of the rectangular enclosure in which the origin is located at the center 
of the enclosure. 
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Fig. 2. Locations of 24 sensors for the trapezoidal rule integration of Ep in the rectangular 

number is 1, and the amplitude of the secondary source must not exceed 
10. By CSD, the optimal amplitude is found to be -1.01 and the optimal 

enclosure. 

position is found to be (1.49, 0.50, 0.19) for the secondary source. The 
relative positions of the primary source and the secondary source are 
shown in Fig. 3(a). The primary source and the secondary source form a 
dipole, which conforms to the conclusion of Tohyama and Suzuki.3 On the 
other hand, if the distance between the primary source and the secondary 
source is constrained to be greater than 0.2 m, the optimal amplitude is 
found to be -1.02 and the optimal position is found to be (1.48, -0.45, 
0.17) for the secondary source. The relative positions of the primary 
source and the secondary source under the distance constraint are shown 

(4 

Fig. 3. The optimal positions of the secondary sources for the rectangular enclosure. The 
primary source of unity amplitude (k = 1) is located at (1.5, 0.5, 0.2). The boundary impe- 
dance z, is 105/k+ 105i. The amplitude of secondary source must not exceed 10. (a) The 
optimal position of the secondary source is found to be (1.49, 0.50, 0.19) without the dis- 
tance constraint Irl > 0.2 and the optimal amplitude of the secondary source is found to be 
-1 .Ol; (b) the optimal position of the secondary source is found to be (1.48, -0.45, 0.17) 
with the distance constraint jr1 > 0.2 and the optimal amplitude of the secondary source is 

found to be -1.02. 
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-0.50 
-1.00 -0.75 -0.50 -0.25 -0.00 0.25 0.50 0.75 1 .oo 

0.25 

-0.25 

Y M-4 
Fig. 4. The pressure amplitude in the plane x = 1.5. The primary source of unity amplitude 

(k = 1) is located at (1 S, 0.5, 0.2). The boundary impedance z, is 105jk + 1O’i. 

in Fig. 3(b). The optimal position of the secondary source appears to be 
nearly the mirror image of the primary source about the y = 0 plane. These 
interesting results can be easily explained by examining the pressure dis- 
tribution in the enclosure. A contour plot of the sound pressure magnitude 
in the plane x = 1.5 is shown in Fig. 4. The local maxima are along 
y= k 0.5 lines. Without the constraint Irl > 0.2, the secondary source is 
located near the first pressure maximum 0, = 0.5 line), while with the con- 
straint Irl > 0.2, the secondary source is located near the second pressure 
maximum (~=0.5 line). Thus, a conclusion can be drawn from the above 
result that the secondary sources are preferably located at pressure anti- 
nodes to obtain the best possible noise attenuation. Effective ANC can 
usually be accomplished, especially in the vicinity of resonant frequencies, 
unless the secondary sources happen to be placed at the pressure nodes. 
This is illustrated by the following simulation case. Figure 5 shows the 
effects of the positions of the secondary sources on ANC. In this case, the 
primary source is located at (1.0, 0.2, 0.2). J is chosen as the cost function 
and three sensors are used in the case. The method of direct matrix inver- 
sion is used to calculate the optimal ANC. It is observed that the noise 
reduction at resonant frequencies achieved by the secondary source loca- 
ted at (- 1.4, -0.9, -0.4) is larger than the noise reduction achieved by the 
secondary source located at (0,O. l&O. 15) for the (1, 0, 0) mode (k = 1.04). 
This is due to the fact that the secondary source located at (0, 0.15, 0.15) 
coincides with the pressure node of (1, 0, 0) mode. It is difficult for the 
secondary source at this position to excite the (1, 0, 0) mode. In control 
terminology, the secondary source at this position has very poor controll- 
ability on the noise field. 
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Fig. 5. The effect of the positions of secondary sources on ANC. The primary source of 
unity amplitude is located at (1.0, 0.2, 0.2). The boundary impedance z, is lO’/k+ 10%. 
Three sensors are located at (1.4, 0.95, 0.45), (1.5, 0.4, 0.2) and (0.2, 0.1, 0.1). The mode 
shape of (l,O,O) mode (k = 1.04) is shown in the upper right corner of the illustration. 

, uncontrolled field; - - -, secondary source located at (0, 0.15, 0.15); - -, second- 
ary source located at (- 1.4, -0.9, -0.4)). 

Excellent noise reduction has been achieved in the frequency range 
27.29-218.36 Hz, even though the distance between the primary source 
and the secondary source is greater than half a wavelength. For instance 6 
dB noise reduction is obtained at k=4 rad/ms where the distance between 
the primary source and the secondary source (1.32 m) is greater than half 
a wavelength (0.79 m). This is in contrast with the situations for fre- 
quencies above the Schroeder’s cut-off (2.75 kHz at k=4), where good 
noise reduction can only be obtained for the distances between the pri- 
mary source and the secondary source less than half of a wavelength. 

As already mentioned, it is preferably to place the sources at the pres- 
sure antinodes. Thus, in what follows, we concentrate on optimization of 
the amplitudes of secondary sources at prescribed positions. Consider a 
case in which the primary source of unity amplitude is located at the origin 
and the secondary source is located at (1.5, 0.2, 0.2). Three sensors are 
used to monitor the noise field. Table 1 shows the results of optimal 
amplitudes of the secondary sources calculated by direct matrix inversion, 
conjugate gradient method, and steepest descent method, with constant 
and variable dynamic sizes. It is observed that a significant reduction in 
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TABLE I 
The results of ANC when only the amplitudes of secondary sources are to be optimized. 
The primary source of unity amplitude (k= 1) is located at the origin. The secondary 
sources are located at (1.5, 0.2,0.2) and (1 .O, 1 .O, 0.3), and the sensors are located at (- 1.5, 
0.1, 0.2) and (- 1.5, 0.4, 0.2). The initial guesses of the amplitudes of the secondary sources 
are 0.1232 + 0.22411’ and 0.7650 + 0.67741. The boundary impedance z, is assumed to be 

105/k + 10%. The following results are obtained after 200 iterations 

Optimization method J Jo Amplitude 
CPU 

time(s) 

Direct matrix inversion 

Steepest descent with 
constant step size 0.01 
Steepest descent with 
dynamic step size 
Conjugate gradient with 
constant step size 0.01 
Conjugate gradient with 
dynamic step size 

0.12 0 -0.7421 + 0.50721’ 32.04 
0.1960-0.04292’ 

0.12 1.23 x 1O-4 -0.6543 + 0.0703i 1979.34 
-0.1592-0.38041’ 

0.12 1.19 x 10-5 -0.4092 + 0.7OOOi 1157.34 
-0.1297-0.25931’ 

0.12 2.61 x 1O-5 -0.4536 + 0.1053i 1845.13 
-0.1592 + 0.38041’ 

0.12 2.30 x lo-” -0.7238 + 0.54681 208.45 
0.1858-0.05331’ 

the cost function has been achieved by these three methods. For the 
iterative methods, the conjugate gradient method converges faster than 
the steepest descent method. The iterative methods with dynamic step size 
converge faster than the methods with constant step size. 

The position of sensors is another important issue for noise control. In 
the following case, the primary source of unity amplitude is located at 
(1 .O, 0.2,0.2) and the secondary source is located at (- 1.4,-0.9, -0.4). J is 
chosen as the cost function. Three sensors are used to monitor the sound 
field and one of them can be moved to examine the effects of different 
locations of sensors. We chose to place the movable sensor at (1.45, 0.95, 
0.45) and (1.0, 0.1, 0.2), respectively, where the former is a corner point 
and the latter is an interior point. Figure 6(a) and (b) show the noise 
reduction obtained by positioning the sensors at the corner point and at 
the interior point, respectively. The noise reduction in Fig. 6(a) appears 
more pronounced than the reduction in Fig. 6(b). In control terminology, 
the sensors located in the pressure anti-nodes (that are usually around 
corners) have good observability. 

In the following example, the effect of the number of secondary sources 
on ANC is also investigated. The sound field is controlled by one, two and 
three secondary sources, respectively. J is chosen as the cost function. The 
primary source is located at (1.0, 0.2, 0.2). Four sensors are used in this 
case. As can be seen from the results in Fig. 7, the more secondary sources, 
the greater is the noise reduction. 
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Fig. 6. The effect of the positions of sensors on ANC. The boundary impedance z, is 105/ 
k+ 10% The primary source of unity amplitude is located at (1.0, 0.2, 0.2). The secondary 
source is located at (-1.4, -0.9, -0.4). Two sensors are located at (1.0, 0.4, 0.2) and 
(0.2, 0.1, 0.1). (a) The third sensor at (1.45, 0.95, 0.45) is located near the comer of the 
enclosure; (b) the third sensor at (1.0, 0.1, 0.2) is located in interior of the enclosure. 

, uncontrolled field; - - -, controlled field. 
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901 1 

0.5 I 1.5 2 2.5 3 35 4 

wave number k (radm) 

Fig. 7. The effect of the number of secondary sources. The boundary impedance z, is 105/ 
k+ 105i. The primary source of unity amplitude is located at (1 .O, 0.2, 0.2). Four sensors 
are located at (1.4,0.95,0.45), (1.5,0.4,0.2), (0.2,0.1,0.1) and (-0.3, -0.2, -O.iS).-----, 

uncontrolled field; ., three secondary sources located at (~ 1.4, -0.9, -0.4), (0.15, 0.15, 
0.15) and (-0.8, -0.7, -0.35); - -, two secondary sources located at (-- 1.4, -0.9, -0.4) 

and (0.15, 0.15, 0.15); - - -, one secondary source located at (- 1.4, -0.9, -0.4). 

Figure 8 shows the effect of boundary conditions on noise control. 
Suppose that there is one primary source and one secondary source in the 
enclosure. J is chosen as the cost function. Three sensors are used in this 
case. Two types of impedance z, (105/k + 1Oi and 10/k + 1 Oi), are chosen in 
this case to represent different levels of wall absorptivity. For the case of 
z, = 105/k + lOi, the maximum reduction is 37.49 dB (k=2.1) and the 
average reduction for the range of wave number k = 0.54 is 6.74 dB/Hz, 
while for the case of z, = 10/k+ lOi, the maximum reduction is 13.64 dB 
(k = 2.3) and the average reduction for the range of wave number k = 0.54 
is 4.81 dB/Hz. Larger acoustic resistance amounts to smaller absorptivity 
at the boundary, provided the acoustic reactance is maintained constant. 
Since a rigid boundary usually results in higher pressure resonant peaks, 
there is apparently more room to attenuate the noise field. 

Vehicle cabin 

A vehicle cabin is selected as a more realistic case to verify the optimal 
active and passive noise control techniques. BEM is particularly suited for 
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Fig. 8. The effect of boundary conditions of the rectangular enclosure. The primary source 
of unity amplitude is located at (1.0, 0.2, 0.2). The secondary source is located at (-1.4, 
-0.9, -0.4). Three sensors are located at (1.4, 0.95, 0.43, (1.0, 0.4, 0.2) and (0.2,0.1, 0.1). 

uncontrolled field with boundary impedance z, = 105/k + 105i; *, controlled 
field wfth boundary impedance z, = lO’/k + 10%; - - -, uncontrolled field with boundary 
impedance z, = 105/k+ 105i; 0, controlled field with boundary impedance z,, = 105/ 

k+ 103. 

modeling the acoustic field, since no analytical solution is available for this 
irregularly shaped enclosure. Since the geometry of the cabin is more 
complex than the forgoing rectangular enclosure, more elements are 
required to construct BEM mesh (90 elements with 272 nodes), as shown 
in Fig. 9. In the simulation, the impedance of the original boundary 
without any treatment is assumed to be lO’/k+ 10% The primary source 
of unity amplitude is located at (1.25, 1.14, 0.34). Because the space is 
limited and no information can be added besides that addressed in the 
case of the rectangular enclosure, only the representative results are given 
here. 

In the ANC case, it is desired to attenuate the noise field in the cabin by 
means of two secondary sources and three sensors, as shown in Fig. 10. J 

is chosen as the cost function. To save CPU time, only direct matrix 
inversion is used to determine the optimal amplitudes of the secondary 
sources. Fig. 11 shows the ANC results plotted against wave numbers. As 
in the case of the rectangular enclosure, significant noise reductions are 
found near the resonant frequencies. 
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Fig. 9. Dimensions and BEM mesh of the vehicle cabin. 

0 primary source 

E sensor 

g secondary source 

Fig. 10. The positions of the primary source, secondary sources and sensors in the vehicle 
cabin. The primary source is located at (1.25, 1.14, 0.34). Three sensors are located at 
(0.15, 0.2, 0.2), (1.25. 0.2, 0.2) and (0.95, 0.2, 0.8). The secondary sources are located at 

(2.7, 1.10, 0.15)and (2.1, 1.10, 2.28). 

CONCLUSION 

Boundary-element-method-based optimization techniques have been 
developed in this study to investigate noise control problems. The 
methods prove to be effective in solving the optimization problems for 
active noise control of harmonic sound fields in three-dimensional 
enclosures. 
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Fig. 11. Noise reduction in the vehicle cabin for different wave numbers by ANC. The 
boundary impedance z, is 105/k+ 10%. The primary source of unity amplitude is located at 
(1.25, 1.14,0.34). Three sensors are located at (0.15. 0.2,0.2), (1.25,0.2,0.2) and (0.95, 0.2, 
0.8). The secondary sources are located at (2.7, 1.10, 0.15) and (2.1, 1.10, 2.28). -, the 

uncontrolled field; - - -, the controlled field. 

Under the constraints that the positions of sources should be confined 
within the enclosure and the amplitudes of secondary sources should not 
exceed a certain limit, the CSD method provides optimal positions and 
amplitudes of secondary sources that minimize the total time-averaged 
acoustic potential energy. If no constraint on the distance between the 
primary source and the secondary source is imposed, the resulting tvvo 
sources will become a dipole that has poor radiation efficiency at low fre- 
quencies. 

The result of simulation also indicates that the sensors should be loca- 
ted in the pressure anti-nodes for good observability. Significant noise 
reductions can usually be obtained near resonant frequencies. The mean- 
square pressures obtained by a discrete number of sensors serve as a useful 
cost function of local quiet zones. The secondary sources should be loca- 
ted near the pressure anti-nodes to have good controllability on the noise 
field in the enclosure. In general, the more the secondary sources, the bet- 
ter is the controllability. The techniques are also tested on a vehicle cabin 
of complex geometry. Satisfactory results have been obtained for the 
optimization problem. The conclusions drawn from the rectangular 
enclosure remain applicable here. 
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