
Equivalence of Buddy Networks with Arbitrary
Number of Stages*

Chiuyuan Chen, Frank K. Hwang, James K. Lan
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

Equivalence of multistage interconnection networks is
an important concept because it reduces the number of
networks to be studied. Equivalence among the banyan
networks has been well studied. Occasionally, the study
was extended to networks obtained by concatenating two
banyan networks (identifying the output stage of the pre-
ceding network with the input stage of the succeeding
one). Recently, equivalence among the class of networks
that are obtained from banyan networks by adding extra
stages has also been studied. Note that all these above-
mentioned networks are in the general class of buddy
networks. In this article we study equivalence of buddy
networks with an arbitrary number of stages. © 2005 Wiley
Periodicals, Inc. NETWORKS, Vol. 46(4), 171–176 2005

Keywords: multistage interconnection networks; topological
equivalence; banyan property; buddy property; bit permutation

1. INTRODUCTION

Let N = dn be the number of inputs and outputs of a net-
work. A d-nary s-stage network is a network with s columns
(stages) where each column consists of N/d d × d crossbars
(switches) such that links exist only between crossbars of
adjacent stages (note that we do not allow multilinks between
crossbars). An n-stage network is a banyan network if each
input has a unique path to each output (see Fig. 1). If a net-
work has more than n stages, then we say such a network has
extra stages. In all the figures, the arcs are directed from left
to right.

We can associate an s-stage network with a directed graph
G in which vertices represent crossbars and arcs the com-
munication links. Throughout this article, Gi,j denotes the
subgraph of G induced by the vertices from stage i to stage j.

Received June 2003; accepted August 2005
Correspondence to: C. Chen; e-mail: cychen@mail.nctu.edu.tw
*This article was written when the author was visiting the Center of Math-
ematical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
Contract grant sponsor: The National Science Council of the Republic of
China; Contract grant numbers: NSC93-2115-M-009-011 and NSC93-2115-
M-009-013
DOI 10.1002/net.20085
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2005 Wiley Periodicals, Inc.

When there is no confusion, Gi,j also denotes the subnetwork
from stage i to stage j. Set Gi = Gi,i+1 for easy writing (see
Fig. 1).

Two s-stage networks are topologically equivalent (or
simply equivalent) if their associated directed graphs are iso-
morphic. In other words, two s-stage networks are equivalent
if one can be obtained from the other by permuting crossbars
in the same stage. Note that equivalence in this sense pre-
serves the connecting properties of the network. Hence, once
we prove a nonblocking property for a network, it extends to
all equivalent networks.

Parker [10] first established the equivalence of several
n-stage banyan networks including the Baseline network.
Wu and Feng [13] expanded the equivalence class. Dias and
Jump [6] introduced the “buddy” notation: Let v and v′ be
two crossbars in stage i and let Vv and Vv′ be the two sets of
crossbars in stage j that v and v′ can reach, respectively. Then
the network is a buddy network if for any i and j = i + 1,
either Vv = Vv′ or Vv ∩ Vv′ = ∅. Agrawal [1] called a buddy
network a strict buddy network if the buddy condition also
holds for j = i + 2. In this article, we further generalize
the strict buddy network to the universal buddy network by
allowing j to be arbitrary. In [1], Agrawal claimed that the
strict buddy property characterizes the Baseline-equivalent
networks. Bermond et al. [2, 3] gave a counterexample to
Agrawal’s claim. Instead, they defined the P(∗, ∗) property
for characterization: A network is a P(∗, ∗) network if for any
two stages i ≤ j, the number of components in the subgraph
Gi,j is dn−1−(j−i).

Siegel and Smith [12] proposed an extra stage to the
Baseline-equivalent class of networks, while Shyy and
Lea [11] considered the k-extra-stage version. Hwang et al.
(see [8]) pointed out that the extra stage versions of Baseline-
equivalent networks are not necessarily equivalent. Equiva-
lence depends not only on the base network (Baseline or
others), but also on how the extra stages are added. Previously,
equivalence of extra-stage networks has been studied only for
the double-concatenation type [4, 7] because it contains the
famous Beneš network as a special case.

To study the equivalence of extra-stage networks for arbi-
trary number of stages, Chang et al. [5] proposed the class of
bit permutation networks. Label the crossbars in a stage by

NETWORKS—2005

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

FIG. 1. A binary three-stage banyan network (the Baseline network), G1,
and G1.

distinct d-nary (n−1)-sequences x1x2 . . . xn−1. A bit-i group
(or simply an i-group) consists of the d crossbars whose
labels differ only in bit i (there are dn−2 bit-i groups). An
s-stage network is a bit permutation network if for every
Gi, 1 ≤ i ≤ s − 1, the links always go from bit-ui groups G′
of stage i to bit-vi+1 groups G′′ of stage i+1 for some ui, vi+1,
where G′′ is a permutation of G′. (A detailed definition of bit
permutation networks is given in Section 2.) They proved that
a bit permutation network is equivalent to one whose Gi has
the property that vi+1 = ui for all i. Such a network can be
characterized by the vector (u1, u2, . . . , us−1).

Recently, Li [9] proposed the bit permuting network. He
views the outputs of stage i and the inputs of stage i+1 as the
vertices of a bipartite graph Gi and labels the outputs of stage
i (inputs of stage i + 1) by distinct d-nary n-sequences; see
Figure 1. Then Gi gives a bijection from the dn outputs to the
dn inputs, and hence can be treated as a permutation. Such a
permutation is called an bit permutation if it can be charac-
terized by a permutation σi of the n bits. A network is a bit
permuting network if each Gi corresponds to a σi. Li gave an
elegant “guide” algorithm to route any n-stage bit permuting
network.

The notions of universal buddy (UB), bit permutation
(BP), and bit permuting (BPT) are applicable to networks
with any number of stages. Because P(∗, ∗) is defined only
for n-stage networks, we generalize it to the power-of-d net-
works. An s-stage network is a power-of-d network if for any
i, j, 1 ≤ i ≤ j ≤ s, the number of components in Gi,j is a
power of d. An s-stage network is a power-of-d universal
buddy network if it is both power-of-d and universal buddy.
The notion of power-of-d

(
dP

)
and power-of-d universal

buddy
(
dPUB

)
are applicable to networks with any number

of stages. In this article, the notations of UB, BP, BPT , dP,
and dPUB also denote their corresponding classes of
networks.

Let A ⊃ B denote that A properly contains B. Let A = B
denote that A is equal to B, meaning any network in class A is
a network in class B (no permutation of crossbars allowed),

and vice versa. Let A ∼ B denote that A is equivalent to B,
meaning any network in class A is topologically equivalent to
a network in class B (permutations of crossbars allowed), and
vice versa. Note that the permutation of crossbars is neither
unique nor one-to-one. Hence A ∼ B does not imply |A| =
|B|. In particular, A ⊃ B does not preclude A ∼ B. In this
article, we will establish:

UB ⊃
dP ⊃ dPUB ⊃ BP = BPT . (1.1)

dPUB ∼ BP, but UB � dP, UB � dPUB, and dP
� dPUB.

(1.2)

Because the BP network has the vector characterization
and is defined for any number of stages, it is of inter-
est to know whether this very useful class can be further
extended with all connecting properties preserved. Relation
(1.1) shows that dPUB generalizes BP and (1.2) shows that
they are equivalent.

2. THE BP AND BPT CLASSES

We now give a detailed definition of BP networks; this
definition is from [5]. An s-stage network is a bit permutation
network if for every Gi, 1 ≤ i ≤ s−1, there exists a permuta-
tion ρi on {1, 2, . . . , n} such that ρi(n) �= n and each crossbar
x1x2 . . . xn−1 is adjacent to crossbar xρi(1)xρi(2) . . . xρi(n−1),
where xn ∈ {0, 1, . . . , d − 1}. Note that xn has d values, and
whenever it appears in the coordinates, d sequences are gen-
erated by running xn through the set {0, 1, . . . , d − 1}. For
example, the network in Figure 1 is a bit permutation network
with ρ1 = (132) and ρ2 = (23). Because ρ1 = (132), x1x2x3

is mapped to x3x1x2 and the links go from bit-2 groups of
stage 1 to bit-1 groups of stage 2. In particular, crossbars
00 and 01 at stage 1 are adjacent to crossbars 00 and 10 at
stage 2. Because ρ2 = (23), x1x2x3 is mapped to x1x3x2, and
the links go from bit-2 groups of stage 2 to bit-2 groups of
stage 3. Thus, crossbars 00 and 01 at stage 2 are adjacent to
crossbars 00 and 01 at stage 3.

The stages in Figure 2 and Figure 3 are drawn horizontally
to save space. These two figures are the same (they have the
same connections between crossbars) except their labels. The
labels in Figure 2 are outputs of stage i and inputs of stage i+1.
The labels in Figure 3 are crossbars of stage i and crossbars
of stage i + 1. The permutation in Figure 2 illustrates a bit
permutation σi = (1234) in Gi, while the permutation in
Figure 3 illustrates a permutation ρi = (1234) in Gi.

0010 00110000 0001 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0010 00110000 0001 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

FIG. 2. A bit permutation σi in Gi.

172 NETWORKS—2005

001000 010 011 100 101 110 111

001000 010 011 100 101 110 111

FIG. 3. A permutation ρi of crossbars in Gi.

We now prove

Theorem 1. BPT = BP.

Proof. First consider a BPT network. For every Gi,
there exists a bit permutation σi on {1, 2, . . . , n} such that
each output x1x2 . . . xn of stage i is adjacent to input
xσi(1)xσi(2) . . . xσi(n) of stage i + 1. Note that the label of a
crossbar of stage i (i + 1) can be obtained from the labels of
its d outputs (inputs) by dropping the last bit. Thus, crossbar
x1x2 . . . xn−1 is adjacent to crossbar xσi(1)xσi(2) . . . xσi(n−1).
Note that σi(n) �= n; otherwise, there are multilinks between
crossbar x1x2 . . . xn−1 and crossbar xσi(1)xσi(2) . . . xσi(n−1).
Because σi(n) �= n, crossbar x1x2 . . . xn−1 is adjacent to
crossbar xσi(1)xσi(2) . . . xσi(n−1), where xn ∈ {0, 1, . . . , d − 1}.
Thus, a BPT network is a BP network. On the other hand,
consider a BP network. For every Gi, there exists a per-
mutation ρi on {1, 2, . . . , n} such that ρi(n) �= n and each
crossbar x1x2 . . . xn−1 of stage i is adjacent to crossbar
xρi(1)xρi(2) . . . xρi(n−1) of stage i+1, where xn ∈ {0, 1, . . . , d−
1}. Thus, each output x1x2 . . . xn of stage i is adjacent to input
xρi(1)xρi(2) . . . xρi(n) of stage i + 1. Because a permutation on
{1, 2, . . . , n} is a bit permutation, a BP network is a BPT
network. Theorem 1 now follows. ■

We now show that a bit permutation σi of Gi defines a
mapping from u-groups of stage i to v-groups of stage i + 1.
In fact, we can pinpoint u and v.

Lemma 2. Suppose Gi is represented by the bit permutation
σi. Then Gi induces a mapping from σi(n)-groups of stage i
to σ−1

i (n)-groups of stage i + 1.

Proof. Note that each output x1x2 . . . xn of stage i is adja-
cent to input xσi(1)xσi(2) . . . xσi(n) of stage i + 1. The label of a
crossbar of stage i (i + 1) can be obtained from the labels of
its d outputs (inputs) by dropping the last bit. Because xσi(n)

is the last bit and gets dropped in the crossbar label of stage
i+1, the d stage-i crossbars differing only in bit σi(n), that is,
the σi(n)-group, are mapped to the same set of stage-(i + 1)

crossbars. On the other hand, the stage-i crossbar containing
d outputs whose labels differ only in bit σi(n) is mapped to
the σ−1

i (n)-group of stage i + 1. Lemma 2 is proved. ■

For the example in Figure 2, the mapping is from (σi(4) =
1)-groups of stage i to

(
σ−1

i (4) = 3
)
-groups of stage i + 1.

We now give a vector characterization of a BPT network.
First a lemma.

Lemma 3. Suppose Gi corresponds to a bit permutation σi

which maps σi(n)-groups of stage i to σ−1
i (n)-groups of stage

i+1 and suppose Gi+1 corresponds to a bit permutation σi+1.
Suppose we permute the crossbars of stage i + 1 such that
the j-th crossbars of the σ−1

i (n)-groups are lined up with the
j-th crossbars of the σi(n)-groups, j = 0, 1, . . . , d − 1. Then
after the lining-up operation, Gi corresponds to the bit per-
mutation (ui n) and Gi+1 corresponds to the bit permutation(
σ−1

i+1

(
σ−1

i (n)
)
σ−1

i+1(σi(n))
) ◦ σi+1.

Proof. Take a σ−1
i (n)-group of stage i + 1. The j-th

crossbar in this group is mapped (lined up) to the j-th cross-
bar of the corresponding σi(n)-group of stage i under this
lining-up operation; see Figure 4. Then the only difference
is that before lining up, the bit permutation σi maps σi(n)-
groups to σ−1

i (n)-groups, while after lining up, the mapping
is from ui-groups to ui-groups. Note that the mapping from
ui-groups to ui-groups corresponds to the bit permutation
(ui n). After lining up, σ−1

i (n)-groups of stage i + 1 become
σi(n)-groups. Because σi+1 maps σ−1

i+1

(
σ−1

i (n)
)

to σ−1
i (n)

and σ−1
i+1(σi(n)) to σi(n), swapping bit σ−1

i (n) with bit σi(n)

corresponds to applying
(
σ−1

i+1

(
σ−1

i (n)
)
σ−1

i+1(σi(n))
)

on σi+1.
Thus, after lining up, Gi+1 corresponds to the bit permutation(
σ−1

i+1

(
σ−1

i (n)
)
σ−1

i+1(σi(n))
) ◦ σi+1. ■

By Lemma 2, we know that in every Gi of a BPT network,
the links go from ui-groups to vi+1-groups for some ui, vi+1.
The lining-up operation enables us to permute the crossbars of
stage i+1 so that the links go from ui-groups to ui-groups. For
example, in Figure 4, the links go from 2-groups to 1-groups.
After lining up the stage-(i + 1) crossbars, the links go from
2-groups to 2-groups.

Theorem 4. Consider an s-stage BPT network. By permut-
ing the crossbars of stage 2, 3, . . . , s, each Gi corresponds

0 0

0 1

1 1

1 0

i i+1

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

FIG. 4. Lining up stage-(i + 1) crossbars.

NETWORKS—2005 173

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

FIG. 5. (a) Before lining up and (b) after lining up.

to a bit permutation that maps u′
i-groups to u′

i-groups,
i = 1, 2, . . . , s − 1.

Proof. We prove this theorem by induction on s. This
theorem is trivially true for s = 2 because we can per-
mute the crossbars of stage 2 to line up with their mates in
stage 1. Then G1 corresponds to a bit permutation which maps
u1-groups to u1-groups. Suppose this theorem holds for up
to s − 1 stages. We now prove the result for s stages. Again,
permute the crossbars of stage 2 to line up with their mates
in stage 1. By Lemma 3, G2 corresponds to a bit permutation.
Thus, we may apply induction on this (s − 1)-stage BPT net-
work such that Gi is characterized by a bit permutation that
maps u′

i-groups to u′
i-groups, i = 1, 2, . . . , s − 1. ■

Because BPT = BP, the above characterization is also
a vector characterization of a BP network, but our proof is
simpler than the original proof in [5]. Recall that an s-stage
network is a BP network if for every Gi, the links always go
from ui groups G′ of stage i to vi+1 groups G′′ of stage i+1 for
some ui, vi+1, where G′′ is a permutation of G′. If we drop the

requirement that G′′ is a permutation of G′, then the lining-
up operation would not yield a vector characterization. See
Figure 5 as an example. In Figure 5(a), the links in G1 go from
1-groups to 2-groups and the links in G2 go from 1-groups
to 3-groups. In Figure 5(b), the links in G1 go from 1-groups
to 1-groups, but the links in G2 do not go from u-groups to
u-groups for any u.

3. THE d P UB CLASS

We now show that neither dP ⊆ UB nor vice versa; hence,
the definition of dPUB makes sense. Figure 6(a) shows a
2P network, which is not a UB network because C reaches
{C′, D′, F ′, G′} and E reaches {C′, E′, F ′, H ′}; the two sets
intersect but are not identical. Figure 6(b) shows a UB net-
work, which is not a 2P network because G1,3 has three
components.

We first quote a result of [5].

Theorem 5. Suppose an s-stage d-nary BP network has
dn inputs, dn outputs, and is characterized by the vector

C

D

E

F

G

H

C

D

E

F

G

H

FIG. 6. (a) A 2P network and (b) a UB network.

174 NETWORKS—2005

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

FIG. 7. A dPUB network that is not a BP network.

(u1, u2, . . . , us−1), which contains k distinct elements. Then
the network has dn−1−k components.

Corollary 6. BP ⊆ dP.

Proof. It is not difficult to see that every subnetwork
Gi,j of a BP network is still a BP network. By Theorem 5,
the number of components in Gi,j is a power of d. Because
i, j are arbitrary, the network is in dP. ■

Theorem 7. BP ⊆ UB.

Proof. Consider an s-stage BP network characterized
by (u1, u2, . . . , us−1). Let v be a crossbar in stage i, which
reaches a set Vj(v) of crossbars in stage j. Then Vj(v) con-
sists of crossbars whose labels are the same in bits in the set
I = {1, 2, . . . , n − 1} \ {ui, ui+1, . . . , uj−1}. Let v′ be another
crossbar in stage i. If v′ differs from v in a bit in I , then clearly,
Vj(v′) ∩ Vj(v) = ∅; if not, then Vj(v′) = Vj(v). Because
i, j, v, v′ are arbitrary, the network is in UB. ■

Theorem 8. BP ⊂ dPUB.

Proof. That BP ⊆ dPUB follows from Corollary 6
and Theorem 7. That the containment is strict follows from
Figure 7 (crossbars 00 and 11 in stage 2 are connected to
crossbars 00 and 11 in stage 3; so, the links from stage 2
to stage 3 do not go from ui-groups to vi+1-groups for any
ui, vi+1). ■

Theorem 9. dPUB ∼ BP.

Proof. Because dPUB ⊃ BPT , it suffices to prove that a
dPUB network is equivalent to a BP network. We prove this
by induction on the number s of stages.

(1) s = 2. Suppose v of stage 1 is connected to the set V2(v).
Let v′ be another crossbar in stage 1 connected to a given
w ∈ V2(v). By the UB property, V2(v′) = V2(v). Because
there are d − 1 choices of v′ from w, these v′ together
with v form a d × d complete bipartite graph Kd,d with
V2(v). Further, V2(v′′) ∩ V2(v) = ∅ for any v′′ �= v, v′
(note that there are d − 1 choices of v′). Because v is
arbitrary, G1,2 consists of dn−2 Kd,d whose equivalence
to a BP network is clear.

(2) s = 3. By the dP property, the network has dn−k com-
ponents for some 1 ≤ k ≤ n. Recall that from (1) the

subgraphs G1,2 and G2,3 must each consist of dn−2 Kd,d .
Hence, k = 1 is impossible.
For k = 2, then no two Kd,d in G1,2 can be connected
through G2,3. Therefore, G1,3 must consist of dn−2 copies
of the concatenation of two Kd,d , with the outputs of the
former identified with the inputs of the latter (see Fig. 8).
Clearly, subnetwork G1,3 is equivalent to a BP network.
For k = 3, first suppose G1,3 is obtained by connecting
each d-set D = {D1, D2, . . . , Dd}, where each Di is a
Kd,d in G1,2, into one component in G1,3. Note that the
connection is done by a d-set D′ = {D′

1, D′
2, . . . , D′

d} of
Kd,d in G2,3. If two crossbars of the same Di are connected
to a D′

j , then one member of D\Di will not be connected to
D′

j , violating the UB property. Therefore, the d crossbars
in a Di must go to distinct D′

j , or all D′
j . Because we

can permute the stage-2 crossbars in a D arbitrarily, and
independently for each D, the stage-2 crossbars in each
D can be ordered such that the k-th one goes to the k-th
D′, which is clearly a BP network. Figure 9 illustrates
how to permute.
Suppose G1,3 is obtained otherwise. There must exist a
d′-set of Kd,d , d′ > d, in G1,2 connected in G2,3 through a
d′-set of Kd,d in G2,3. Note that an input in this component
touches only d2 among the dd′ outputs. Hence, there must
exist another input reaching some, but not all, of these
d2 outputs, violating the UB property.
For k ≥ 4, then the situation described in the last
paragraph must also happen.

(3) s ≥ 4. Consider the two subnetworks G1,3 and G2,s. By
induction, G1,3 can be represented by a vector (u1, u2) and
G2,s by

(
u′

1, u′
2, . . . , u′

s−2

)
. By Lemma 3, we can permute

the crossbars in stage k, 2 ≤ k ≤ s, such that u′
1 = u2 and

u′′
k = u′

k−1 for 3 ≤ k ≤ s − 1. Therefore, the subnetwork
G1,s is represented by the vector

(
u1, u2, u′′

3, . . . , u′′
s−1

)
,

that is, G1,s is a BP network. ■

Corollary 10. Two dPUB networks are equivalent if the
characterization vector of one can be obtained from the other
through a permutation.

Figure 6(a) gives an example of a dP network, which is
not equivalent to a UB network. Hence, dP

� UB. Because
UB ⊃ BP, Figure 6(a) is also an example of a dP network,
which is not equivalent to a BP network. Therefore, the UB
condition cannot be dropped from Theorem 9. Because BP ∼
dPUB, it follows that dP

� dPUB. Figure 6(b) gives a UB
(or strict buddy) network which is equivalent to neither a dP

nor a BP network. Hence, UB � BP. Because BP ∼ dPUB,
it follows that UB � dPUB.

FIG. 8. Concatenation of K2,2.

NETWORKS—2005 175

Permute the bottom 2 crossbars
in stages 2 and 3

FIG. 9. A permutation to achieve BP.

4. CONCLUSIONS

We established the containment relation given in (1.1),
and the equivalence relation given in (1.2). By so doing, we
achieve three desirable generalizations:

(1) We make the logical extension of the buddy network
and the strict buddy network to the universal buddy
network: a network with more structure but which still
includes all banyan-type networks and their extra-stage
versions.

(2) We generalize the notion of BP to dPUB, which is a larger
class, yet it preserves all connecting properties of BP.

(3) We generalize P(∗, ∗) which is defined only for n =
logd N stages to general s stages.

The equivalence relations we established also help in
simplifying some existing proofs:

(1) The proof of a vector characterization of BP in [5] is
quite complicated. We gave a simple proof of a vector
characterization of BPT and the equality BPT = BP
makes the proof valid for BP also.

(2) The proof that P(∗, ∗) characterizes the Baseline-
equivalent class of banyan-type networks is very long,
as admitted in [2]. Our proofs of Theorem 9 and
Corollary 10 are much shorter and more general.

ACKNOWLEDGMENTS

The author thanks H. Zhou for providing a counter-
example to a conjecture prior to our discovery of Theorem 9.
We also appreciate the comments of referees that led to a
better version of this article.

REFERENCES

[1] D.P. Agrawal, Graph theoretical analysis and design of mul-
tistage interconnection networks, IEEE Trans Comput 32
(1983), 637–648.

[2] J.C. Bermond, J.M. Fourneau, and A. Jean-Marie, Equialence
of multistage interconnection networks, Inform Proc Lett 26
(1987), 45–50.

[3] J.C. Bermond, J.M. Fourneau, and A. Jean-Marie, A graph
theoretical approach to equivalence of multistage intercon-
nection networks, Disc Appl Math 22 (1988/89), 201–217.

[4] T. Calamoneri and A. Massini, Efficient algorithm for check-
ing the equivalence of multistage interconnection networks,
J Parallel Distrib Comput 64 (2004), 135–150.

[5] G.J. Chang, F.K. Hwang, and L.D. Tong, Characterizing bit
permutation networks, Networks 33 (1999), 261–267.

[6] D.M. Dias and J.R. Jump, Analysis and simulation of buffered
delta networks, IEEE Trans Comput C-30 (1981), 273–282.

[7] Q. Hu, X. Shen, and J. Yang, Topologies of combined
(2 log N − 1)-stage interconnection networks, IEEE Trans
Comput 46 (1997), 118–124.

[8] F.K. Hwang, The mathematical theory of nonblocking
switching networks, World Scientific, Singapore, 2004.

[9] S.-Y.R. Li, Algebraic switching theory and broadband appli-
cations, Academic Press, New York, 2001.

[10] D.S. Parker, Notes on shuffle-exchange type of networks,
IEEE Trans Comput 29 (1980), 213–222.

[11] D.J. Shyy and C.T. Lea, Log2(N , m, p) strictly nonblocking
networks, IEEE Trans Commun 39 (1991), 1502–1510.

[12] H.J. Siegel and S.D. Smith, Study of multistage SIMD inter-
connection networks, Proc 5th Ann Symp Comput Arch, Palo
Alto, CA, 1978, pp. 223–229.

[13] C. Wu and T. Feng, On a class of multistage interconnection
networks, IEEE Trans Comput 29 (1980), 694–702.

176 NETWORKS—2005

