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Adaptive Fuzzy Power Control for 
CDMA Mobile Radio Systems 

Po-Rong Chang, Member, 

Abstruct- This paper introduces a new application of fuzzy- 
logic control (FLC) theory to the power control in a direct- 
sequence, code-division multiple-access (DSICDMA) cellular sys- 
tem over the mobile fading radio channels. Power control is 
essential in DS/CDMA to compensate for the differing received 
powers due to both the slowly varying long-term and fast varying 
short-term fading processes and co-channel interference. The 
conventional feedback power control algorithms allow the base 
station to send a power command to either raise or lower 
each user transmitting signal power level by a fixed power step 
and then keep the received powers almost equal. The fixed-step 
approach is actually an integral control whose power increment 
is determined according to the bang-bang-like control policy. 
However, this control scheme suffers from poor system stability, 
large overshoot, and long rise time. To tackle this difficulty, a 
fuzzy proportional-plus-integral (PI) control, whose input vari- 
ables are the received power error and error change, is introduced 
to determine each user’s transmitting power in order to maintain 
simultaneously all users’ signal power received at the base station 
nearly equal and to achieve better system stability and control 
performance. The derivation of the fuzzy PI control has been 
carried out by analyzing both the closed-loop steady state behav- 
ior and transient response of the system with a priori knowledge 
of the dynamics of the CDMA mobile fading channels. In fuzzy 
control, linguistic descriptions of actions in controlling a process 
are represented as fuzzy rules. This fuzzy-rule base is used by 
an inference mechanism in conjunction with some knowledge 
of the states of process in order to determine control actions. 
These control actions would lead to the fast rise time, minimum 
overshoot, and small root-mean-squared (rms) tracking error. 
Furthermore, the additional advantages of fuzzy PI control over 
conventional control theories are increased robustness despite 
interference and the ability to handle the time-delay process 
without system degradation since there is usually a latency 
between each user and base station. Simulation results show that 
the fuzzy PI power control provides much smaller rms tracking 
error and better traffic capacity performance compared with 
the fixed-step control, especially in poor co-channel interference 
conditions. 

I. INTRODUCTION 

ECENTLY, the potential of greatly increasing the traffic R capacity of digital cellular mobile and personal radio 
communication systems with direct-sequence, code-division 
multiple-access (DS/CDMA) has been recognized [ 11, [2]. 
It has been shown that perfect transmitter power control 
can provide up to 20 x the increase in capacity, com- 
pared with conventional frequency-division multiple-access 
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(FDMA) mobile systems [l]. A difficult problem in applying 
the DSKDMA to cellular mobile radio, however, is the wide 
variation in channel power level due to the signal fading of 
the mobile environment. These channels are also affected by 
shadowing, a slower power loss phenomenon due to physical 
structure blocking the transmission path between the base 
station and mobile units. Also, as a mobile unit moves toward 
or away from a base station, the received power from it 
increases or decreases. Hence, at a DSKDMA base station, 
the received power of a nearer user can be much bigger 
than that of a farther user, causing interference and hence 
degrading the communication quality for the farther user. This 
is known as the near-far problem. For multicell architecture, 
the capacity of a DSKDMA cellular system is limited by the 
total interference generated by all the other users within the 
desired cell and from adjacent cells. Power control is thus 
a major design criteria in the DS/CDMA systems for two 
reasons: 1) to make the received power level less dependent 
on the fading and shadowing effects of the transmission 
channel and 2) to combat the near-far problem and co-channel 
interferences. 

A number of power control methods have been proposed 
to minimize the effects of fading, shadowing, and near-far 
problems. The well-known average power control [3] that 
attempts to eliminate the slowly varying near-far and shad- 
owing effects will be affected by the fast multipath fading 
process, even assuming that every user moves at constant 
speed. To tackle this difficulty, a fixed-step power control that 
can accommodate the effects of rapid fading is proposed by 
[3]. The fixed-step power control is performed at a higher 
rate than the rate of multipath fading. It is suggested that the 
power increment command updating rate is higher than 10 x 
the maximum fading rate. The power increment is determined 
on the basis of the deviation between the desired nominal 
power level and the signal level received at the base station. 
The user transmitting power is then created by performing 
the sum of the past determined power increments. From the 
above control actions, it is concluded that the fixed-step control 
is a slight modification of the integral control. Viterbi et 
al. [4], however, applied the same concept to their power 
control scheme, in which the power increment is determined 
according to a bang-bang-like control policy. Unfortunately, 
[5] showed that the integral control may make it possible to 
become unstable since the integrator is actually an unstable 
system. Moreover, the bang-bang control would yield the large 
overshoot, long rise time, and large steady-state error when its 
precalculated switching curves suffer from modeling error and 
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noise [6],  [7]. Sripada et al. [7] proposed FLC to overcome the 
drawbacks of both the bang-bang control and integral control. 
In FLC [8]-[lo], the measured variables are represented as 
fuzzy variables. A representation of the control signals as fuzzy 
variables is computed from the measurements using fuzzy 
logic. The essential part of FLC is a set of linguistic control 
rules related by the dual concept of fuzzy implication and 
the compositional rule of inference. In essence, FLC provides 
an algorithm that can convert the linguistic control strategy 
based on the characteristics of mobile radio channels into a 
power control strategy. By using the defuzzification, the fuzzy 
control decisions are converted to a crisp power command 
that is used to adjust the level of power step. To improve 
the controller performance further, a fuzzy proportional-plus- 
integral (PI) control [7], [l l] ,  [ZO], whose input variables 
are error and error change, is introduced to determine each 
user transmitting power in order to equalize all signal powers 
received at the base station. The proportional term of fuzzy PI 
control will effectively inciease bandwidth, improve transient 
response, and eliminate the system instability. Its integral term, 
however, forces the steady-state error to zero. The fuzzy PI 
control has been derived by investigating both the transient 
step response and steady-state behavior of the system with a 
priori knowledge of the dynamics of the mobile fading radio 
channels. The fuzzy PI control rule base can be specified 
through desired transient responses, linguistically expressed 
as fast rise time, minimum peak overshoot, and almost zero 
steady-state error. In Section IV, a set of lookup tables based 
on control rules is introduced to perform the fuzzy PI power 
control at a sampling rate that is higher than 10 x the fading 
rate. Two lookup tables will be considered in the mask ROM 
(read-only-memory) implementation of the fuzzy PI controller 
in order to achieve the high CDMA power control sampling 
rate. A coarse table is used to significantly reduce large 
power deviations. The other table carries out fine tuning when 
deviations are relatively small. These two decision tables are 
combined to shorten the settling time and to yield the minimum 
steady-state error. In Section V, simulation results show that 
the fuzzy PI power control can achieve better performance 
than the conventional feedback power control approach. 

11. ADAPTIVE FUZZY-POWER REGULATORY 
CONTROL FOR CDMA SYSTEMS 

The power control for a CDMA system is used to equalize 
the absolute signal powers of CDMA users received at each 
base station. Thus, each received signal power will track a 
nominal step response r (t) = T d ,  t 2 0. If r d  = 0, the problem 
is called a regulator problem; if T d  # 0, it is a special case 
of the asymptotic tracking problem [SI. For simplicity, the set 
point Td is usually set to be zero in decibels for the CDMA 
power-control problem. The conventional controllers used in 
the regulatory problem are the commonly used time-optimal 
bang-bang controller and PI controller [5], [7]. The bang-bang 
control policy involves switching the control input alternately 
from one extreme to another, at precalculated switching times. 
The control input is used to drive the process output to a 
desired set point. Viterbi et al. [4] utilized the bang-bang 

control policy to determine the sign of each fixed transmitting- 
power increment. The precalculated switching times, however, 
are very sensitive to modeling error and noise. This would lead 
to large overshoot, long rise time, and large steadystate error 
[6], [7]. Sripada et al. [7] propose an FLC to improve the 
performance of the bang-bang control policy and to adjust the 
switching parameters on line. 

An alternative approach to regulatory control is PI control. 
Philips and Nagle [5] showed that the purpose of a PI 
controller is the same as that of a phase-lag controller, i.e., 
to increase stability margins and to reduce steady-state errors. 
In other words, it can allow for increases in steady-state 
accuracy without significantly increasing instability under any 
conditions. In general, however, phase lag (the integral part) 
tends to destabilize a system, since the integrator is an unstable 
system [SI. Observing the fixed-step power control proposed 
by [3], one may find that the fixed-step control is purely an 
integral control with a hard-limit decision element that often 
makes it possible to become unstable. Thus, a proportional 
term should be added to the fixed-step or integral control in 
order to eliminate system instability, but it nevertheless has 
certain limitations. For example, the rise time of the system 
using PI control could be reduced by increasing the controller 
gain. This results, however, in increased overshoot. Facing 
this problem, a fuzzy PI control is proposed to overcome this 
difficulty. The conventional approach to fuzzy PI controller 
design is to generate a fuzzy rule base based on the system 
states of error and error change and the dynamics of the 
process, thus producing a two-input, single-output control rule 
base. This provides fast rise time and minimal peak overshoot, 
but with a possible oscillatory behavior around the set point 
of a magnitude comparable to the set width of the linguistic 
qualifier ‘‘almost zero” [7], [ l l] ,  [12]. Furthermore, [lo] has 
made an interesting comparison between a conventional PI 
controller and a fuzzy PI controller. The research showed that 
the fuzzy PI controller is less sensitive to large parametric 
changes in the process and is comparable in performance to 
the conventional PI controller for small parametric changes. 

Fig. 1 illustrates the architecture of the power control system 
in conjunction with the fuzzy logic PI controller. Notice that all 
quantities are in decibels. Each user transmits a signal power 
pk (dB) that is updated by a step Ap (dB) every Tp seconds 
according to the fuzzy PI control rules of the form 

R, : IF e is A, and Ae is B; THEN Ap is C; (1) 

where (A, ,  B,, C,) are linguistic terms defined in the next 
subsection, Tp is the power control sampling period, and two 
input variables e and Ae of the fuzzy PI logic controllei. 
specify the error and error-change signals, respectively. Error 
equals the set point minus the signal power level (channel 
output) received at the base station. Error change equals the 
current received power error minus the last received power 
error. In the mathematical sense, the user transmitting power 
at the kth interval is given by 

P; = + A ~ ~ ~ ~ ( e l c - l - 1 ,  Aek-l-1) (2) 

where ApFLc(e,Ae) is the inptlt-output relationship of a 
fuzzy PI controller, and the extra loop delay IT, ( I :  integer) 
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Set Point 

Fig. 1. Adaptive fuzzy power control system for CDMA mobile radio channels. 

represents the processing time and the two-way signal prop- 
agation delay between mobile user and base station. During 
the lcth period, the signal power received at the base station 
is p i  (=p: + g k  + n i )  (dB), where p;  (dB) is the received 
power, g k  (dB) is the channel link gain due to path loss, 
multipath fading, and shadowing, and ni denotes the noise 
resulting from total interference from all the other users within 
and outside the desired cell. Since the interference power in 
decibels is not additive, ni is then equal to {101og(PlGk + 
Ik) - 1010g(PLGk)} (dB) = 1olog(l + &) (dB) and 
will become & . A (dB) (Le., ln(1 + z) x z) when 

(W) instead of p i  and Q k ,  and Ih represents the additive 
total interference power in linear units (W). This received 
signal power is compared with a desired set point level at 
the base station. For simplicity, the desired nominal level is 
assumed to be 0 dB. After the fuzzy PI control, the power 
increment command is transmitted back to the user over the 
return channel (forward link). 

>> Ik where Pk 3 and Gk are expressed in linear units 

A. Basic Architecture of FLC Systems 

The basic configuration of FLC comprises four principle 
components: a fuzzification interface, a fuzzy rule base, an 
inference engine, and a defuzzification interface. The fuzzi- 
fication interface converts the input values of both the error 
and error change into suitable linguistic values that may be 
viewed as terms of fuzzy sets. The fuzzy-rule base comprises 
a knowledge of the application domain and the attendant 
control goals. It consists of a fuzzy data base and a linguistic 
(fuzzy) control-rule base. The fuzzy data base is used to 

define linguistic control rules and fuzzy data manipulation in 
FLC. The control-rule base characterizes the control goals and 
control policy by means of a set of linguistic control rules. 
The inference engine is a decision-making logic mechanism 
of FLC. It has the capability of simulating a mobile radio 
channel based on fuzzy concepts and of inferring fuzzy control 
actions employing fuzzy implication and the rules of inference 
in fuzzy logic. The defuzzification interface converts fuzzy 
control decisions into crisp, nonfuzzy (i.e., physical) control 
signals. These control signals are applied to adjust the level of 
power step in order to equalize the signal powers of all users 
received at a base station. 

A fuzzy set A in a universe of discourse, U is characterized 
by a membership function mA, which takes values in the 
interval [0,1]; that is, m~ : U -+ [0 ,1] .  Thus, a fuzzy set A 
in U may be represented as a set of ordered pairs. Each pair 
consists of a generic element u and its grade of membership 
function; that is, A = { (u ,m~(u) ) Iu  E U } .  A linguistic 
variable is characterized by a quintuple (z, T(E) ,  U, G ,  A?) in 
which z is the name of the variable; T(E)  denotes the term 
set of z, that is, the set of names of linguistic values of E ,  

with each value being a fuzzy variable denoted generically 
by x and ranging over a universe of discourse U ,  which is 
associated with the base variable u; G is a syntactic rule 
for generating the name X of values of z; and M is a 
semantic rule for associating with each X its meaning, M ( X ) ,  
which is a fuzzy subset of U .  A particular X ,  that is a name 
generated by G, is called a term. It should be noted that the 
base variable u can also be vector-valued. If E indicates the 
linguistic variable for the received power error of the power 
control system, then its term set T ( z )  may be chosen as {large 
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Fig. 2. Service-area representation. 

positive (LP), medium positive (MP), small positive (SP), zero 
(ZE), small negative (SN), medium negative (MN), or large 
negative (LN)}. In addition, e represents the base variable 
for the power error in dB with its own universe of discourse 
E = {el - 18 dB 5 e 5 18 dB}. Thus, M may assign a fuzzy 
set to the name of any term belonging to T ( x ) ,  for example, 
& f ( M P )  = { ( e , m M p ( e ) l e  E E }  when X is MP, where 
m M p ( e )  is the trapezoidal-shaped function shown in Fig. 3. 

The fuzzification interface in Fig. 1 is a mapping from 
an input space to fuzzy sets in a certain input universe of 
discourse. So for a specific value uZ(t) at time instant t ,  it is 
mapped to the fuzzy set TJ% with degree mi, (uz(t))  and to the 
fuzzy set T:% with degree m:% (uz( t ) ) ,  and so on, where Ti- is 
the name of j th term or fuzzy-set value belonging to the term 
set T(x,) .  In the mobile radio power-control system, there 
are two input base variables, i.e., u1 and u2, and one output 
base variable, u corresponding to e,  Ae and A p ,  respectively. 
Their corresponding term sets and membership functions will 
be determined in Section IV. 

In FLC, the dynamic behavior of a fuzzy system is char- 
acterized by a set of linguistic description rules based on the 
fuzzy rule base, which contains a set of fuzzy-logic rules R. 
For a multi-input/multi-output (MIMO) system 

R = (R~I,o,R~I,o, . . . lR~I , ,}  (3) 

where the j th fuzzy-logic rule is 

R 3 , I M o  = IF(x1 is Ti: and . . .  and x, is Ti?) 

THEN (y1 is Tilf and . . . and yl is Til;) (4) 

where 1 5 j :  5 p,, 1 5 j,” 5 qt, p ,  and qt denote the 
number of fuzzy-set values of T(x,)  and T(yt), respectively, 
1 5 s 5 m and 1 5 t 5 1. 

Since the outputs of a MIMO rule are independent, the 
general structure of a MIMQ fuzzy system can be represented 
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Fig. 3. Membership functions for the fuzzy set values of (a) error, (b) error 
change, and (c) power increment. 

as a collection of multi-inpudsingle-output (MISO) fuzzy 
systems by decomposing the above rule into I subrule, with 
Tyt as the single consequence of the ith subrule. For clarity, 
we shall consider a MISO system in the following analysis. 

The inference engine in Fig. 1 is to match the precondi- 
tions of rules in the fuzzy control rule base with input state 
linguistic terms and to perform implication. The procedure 
of implication is called the correlation-minimum inference or 
conflict-resolution process. 

Note that the result of the inference process is a membership 
function curve. Before feeding the signal to the plant, we 
need a defuzzification process to get a crisp decision; the 
defuzzifier block in Fig. 1 serves this purpose. Among the 
commonly used defuzzification strategies, the center of area or 
fuzzy centroid-defuzzification method yields a superior result 
[ 131. Let cj be the jth sample support value in the universe 
of discourse, Y, at which the membership function, my(cJ), 
represents its membership value. The defuzzification output 
(i.e., power increment) is, therefore, calculated by 

(5 )  

Notice that c is called a support value if my(( )  > 0. 

111. CDMA SYSTEM MODEL 
Fig. 2 illustrates the service area that is partitioned into a 

number of hexagonally shaped cells. In each cell, a base sta- 
tion, equipped with an m-branch antenna diversity combining, 
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is placed at the center of the cell, and the mobile unit locations 
are uniformly distributed over the cell area. For each base 
station, the CDMA system model consists of a number of K 
users, each having a mobile unit, all operating simultaneously 
through a channel due to path loss, log-normal shadowing, 
and multipath fading. 

A. Received Power-Signal Model 

The received signal is affected by two types of fading: long- 
term fading due to shadowing and path loss and short-term 
fading due to multipath propagation. Generally, the received 
power, P, (W) at the base station can be expressed as 

P, = G ' Pt 

where Pt is the transmitted signal power and G is the link 
gain due to channel model defined by 

(6) 

G = L , S  (7) 

where L and S are the long-term and short-term fadings, 
respectively. If Pt, P,, and G can be expressed in dB units 
and are denoted by p t ,  p r ,  and g, respectively, then 

pr = g + p t .  (8) 

The long-term fading L is mainly caused by the terrain 
configuration and the man-made environment between the base 
station and the mobile unit [14]. The commonly used model of 
L is a product of ath power of the distance and a log-normal 
random variable whose standard deviation is o dB and can 
be expressed 

L = AT-" . 10c/lo (9) 

where A is a constant that depends on the parameters of 
transmitter and receiver, T is the distance between the base 
station and the mobile unit, a is called the path loss exponent, 
and [ is a Gaussian random variable with zero mean and 
standard deviation 0. In addition, the typical values of o and 
Q are 8 dB and 4, respectively. 

The long-term fading received signal is also called the local 
mean signal, which has a probability density function (pdf) 
defined by 

where oLis the standard deviation (in natural log units) of L 
and L is the area mean signal at a receiver located at distance 
T from a transmitter and equals Ar-". Since the short-term 
fading S arises from the multipath propagation, [15] showed 
that the distribution of S can be derived from the Nakagami-m 
distribution of the path strength directly where the base station 
receiver uses m-branch antenna diversity combining. The 
fading on each branch is independently Rayleigh-distributed 
with a Doppler frequency spectrum corresponding to a uniform 
path arrival angle distribution. As a result, the distribution of 
the short-term fading for mth order diversity is given by 

1 2m 2m p ( S )  = -(-) S"-lexp(--s) (11) 
r ( m )  0 0 

where l/m is the amount of fading, l / m  = u u ~ - [ u ~ ] / E [ ( u ~ ) ] ~ ,  
R = E[a2], and a is the received path strength due to the 
multipath fading. Sometimes, m may be called the diversity 
or'der. 

B. Reverse-Link Multiuser Inte$erence Model 

Let P j k ( T 3 k )  denote the received power at the desired base 
station due to a transmission by the kth mobile interferer 
(inside the j th cell) at distance T j k  from the desired base 
station. The total interference power, I (W) from all the 
interfering mobile units within and outside the desired cell 
is then given by 

K(2)  
KO-1 12 1 

k = l  3 = 1  k = l  3=1 k = l  
(12) 

where KO is the number of active mobile units in the desired 
cell, which is the center cell in Fig. 2, and IS?) is the 
number of active mobile units in cell j of tier n(n = 
1,j  = 1 , 2 , . . . , 6 ; n = 2 , j  = 1 ,2 , . . . , 12 )  ofinterferingcells 
surrounding the desired cell. The first term on the right-hand 
side of (12) represents the interference contribution from the 
other (KO - 1) mobile units inside the desired cell. Without 
loss of generality, the index of the desired cell is set to 
zero and also for the simplicity of notation, P,',(,) = P l ( . )  
and  TO^ = T k .  The second and third terms in (12) are the 
interference contributions from the mobile units inside the cells 
along the first and second tiers. 

C. Outage Probability Analysis 

The outage probability is usually defined as the probability 
of failing to simultaneously achieve a signal-to-noise (thermal) 
ratio and a signal-to-interference (co-channel) ratio sufficient 
for quality communications [16], [17]. In a multicell CDMA 
system where the same spectrum is reused in every cell, it 
is reasonable to assume that the co-channel interference is 
much greater than thermal noise. Under this condition, the 
outage probability becomes the probability failing to achieve a 
required SIR threshold, SIRTh, for quality communications, 
and is defined by 

outage probability b P,{SIR < S I R T ~ }  (13) 

where the received SIR at the base station of the desired cell 
is given 

SIR(in linear units) = P,"/I (14) 

or 

SIR(in decibels) = p," - i (15) 

where P," (W) or p," (dBW) is the signal power received at 
the base station due to a transmission by the desired mobile 
unit and 1 (W) or i (dl3W) is the total interference power 
received at the base station due to transmissions by all the 
interfering mobile units. It should be mentioned that the total 
interference power in decibels, i, is different from n I ,  defined 
in Section 11. Notice that the outage probability of (13) is 
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computed at a given position of the desired mobile unit and 
those of the interfering mobile units. However, the quality of 
communications in a cellular system should be characterized 
by a conditional outage probability (conditioned on the number 
of active users per cell), p,, which is obtained by many 
different mobile positions 

pc  = J’ J’ PT{SIR < SIRTh}f(z,Y) dxdy (16) 

(x,y)ERC 

where f ( z , y )  denotes the pdf for positions of the desired 
mobile unit as well as the interfering mobile units. (z,y) 
represents the rectangular coordinate of each mobile position, 
and R, denotes the domain containing all the cells in the 
cellular system, for example, 19 cells for Fig. 2. 

This conditional outage probability is usually recognized as 
a main criterion for the traffic capacity and communication 
quality of CDMA systems since the capacity is defined as 
the maximum number of users per cell for which the outage 
probability is less than a specified value [18]. 

Iv .  IMPLEMENTATION OF FUZZY PI POWER CONTROLLER 

Since the power-control command-updating rate must be 
significantly higher than 10 x the maximum fading rate, it is 
expected to develop a high-speed hardware to implement our 
fuzzy PI controller. Fortunately, there are a lot of very large 
scale integration (VLSI ) chips that have been designed for 
FLC’s [19], [20] in order to achieve the real-time execution. 
Jamshidi [20] uses the Togai fuzzy chip to implement the fuzzy 
PI controller for air conditioning systems, such that it can 
track the desired temperature of the chamber. An alternative 
approach to shorten the running time of the fuzzy PI controller 
is to construct a set of lookup tables based on control rules and 
then to program them onto mask ROM chips. The fuzzy PI 
control rules for CDMA systems will be derived in Section IV- 
A. The procedure for constructing their associated lookup 
tables is presented in Section IV-B. 

A. Derivation of Fuzzy Control Rules 

The selection of the fuzzy control rules has a substantial 
effect on the performance of FLC. There are two principal 
approaches to the derivation of fuzzy control rules. These two 
methods are not mutually exclusive, and it seems likely that 
a combination of them would be necessary to construct an 
effective method for the derivation of fuzzy control rules. 
Prior to the derivation of fuzzy control rules, the fuzzy- 
set values or terms associated with the two input linguistic 
variables, e and Ae, and the output control linguistic variable, 
Ap, should be characterized, where e, Ae, and Ap are the 
received power error, power-error change, and transmitted 
control power increment, respectively. The universes of dis- 
course for e, Ae, and Ap are assumed to be E={el- 18 dB 5 
e 5 18 dB}, AE = {Ael - 12 dB 5 Ae 5 12 dB}, and 
A P  = {ApI - 6 d B  5 Ap 5 6 dB}, respectively. Their 
associated term sets, T(E), T(AE), and T(AP) are identical 
and given by {LP (large positive), MP (medium positive), SP 
(small positive), ZE (zero), SN (small negative), MN (medium 

negative), and LN (large negative) ); hence, there are 7 x 7 
x 7 = 343 possible combinations of the terms generating a 
maximum possible 343 rules of the form (1). Furthermore, the 
diagrammatic representation of those term sets, T(E), T(AE), 
and T(AP) are illustrated in Fig. 3(a)-(c), respectively. Their 
associated membership functions are the trapezoidal-shaped 
functions commonly used in real-time, fuzzy target-tracking 
control systems [23]. Kosko [23] showed that the lengths of the 
upper and lower bases in the trapezoidal membership functions 
will severely affect the tracking performance. A rule used to 
achieve the better performance is that adjacent membership 
functions should overlap approximately 25%. In other words, 
the fuzzy controller attained its best performance when the 
ratio between the upper and lower bases is chosen at about 
50%. 

The first approach is a heuristic method in which a collection 
of fuzzy control rules is formed by analyzing the behavior 
of a controlled process. The control rules are derived in 
such a way that the derivation from a desired state can be 
corrected, and the control objective can be achieved. However, 
the derivation is purely heuristic in nature and relies on 
the qualitative knowledge of process behavior. The second 
approach, proposed by [9], is essentially a rule-justification 
method. It involves tracking a desired closed-loop second- 
order system trajectory in a phase plane across the domain 
of the FLC so that the system trajectory can terminate on 
a desired state. The phase plane methods have been proved 
very useful in analyzing the stability and system performance 
criterion (e.g., overshoot, rise time, and steady-state error) of 
linear and nonlinear second-order systems. This technique was 
modified by [21] by tracking the system trajectories through 
the linguistic phase plane instead of the real plane. It is known 
that the dynamic behavior of second-order systems is able to 
approximate a large class of practical systems [5]. Observing 
the typical fading process illustrated in Fig. 4, the envelope 
within region I can be modeled as a portion of the step 
response of a second-order system. In addition, the- envelope 
belonging to region 111 is also characterized by a portion of 
the step response of another second-order system with larger 
overshoot. In contrast to the envelope within regions I or 111, 
the envelope within region I1 shows the downward deep fade 
whose slope becomes negative infinity as it approaches the 
boundary between regions I and 11. Clearly, it cannot be mod- 
eled as any portion of the step response of simple second-order 
systems. From the above discussion, it is concluded that any 
fading process has the curves of two different primitive shapes, 
that is, the downward deep fades and the curves generated by 
second-order systems. In other words, a combination of these 
primitive curves can approximate the envelope of any fading 
process. The control actions for the fading process, therefore, 
are separately determined, based on the second-order systems 
and the behavior of downward deep fades. 

Fig. 5 shows the complete step response of an open-loop 
second-order process to be controlled, where the input vari- 
ables of the fuzzy PI controller are the error (e )  and error 
change (Ae). The output is the change of the process input 
(Ap). Typically, an expert would consider the crossover and 
maximudminimum points of the system step response and 
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Fig. 4. A typical fading power signal. 
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Fig. 5. 
~ ~ ( 5 1 ,  u3(9), b1(2), b2(6), b3(10), c1(3), cz(71, cs(ll),  and d1(4), d z ( O  
d3(12) denote the crossover points and extreme points. 

Open-loop response of the second-order process in which ai(l), 

suggest appropriate control actions at each point to generate a 
closed-loop response with minimum peak overshoot, fast rise 
time, and zero steady-state error. For example, at al(l), (e is 
LP and Ae is ZE) then a large positive control is required to 
drive the closed-loop response toward the set point generating 
an improvement in rise time. Notice that the rise time is 
the required time for the response to rise from 10 to 90% 
of its nominal set level [5];  whereas, at bl(2) (e is ZE and 
Ae is LN) to prevent large peak overshoot, an LN control is 
recommended. Continuing with the other maximudminimum 
intersection points, a control rule base can be readily generated 

Fig. 6. Verbalized fuzzy PI control responses. 

TABLE I 
FUZZY PI CONTROL RULE TABLE FOR DEALING WITH 

THE PRIMITIVE CURVES OF THE FADING PROCESS THAT 
CAN BE CHARACTERIZED BY SECOND-ORDER SYSTEMS 

Ae 

e 

in Table I. To ensure the zero steady-state error of the closed- 
loop system response, consider the following rule: 

Rl3 : IF e is Z E  and Ae is Z E  THEN Ap is ZE.  (17) 

This rule has caused the closed-loop response to converge 
a stable region around the set point with the set width of 
linguistic qualifier ZE. The consequent defuzzified controlled 
response is indicated in Fig. 6,  trace (i). The response is well 
damped but rather slow; this is not surprising since only 13 
of the possible 343 rules have been utilized. An improved 
response, trace (ii), can be achieved by deriving 11 additional 
rules (numbers 14-24 in Table I) based on the sign changes 
of both e and Ae between any two consecutive regions [SI. 
Lee [SI shows that rule 14 has the effect of shortening the rise 
time and rules 15-22 are used to decrease the overshoot of 
system’s response. 



I 232 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 45, NO. 2, MAY 1996 

12 { 8 

TABLE I1 
FUZZY PI CONTROL RULE TABLE FOR 

DEALING WITH THE DOWNWARC DEEP FADS 

~ Ae 

4 4 

e 

It should be noted that the signs of both e and Ae are 
positive within region I1 since the downward deep fade de- 
creases below the set point level rapidly. This implies that the 
system error is positive and increased. The appropriate control 
actions for each state variable pair ( e ,  Ae) in region 11 should 
be positive in order to reduce the error. The control rules are 
shown in Table 11. For example, an MP control is required 
to drive the response toward the set point when e is SP (or 
MP) and Ae is any positive linguistic qualifier. In addition, it 
should be mentioned that the MP control is selected to raise 
the transmitting signal power by a medium increment level and 
then to avoid producing large interferences to the other users. 
However, it requires a large positive (LP) control to quickly 
drive the response to set point when e is LP and Ae is any 
linguistic qualifier, since the present position of the response 
is very far from the set point. The reverse condition of the 
above rule is also employed in Table I1 and given by 

R : IF e is LN and Ae is any THEN A p  is LN. (18) 

In summary, the fuzzy control actions for the two primitive 
curves of any fading process are not mutually exclusive, and 
a combination of them would provide an appropriate control 
action for any condition of the fading process since the fading 
process can be characterized by a combination of these two 
primitive curves. 

B. Decision Table for Fuzzy-Logic Controller 

A decision table relating quantized measurements to crisp 
control actions can be generated off line using control rules in 
order to shorten the running time of the FLC. In other words, 
the calculations of fuzzification, correlation-minimum infer- 
ence, and fuzzy centroid defuzzification can be performed on 
a computer on the basis of the control rules. After the calcula- 
tions, each errorlerror-change pair will have its corresponding 

in the form of a lookup table. Basically, the decision table 
is based on the discretization of both a universe of discourse 
and its associated membership function. Table I11 shows the 
quantization levels of error (e) ,  error change (Ae), and control 

~ 

, 
I control input values. The decision table is stored in memory 

~ 

TABLE I11 
QUANTIZED ERROR, ERROR CHANGE, AND 
POWER INCREMENT (COARSE CONTROL) 

i 
4 2 

9 6 3 3 

power increment ( A p ) .  For example, the range of e, -18 dB N 

18 dB is mapped into 13 integer quantization levels, -6 N 6. 
A membership matrix table is a discretization of membership 
function and can be defined by assigning grade-of-membership 
values to each quantization level. Table IV is an example 
of a membership matrix table for a membership function. It 
includes the error, error change, and control-power-increment 
variables. Each table consists of seven terms, including LP, 
MP, SP, ZE, SN, MN, and LN, and each set consists of 13 
quantization levels, i.e., -6, -5, . . ., 6. All error, error change, 
and control-power-increment variables are quantized to these 
13 levels. The discrete discourse of Table 111, membership 
matrix table of Table IV, and control rules of Tables I and I1 
are combined to form a decision table for the fuzzy controller. 
The decision table is shown in Table V. 

In the case of FLC with continuous universes, the number 
of quantization levels should be large enough to provide an 
adequate approximation and yet be small enough to save 
memory storage. The choice of quantization levels has an- 
essential influence on how fine a control can be obtained. 
For example, Table V may not provide optimal control when 
the error is approaching zero. This will lead to overshoot 
and hunting around the set point. To tackle this difficulty, a 
windowing mechanism [22] is based on a sequence or stack of 
nested regions in which finer levels of control and resolution 
are achieved every time the control rule set becomes fixed in 
region of the (e,  Ae) plane; for each of these regions, there 
is a mapping of an identical (e, Ae) grid of fuzzy qualifiers, 
and so on, down to the degree of resolution required. In this 
application, the nested region for (e, Ae) is -3 dB N 3 dB for 
e and -6 dB - 6 dB for Ae. The limit of Ap is set between 
-3.6 dB and 3.6 dB. Their corresponding term sets are {SP, 
ZE, SN} for e, {MP, SP, ZE, SN, MN} for Ae, and {MP, 
SP, ZE, SN, MN} for Ap. Table VI shows the quantization 
levels for these variables. Its associated decision table is shown 
in Table VII. In summary, Table V carries out coarse control 
when ( e ,  Ae) is outside the nested region. When (e, Ae) falls 
within the predetermined nested region, the mechanism will 
switch to the fine control according to Table VII. These two 
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5 6 
-6 -6 
-6 -6 

TABLE IV 
MEMBERSHIP MATRIX TABLE 

Quantized Level 

e Ae L\p(dB) 
-3.0 -6 -3.6 
-2.5 -5 -3.0 
-2.0 -4 -2.4 
-1.5 -3 -1.8 
-1.0 -2 -1.2 
-0.5 -1 -0.6 

0 0 0 

Lmguistic 
Sets 

Quantization level 
-6 
-5 
-4 
-3 
-2 
-1 
0 

TABLE V 
DECISION LOOKUP TABLE FOR COARSE CONTROL 

de 

e 

2.0 2.4 
2.5 3.0 5 
3.0 6 3.6 6 

decision tables are combined to achieve the fast response (or 
reduce the settling time) and minimum steady state error. 

V. SIMULATION RESULTS 

Numerical values of the tracking error and conditional 
outage probability for the fuzzy PI power control are calculated 

for an example of cellular CDMA systems using Monte 
Carlo simulation. The following assumptions are made in the 
numerical computations. 

The service area consists of 19 hexagonally shaped cells, 
that is, the desired cell is surrounded by two tiers of 
interfering cells (Fig. 2). 
All cells contain the same number of active mobile units, 
and the positions of the active mobile units within each 
cell are uniformly distributed with a density of K users 
per base station. 
Interference reduction techniques, such as cell sectoriza- 
tion and voice activity detection, are not considered. It 
is believed that the improvements from these effects can 
be introduced through multiplicative factors. 
Each user scans signals from the closest base stations 
and decides to communicate with the base station that 
has the largest local-mean signal power. This local- 
mean signal power was determined from path loss 
proportional to the fourth power of the propagation 
distance and simulated log-normal shadow fading with 
standard deviation of 8 dB. 

The parameters of a proposed practical CDMA system are 
assumed in the calculations: The spreading bandwidth is 1.25 
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TABLE W 
DECISION LOOKUP TABLE FOR FINE CONTROL 

-3000 1 I I I I I I I 

o P 40 8 0 i m m i 4 0  
Time( T> 

Fig. 7. Comparison of the waveforms of the received signals achieved by 
the fuzzy PI control and 1-dB fixed-step control when I = 1, m = 2, ~ D T ~  
= 0.05, and the desired mobile unit is initially placed at a position that causes 
a 20-dB path loss. - fuzzy PI, ~ fixed-step control. 

MHz, and the data rate is 8 kbit/s, which give a processing 
gain of approximately 22 dB. The required energy per bit- 
to-interference spectral density ratio, Eb/Io is selected as 7 
dB (reverse link). Using the calculated processing gain and 
the selected value of required Eb/Io, the required signal-to- 
interference ratio threshold, S I R T ~  is found to be -15 dB 
(reverse link). For long-term fading, the path exponent, a is 
assumed to be four, and the standard deviation for shadowing 
is set at 8 dB. For short-term fading, f D T p  is uniformly 
distributed between 0.01 and 0.05, where f D  denotes the 
Doppler rate. The diversity order, m of Nakagami distribution 
is assumed to be either two or four. The loop delay of the 
CDMA power control system is usually assumed to be unity, 
Le., 1 = 1 [4]. 

Fig. 7 illustrates the waveforms of power-controlled signals 
using both the fuzzy PI control and 1-dB fixed-step control 

when loop delay 1 = 1, m = 2, K = 10, and the desired 
mobile unit is initially placed at a position that causes a 20- 
dB path loss, and then moves at a Doppler rate fD, where 
foT, = 0.05. A comparison of these two waveforms in Fig. 7 
indicates that the fuzzy PI control can achieve much faster rise 
time and smaller overshoot than the fixed-step control. For 
fuzzy PI control, coarse decision table of Table V is applied 
to greatly reduce the large received power deviation at the 
initial time point and to quickly drive the received signal- 
power level toward a nominal 0 dB, since this initial power 
deviation results from the 20-dB path loss and total co-channel 
interference. Once the received power deviation becomes 
relatively small, Table VI1 carries out the fine tuning in 
order to regulate the small short-term fading and interference 
powers. The coarse decision table will become active again 
when excessively deep fades or large interference powers 
occur. In contrast to the above fuzzy PI control, the response 
of 1-dB fixed-step control is rather slow and shows substantial 
overshoot and oscillation. With the fuzzy controller engaged, 
however, the overshoot is dramatically reduced, and oscillation 
is effectively eliminated. Note that the rate of converge of the 
fuzzy PI control is nearly the same as the rate of converge 
of the proportional (nonfuzzy) controller. This may be due to 
the user-transmitting-signal power limitation. Comparing the 
magnitudes of those two waveforms at time instant 150 Tp, 
the fuzzy PI control achieves smaller steady-state error than 
fixed step control. Furthermore, the performance of the power 
regulatory control can be characterized by the performance 
index called the rms tracking error. The rms tracking error is 
obtained by averaging the squared power error over a time 
window from the initial time point to 150 Tp. The fuzzy PI 
control results in an rms tracking error (= 3.68 dB), which is 
much smaller than the rms tracking error (= 6.06 dB) of fixed- 
step control. The values of the rms tracking errors are listed 
in Table VI11 for various assumptions of foTp and the order 
of diversity, m at the base-station receiver. The rms tracking 
errors with fuzzy PI control are always smaller than fixed- 
step control by a reduction ratio of about 40% (on average). 
For low fDT,, o;high-diversity order, both control schemes 
achieve the better rms tracking capability. 
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TABLE VI11 
COMPARISON OF RMs TRACKING ERRORS ACHIEVED BY FUZZY PI CONTROL AND 
FIXED-STEP CONTROL WHEN m = 2 OR 4 AND fDTp = 0.025,0.0375, OR 0.05 

fDTp =0.05 

fDTF =0.025 
fJ, = 0.0375 

3.68 6.06 3.14 5.45 
3.34 5.75 3.10 5.38 
3.13 5.57 3.07 5.34 

Fig. 8. Comparison of outage probabilities against the number of users per 
cell achieved by fuzzy PI control and 1-dE3 fixed-step control when m = 2 
and S I R T h  = -15 dB. -e- fixed-step control, -6- fuzzy PI. 

Fig. 8 shows the conditional outage probability against the 
number of users per cell for fuzzy PI control and fixed-step 
control when the diversity order m = 2 and S I R T ~  = -15 
dB. The conditional outage probability is obtained by the 
empirical estimate to (16) by performing 100 runs. In addition, 
each outage probability involved in the calculation of the 
conditional outage probability can be obtained by computing 
the ratio between the total time the received signal whose SIR 
is below S I R T ~  (= -15 dB) and a time interval (= 150 
Tp).  Clearly, from Fig. 8 the conditional outage probability 
increases with the active users per cell. Note that the rate of 
increase is more gradual, however, when fuzzy PI control is 
used than when fixed-step control is used. The adoption of 
fuzzy power control also results in a lower conditional outage 
probability; for example, the conditional outage probability 
with fixed-step control is reduced by up to 52% (on average) 
when the fuzzy PI control is used. For the same number of 
active users, the conditional outage probability is smaller for 
fuzzy PI control than for fixed-step control. As in Fig. 9, 
one may find that the conditional outage probabilities for 
both control schemes become smaller simultaneously when the 
order of diversity becomes larger, for example, m = 4. The 
fuzzy PI control, however, provides a much smaller outage 
probability than fixed-step control, by an average reduction 
factor of 60%. 
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Fig. 9. Comparison of outage probabilities against the number of users per 
cell achieved by fuzzy PI control and 1-dB fixed-step control when m = 4 
and S I R T h  = -15 dB. -e- fixed-step control, -+ fuzzy PI Control. 

VI. CONCLUSION 
This paper has introduced a feedback power control, based 

on fuzzy-logic theory, which is capable of maintaining for all 
users nearly equal signal power received at the base station 
over the CDMA mobile radio channels. The fuzzy PI control 
has been derived by analyzing both transient step response 
and steady-state behavior of the CDMA fading process. Forty- 
three fuzzy control rules based on the phase-plane method 
have been proposed to improve the controller performance. 
Two ROM-based decision tables are conducted to provide the 
real-time implementation for the 43-rule fuzzy controller. A 
coarse table is activated when the received power error at 
base station is relatively large. If the received power error 
falls within a predetermined small region, the fine control is 
executed by the fine-tuning decision table. For comparison of 
simulation results, it can be seen that the fuzzy PI control 
can achieve a faster rise time, small overshoot, and better rms 
tracking error than the fixed-step control. This better controller 
performance would lead to smaller outage probability and 
substantial capacity improvements. Simulation results show 
that the outage probability with fixed-step control is reduced 
up to 52% for m = 2 and 60% for m = 4 when the fuzzy 
PI control is used. Moreover, for a long time-delay CDMA 
fading process, the methodology proposed in our companion 
paper [24] is developed to modify the rule base to contain 
the delay information for reducing the dead-time effects of the 
process. 
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