
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2005; 35:1349–1391
Published online 27 June 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.674

Automatic adaptation
of mobile applications to
different user devices using
modular mobile agents

Tzu-Han Kao∗,† and Shyan-Ming Yuan

Department of Computer and Information Science, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 300, Taiwan

SUMMARY

Wearable, handheld, and embedded or standalone intelligent devices are becoming quite common and
can support a diverse range of applications. In order to simplify development of applications which can
adapt to a variety of mobile devices, we propose an adaptation framework which includes three techniques:
follow-me, context-aware adaptation, and remote control scheme. For the first, we construct a personal
agent capable of carrying its owner’s applications. Second, we design a personal agent capable of carrying
applications with an adaptable hierarchical structure. Then, applications can be adapted approximately
to the context of devices by using an attribute-based component decision algorithm. Finally, to achieve
a remote control scheme, we distribute the computational load of applications on the resource-restricted
mobile devices. An application is divided into two parts that can be executed on a user device and a server
separately. In short, this framework facilitates the development of widespread applications for ubiquitous
computing environments. Furthermore, it enables the applications to follow their owners and automatically
adapt to different devices. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: adaptation; mobile applications; mobile agents; context-aware; mobile execution environment;
ubiquitous computing environment

1. INTRODUCTION

1.1. Motivation

With the progress of mobile technology, embedded systems and information appliances have been
developed, and various kinds of handsets, networked facilities, and personal mobile devices enrich
our lives. These technologies have been applied to many fields. For example, there are networked

∗Correspondence to: Tzu-Han Kao, Department of Computer and Information Science, National Chiao Tung University,
1001 Ta Hsueh Road, Hsinchu 300, Taiwan.
†E-mail: gis89539@cis.nctu.edu.tw

Contract/grant sponsor: National Science Council; contract/grant number: NSC93-2752-E-009-006-PAE

Copyright c© 2005 John Wiley & Sons, Ltd.
Received 29 May 2003

Revised 10 December 2004
Accepted 10 December 2004

1350 T.-H. KAO AND S.-M. YUAN

TVs and home entertainment facilities in home appliances; Internet-capable PDAs, mobile phones,
wearable computers in personal mobile applications; and embedded servers in business applications.
Accordingly, context-aware applications, which adapt their behaviors to a changing environment
[1,2] according to the context, such as indoor position, time of the day, nearby equipment, and user
activities [3], can be developed. Context-aware mobile tourist guides [4] and location-aware shopping
assistants [5] are two examples.

We can now foresee an ubiquitous computing environment [6] where a user can retrieve his personal
information through any nearby computing facility, such as mobile and embedded computing devices,
desktop computers, etc. In such an environment, information presented on the devices can be adjusted
according to the context of these devices. One of the applications, called ImageGathering, where a
multimedia campus guidance system is built on a campus, can be taken as an example. Wherever they
are on campus, students can always ask this system for the location of a building by using a Java phone,
PDA, or a laptop. Depending on the context of the student’s device, a formatted image suitable for the
student’s device can be delivered to the student. When a visitor would like to enter some building on
the campus, he can use his Java phone for more information on that building, and then a PNG image
of 64× 54 pixels will be sent to him. A notebook user can get a JPEG image of 340× 256 pixels.

The delivery of the required image, depending on the context of device capabilities and user
preferences, dominates the functions of this ImageGathering system. In addition, whatever device is
used, users’ applications will still continue. A user, for example, can use a desktop computer to check
his daily report. When he moves from room to room, information about his report can still be acquired
by a handheld PDA. In brief, we aim at providing a context-aware adaptive framework that can not
only adapt functions of applications which personally rely on the context of the devices used, but also
keep the executing states of applications even by using different devices.

1.2. Objectives and methodologies

Several problems obstruct the development of applications on small and handheld devices.

• The resources of the small and mobile devices are restricted, in terms of three aspects: memory,
power, and networking. First, the size of the needed memory can be a problem. For example,
a Java KVM already requires between 160 and 512 kB. Second, the needed battery power over
time has to be available in the device. Finally, the communication need has to cope with the
limited bandwidth in wireless (and sometimes low-power) networks.
• The computational capability of small and mobile devices is limited. Unlike stationary personal

computers at 2 GHz or more CPU speed, those of the small and mobile devices are lower, like a
Microsoft smart phone at 200 MHz CPU speed.
• The characteristics of the devices, such as screen size, color number, and resolution, are diverse.

For instance, the resolution of Nokia 6600 is 176 × 208 (pixels), while that of Nokia 7210 is
128× 128.

Therefore, we concentrate on two objectives to solve these problems. The first is to distribute
computational load of programs running on small and handheld devices. To expand the computational
capabilities of programs, some components of programs are designed for servers. The limited resources
of these devices, therefore, will not restrict the capabilities of the programs. The second objective
is to accomplish the adaptation of the functions of applications. To reach this goal, we structure an

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1351

application composed of its functions, each of which can be implemented by one or more candidate
components‡. Furthermore, for each function, a proper component among the candidate components
capable of implementing the function can be appropriately chosen to substantiate this function
(said corresponding function) in accordance with context profiles of user devices.

The methods proposed in this paper contain three primary mechanisms: remote control scheme,
follow-me, and context-aware adaptation. The remote control scheme divides the program of an
application into two parts: front-end and back-end modules. The front-end module runs on the client
device. The back-end module can be executed on a server and communicate with the front-end module
through remote dynamic invocation, an invocation mechanism between the two modules (detailed
in Section 6). As a result, certain components of an application with heavy computing load can be
enveloped into the back-end module and run at the server side. For follow-me, a personal agent can
not only be anchored at a certain server to serve its owner, but can also carry back-end modules of
applications as migrating among servers with its owner. This provides the flexibility for application
developments.

To adapt functions of applications to the context of user devices, we use Composite
Capabilities/Preference Profiles (CC/PP) [7–11] and Wap User Agent Profile (WAP UAProf) [11,12]
context modeling frameworks. CC/PP as defined by the W3C CC/PP working group, can describe
device capabilities and user preferences in RDF/XML format. Generally, it is used for a device’s
delivery context and for the adaptation of content presented to devices. WAP UAProf was developed
by the WAP research groups for the same purpose. Furthermore, structuring applications helps to adapt
them, so an application is organized into front-end and back-end modules that contain numerous
components, each of which can be declared to implement a function comprising the application.
Additionally, we design Application Structure and Component Constraints (ASCC), an XML-based
description that describes the requirements of components of an application by using constraint sets.
Integrating the use of the ASCC and CC/PP profiles can enable the proposed system to be aware of
structures and constraints of applications for adapting applications further.

This paper is organized as follows. After an overall introduction to the context-aware adaptation
framework in Section 2, we describe the essential aspects of personal agents and applications in
Section 3, and the mechanisms for agent migration and application reconstruction in Section 4.
Sections 5 and 6 present an attribute-based component decision algorithm, performance evaluation,
application interfaces, and remote dynamic invocation. Finally, we discuss related work in Section 7
and present conclusions in Section 8.

2. SYSTEM OVERVIEW

2.1. Example scenario

The last section has mentioned our main objectives and focuses. In this section, we explain the
architecture and components of our framework. Figure 1 illustrates a scenario for an application which

‡A component is an object in object-oriented programming.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1352 T.-H. KAO AND S.-M. YUAN

Meeting RoomWireless Campus

Laboratory

Internet

Repository Service

JAVA Phones

LaptopPersonal Computer

2.5G / 3G Network

Context-Aware

Adaptation Server

Wireless LAN

Ethernet

Access Point

Context-Aware Adaptation Service

Repository Service

Client

Work Station

PDA

Back-end module

Font-end module

Biological multimedia
information provider

Biological Multimedia

Information Provider

Legend

Figure 1. An overview of the system infrastructure.

can be developed with our framework. Assume that on the campus there is a wired Ethernet and IEEE
802.11. Students can then surf the Internet via the networks. Let us assume that a student wants to
gather certain butterfly images. When in his laboratory, he can collect the information via his personal
computer. Then, when he goes out for a meeting (the arrow indicates the direction of his movement),
he can use a PDA to continue collecting the images. After arriving at the meeting room, he can go on
working if there is another laptop available there. In so doing, his work will continue whether or not
he carries his device. This scenario includes two critical techniques. First, the image can be suitably
resized according to the context of the device. Second, the collection status is continuously executed
without interruption while moving or after changing devices. In order to approach this, we attempt to
design our framework to provide the following functionalities.

• It can divide a program of the application into two modules: one is the back-end module
running at the server side for retrieving the images and transmitting the images to users’ devices.
The other is the front-end modules executed on users’ devices for representing the gathered
images, as shown in Figure 1.
• Numerous computing transformation and adaptation algorithms, which need heavy

computational resources, will be enveloped in the back module to be executed at the server
side instead of running the whole program on the devices. Thus, it will weaken the restriction of
application development by this limitation of resources on devices.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1353

• The system can change the transformation and adaptive component of the application to others,
according to what devices users use.
• The back-end module can move with the user.

2.2. System infrastructure overview

Figure 1 exhibits the infrastructure of our system, in which there are three main components: context-
aware adaptation, repository service, and client. The client devices can be mobile or stationary and
may include computing devices such as PCs, PDAs, laptops, smart phones, Java Phones, etc. A front-
end module for each user can be executed on its owner’s device. The access networks of the devices
include wireless IEEE 802.11x networks, and 2.5/3G telecommunication networks. On the server side,
there is a context-aware adaptation server (CAAS server) in each local area network (LAN). In this
design, we do not assert that each LAN must have a CAAS server. But, if we assume there is a server
in a LAN, back-end modules of applications can be carried by agents, and moved to the server in the
LAN where their owners move.

2.3. System architecture

Figure 1 demonstrates the infrastructure of our system. Internally, there are three primary constituents,
client, context-aware service, and repository service, which correspond to client tier, context-aware
service tier, and repository service tier, respectively, as presented in Figure 2.

2.3.1. Client tier

This tier contains various mobile, handheld, or stationary computing appliances. As in Figure 2,
the devices cover J2ME-capable phones, PJava-capable PDAs, and J2SE-runable laptops or personal
computers. PJava, J2ME [13,14], and J2SE are the Java Virtual Machines for different operating
systems and hardware environments. Each of these has some particular configuration profiles. In J2ME,
the profiles of KVM, J2ME Configuration, and MIDP are involved. In addition to having the functions
of J2ME, PJava also includes Configuration, Foundation Profile, Personal RMI, CDC Profiles, whereas
the J2SE environment comprises JVM and optional Java API.

The front-end module on the device can send a registering message with its context profile to inform
CAAS servers of its capabilities. After that, while the remote invocation interface of the front-end
module is invoked, the user agent of the front-end module will serialize the invocation into messages
and send the messages to the back-end module. Then, the corresponding method of the back-end
module will be invoked. We call this scheme remote dynamic invocation (explained in Section 6) in
our system. To implement this scheme, we design two components. One is User Agent, which provides
an interface. Programmers can use the interface to invoke the methods of back-end modules. The other
is CC/PP Negotiator, which can send CC/PP profiles [8,10,11] to inform CAAS servers of devices’
capabilities when the user’s device initially connects to this server. Figure 3 shows the RDF/XML
[15–17] serialization of a context profile, which is wrapped in transmitted messages. It illustrates 16
(bits per pixel) in the hardware component of a user device.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1354 T.-H. KAO AND S.-M. YUAN

Legend

Figure 2. The inner architecture of the context-aware adaptation framework.

2.3.2. Context-aware adaptation service tier

This tier includes at least one CAAS server that can support the migration of agents, execution
of back-end modules, and application adaptation. The servers connect with each other via Remote
Method Invocation (Java RMI) [18] and IP multicasting. The RMI connection is capable of serializing
objects and transmitting continuously the serialized results over networks to support agent migration.
Through the connection, personal agents can carry their owners’ back-end modules and migrate

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1355

GET /ccpp/html/ HTTP/1.1
...
<?xml version="1.0"?>

<rdf:RDF ...>
<rdf:Description rdf:ID="MyDeviceProfile">

<prf:component>
<rdf:Description rdf:ID="HardwarePlatform">

<rdf:type rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-
20010426#HardwarePlatform"/>

<prf:BitsPerPixel>16</prf:BitsPerPixel>
</rdf:Description>

</prf:component>
</rdf:Description>

</rdf:RDF>

Figure 3. A CC/PP profile.

between CAAS servers. In this system, there are two modes (synchronous/asynchronous), which can
be set here. The synchronous mode allows the personal agent to migrate with its owner, while the
asynchronous mode requires the agent to stay at its resident server.

We take advantage of IP multicast to transmit the notification of application deployment and RMI
connection setup. Each server listens to the same IP multicast address. If messages are transmitted
to the address, the servers which listen to this address can receive the messages. For example, if an
application is deployed into the repository service, the notification of the deployment will be sent
through the channel. The servers, listening to the multicast IP address, can receive the notification.
Data needed to be sent in the application deployment are transmitted via the RMI connections between
CAAS servers and the repository server. In implementation, the multicast connection is constructed
in the beginning of this system. Namely, CAAS servers and the repository server listen to a multicast
address before constructing RMI connections. A server thus can build an RMI channel connecting
with another by broadcasting a joining message to the multicast address. The servers which receive the
broadcast messages will reply to those servers sending the joining messages.

CAAS servers are capable of adapting applications§ carried by the agents migrating from other
servers. An image transformation function, for instance, can be implemented by two candidate
components: BMP-to-PNG, and BMP-to-JPEG. The former will be applied when the requesting client
device is a J2ME-capable phone. While the user uses a desktop computer instead, the latter component
can be chosen to implement this function.

A CAAS server principally includes four constituents: client interaction agent, context manager,
agent manager, and component manager. The client interaction agent serves as an interactor, which
communicates with CC/PP negotiators on user devices. It can transmit the messages used in the CC/PP
negotiation protocol and remote dynamic invocation.

§A process is used to decide on proper components for the carried application.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1356 T.-H. KAO AND S.-M. YUAN

1 *

1

1

+...()

ComponentManager

+...()

ComponentFactor

+...()

ApplicationContext

+getComponent ()

+getComponentContext ()

+createAgentClass ()

+createComponentClass ()

+getChangedComponent() +createAgent ()

+createApplicationClass ()

Figure 4. Classes of component manager, component factory, and application context.

For communicating with user agents on client devices and adapting applications, the context
manager can parse the CC/PP profiles embedded in the registration messages in the initial negotiation
process of the CC/PP protocol. To handle these profiles, we apply DELI service [19] and Jena API
[20] to a context manager. One is request solver, which is capable of unpacking HTTP1.1 request
messages to retrieve the CC/PP profiles. The other is profile processor, which can parse the CC/PP
profile. In addition, all of the parsed profiles will be collected into profile cache. Thus, devices can
transmit the changed part to the service instead.

The agent manager is capable of constructing and maintaining personal agents. Additionally, it
controls an agent’s lifecycle, and invokes the corresponding method related to the state change of the
lifecycle. In order to save the cost of constructing agents, and to immediately respond to user devices
when connecting to the back-end module, the agent pool is built. By using this pool, agents can be
constructed beforehand and recycled after completing their tasks.

The component manager supplies the agent manager with the classes needed for constructing an
application adaptation¶. Figure 4 presents the internal classes for creating the object instances to
construct agents, applications, and components by createAgent(), createApplication(),
and createComponent(), respectively (explained in Section 3.3). Also, an ApplicationCon-
text class, which contains an application structure table, a component decision tree, and a changed
component table, etc., can support the application adaptation and the component construction.

Server communication agents can be used to construct RMI and IP multicast links between
CAAS servers. The data access agent has the function of requesting and receiving data from

¶The reasons for constructing classes and the procedure will be explained in Section 4.4.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1357

the repository service. Another connection is built by using URLClassLoader‖ between a CAAS
server and the repository service.

2.3.3. Repository service tier

This tier acts as the database and directory service in our system. Three categories of information
are stored, including application information, personal information and context profiles, as shown
in Figure 2. This tier also stores the classes and ASCC files of the applications deployed. Note that
an application structure and component constraints (ASCC) profile, designed in this framework,
is an XML-based profile. It describes application structures and component information. When a
programmer has finished developing an application, he or she can pack the code of the application
into a Java Jar file (a compressed file containing the class files), and then store this packed file and the
ASCC description of the application into the repository service.

In order to deliver the information concerning a deployed application to CAAS servers, two
mechanisms are designed. One is application preloading, in which the repository service notifies the
CAAS servers once an application is deployed into the repository. The other is application remedy,
which can be applied if the required classes of the applications carried by the agent are not found. It is
implemented when a CAAS server accepts a migrated agent, as discussed in Section 4.4.

3. PERSONAL AGENT

3.1. The state transfer of the agent

A personal agent, which is an active object with a state, is assigned to serve a user. The term ‘active’
means that the agent has a thread to perform a certain method invocation requested by the front-end
module. An agent will invoke the requested method of the back-end side when it receives a request.
Consequently, the result is sent back to the front-end modules. The state transition of an agent is
presented in Figure 5.

In the Ready state of an agent, the agent is activated to be ready for receiving invocation
requests from the front-end module. When receiving a request, it invokes the corresponding method
of the appointed application. Then, the state will transit to the Execution state. When invoking
is completed, the agent will send the result of the execution to the front-end module, and its state
will change back to the Ready state. Moreover, the carried applications can be adapted by the agent
manager only in this state. If this occurs, it will change to the Stop state and to the Adaptation
state soon afterwards. In the Stop state, the agent is deactivated and does not receive any requesting
invocation. Thereafter, components of each function of the application can be switched appropriately.
The situations that cause the state to transit to the Stop state are (i) a logout message received from
the user agent; (ii) no messages received from the user agent for a period of time; (iii) the agent is
instructed to migrate to another server. Moreover, conditions that make the state transit back to the

‖URLClassLoader is a Java class capable of loading classes from remote computers. It will be used if the required classes do
not exist in CAAS servers.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1358 T.-H. KAO AND S.-M. YUAN

Execution

MigrationReady

Stop

Initial state

Final state

start

migrate

destroyed

Adaptationready

adapt

execute
ready

stop

ready

ready

Figure 5. State transition diagram of the personal agent.

Ready state are (i) an agent manager has got the agent from the agent pool and then assigned it to
its user for recycling; (ii) application adaptation has been performed; (iii) agent migration has been
completed.

3.2. The structure of an agent

In this section, we discuss the inner structure of an agent. Figure 6 indicates an agent, which is
composed of a state and a body. The state records the information related to the agent’s user and
the applications carried by the agent.

3.2.1. Agent state

An agent state (Figure 6) is composed of agent ID (the identifications of the agent), User ID (its owner),
Device ID (the owner’s device), and Application IDs (the applications carried). In addition, the agent
state records the states of applications. Each of the states includes absent component IDs and an event
queue. Absent component IDs are the identifications of the component objects withdrawn from the
agent body. An event queue is responsible for queuing the requested events in the execution state.
The queue is used to keep events, so it stops the execution of processes from being interrupted by
incoming events. Specifically, an event queue retains the events of the state transition and notifications
of the invocations from the front-end module. State transition and invocations will be scheduled in the
order of FIFO, so if a new event arrives, it will be put at the rear of the queue. Then, to process these
events, the main thread of this agent obtains an event from the front of this queue. Taking the scenario
in Section 1.1 for example, the user agent, in the front-end module of a user device, requests the user’s
personal agent for a picture. When the personal agent receives this invocation, events concerning the
invocation will be generated and put in the queue. In this example, the events corresponding to 2, 3, 4,
5, 6, 12 (in Figure 7) are put into the event queue. Next, if any request arrives or the state transition is
triggered, the notification relevant to these events will follow the previous requested notifications.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1359

Agent Body

. . .

.

Agent State

Agent ID User ID Device ID

Application IDs

App ID 1 App ID 2 . . . App ID n

3

1comp 3

pcomp

3fun

1app napp

.

. . .

1

1comp 1

kcomp 2

1comp 2
l

comp

2fun

mcomp1

m

qcomp

1fun mfun

Application 1 State

Absent Components

...Event queue

. . .

Application 2 State

Absent Components

...Event queue

Application n State

Absent Components

...Event queue

Figure 6. An internal view of a personal agent and an application structure.

3.2.2. Agent body

Figure 7 shows the detail of the implementation of the example ImageGathering. In this example, there
are two basic systems: one is the application developed through the API of our system; the other is
a biological multimedia information provider on the Internet. This provider has three types (image,
video, and text) of data provided, shown on the right-hand side of the figure.

We divide the application into two parts: the front-end module and the back-end module. The front-
end module contains two main constituents: an image display that can show images, and a requester that
can send requests and receive the replied images. This module executes on the client device. The back-
end module consists of four constituents: Image Transmitter, Cache, Image Retriever, Transcoder, and
Data Access. In this module, Image Transmitter is responsible for receiving clients’ requests and
replying the required images. Image Retriever can obtain the requesting images from the biological
multimedia information provider through Data Access. Next, it will pass the images to Transcoder
for transforming images, such as image resizing, or to the cache for subsequent retrieving of images
immediately. The following lists the possible procedures used to retrieve the required images that the
student wants to collect:

• 1 → 2 → 3 → 4→ 5 → 6 → 12 → 13: this procedure means that when Image Transmitter
receives the user’s request, the required images are obtained from the information provider.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1360 T.-H. KAO AND S.-M. YUAN

Image

Database

Voice

Database

Text

Database

Multimedia Repository

Video

Database

Multimedia Information

provider

Biological Information

Multimedia provider

2: request 3: retrieve

6: return

9: return 7: save

11: return 10: transform

12: return

4: obtain

5: return

8: retrieve

Requester

Image
Displayer

13: reply

Back-end module

Front-end

module

Image Gathering

Type 1 Component

Type 2 Component

Type 3 Component

Legend

1: request
Image

Transmitter

Image

Retriever

cache

Transcoder

DataAccess

Figure 7. The back-end module of the application Image Gathering.

• 1 → 2 → 7 → 8 → 9 → 12 → 13: this process refers to obtaining the required image from
Cache.
• 1 → 2→ 7 → 8 → 9 → 10→ 11→ 12 → 13: this indicates that the images are passed to

Transcoder for resizing after Image Receiver gets the images in the second bullet, and then the
results are transmitted to the requester.

Figure 6 shows an application, which is structured hierarchically. This application is composed of
more than one function that could be implemented by at least one component. The application structure
exhibited in Figure 7 can also be expressed in the form of the two-level hierarchy demonstrated in
Figure 8. As we can see in Figure 8, each function links to candidate components. The function Image
Retriever, for example, links to three components: JPEG Retriever, GIF Retriever, or PNG Retriever.
This indicates that the function Image Retriever can be implemented by the three components.

Components, in our system, are classified into three categories: Type 1, Type 2, and Type 3.
Type 1 components have the characteristics inclusive of stateful, relative, and immoveable. The stateful
property means that the component records some particular data. For instance, Image Cache for the
cache function belongs to this category. In contrast, specifying the stateful property No means that
the components do not keep track of any particular data. If we declare a component as relative, it
is associated with certain resources, and these components have database or TCP/IP connections.
For example, the components of the function Data Access need to be declared as this type, since it
connects to the database of the multimedia provider over the networks. Another moveable property is
used to modify the components that fail to be carried in agent migration.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1361

ImageCache
Size

Tailor
Resizer

Transcoder Cache
Image

Retriever

HTTP

Connector

Image

Transmitter

MS

Access

Data

Access

Image

Gathering

JPEG

Retriever

GIF

Retriever

PNG

Retriever

Application

Function

Component

Figure 8. The structure of the application ImageGathering.

Table I. Three categories of components.

Type Stateful/stateless Relative/irrelative Movable/immoveable Example

Type 1 stateful Relative immoveable Database
Access

Type 2 stateful Irrelative moveable Cache
Type 3 stateless Irrelative moveable Transcoder

Type 1 components are the components connecting to certain resources. As demonstrated in Figure 7,
candidate components of the function Data Access belong to this type. Type 2 components are those
components which can be moved. The component Image Cache (in Figure 9) is declared as this type.
Type 3 components are usually certain algorithms or pure computational logics, such as the XML
transformation engine javax.xml.transform.Transformer. Table I displays the three types
of components.

3.3. Application structure and component constraints

In order to enable this framework to be aware of the structures of applications, we define ASCC, an
application profile description. Figure 9 illustrates the ASCC profile of the application ImageGathering.

As we can see in Figure 9, the <application> element includes five <function> elements,
which can describe the five functions. In each <function>, the candidate components can be speci-
fied. Lines 4–28, for instance, declare that <component id="JPEGRetriever" ...>, <com-
ponent id="GIFRetriever" ...>, and <component id="PNGRetriever"...> can
implement the Image Retriever function. In addition, within a <component> element, the prop-
erties, stateful, relative, and carried, can be used to set components stateful/stateless,
relative/irrelative, and carried/un-carried respectively. The priority property concerns the priority

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1362 T.-H. KAO AND S.-M. YUAN

1 <?xml version="1.0"?>
2 <ascc xmlns:ascc=http://dcsw3.cis.nctu.edu.tw/project/CAAS ...>
3 <application id="ImageGathering">
4 <function id="ImageRetriever">
5 <default idref="JPEGRetriever"/>
6 <component id="JPEGRetriever" priority="51{\%}"
7 stateful="No" relative="No" carried="No">
8 <constraints>
9 <prf:ImageCapable>Yes</prf:ImageCapable>
10 <prf:CcppAccept>image/jpeg</prf:CcppAccept>
11 </constraints>
12 </component>
13 <component id="GIFRetriever" priority="50{\%}"
14 stateful="No" relative="No" carried="No">
15 <constraints>
16 <prf:ImageCapable>Yes</prf:ImageCapable>
17 <prf:CcppAccept>image/gif</prf:CcppAccept>
18 </constraints>
19 </component>
20 <component id="PNGRetriever" priority="50{\%}"
21 stateless="No" relative="No" carried="No">
22 <constraints>
23 <prf:ImageCapable>Yes</prf:ImageCapable>
24 <prf:CcppAccept>image/png</prf:CcppAccept>
25 <prf:JavaPlatform>MIDP/1.0-compatible</prf:JavaPlatform>
26 </constraints>
27 </component>
28 </function>
29 <function id="Transcoder">
30 <default idref="SizeTailor"/>
31 <component id="SizeTailor" priority="50{\%}"
32 stateful="No" relative="No" carried="No">
33 <component id="ColorTransformer" priority="50{\%}"
34 stateful="No" relative="No" carried="No">
35 </function>
36 <function id="Cache">
37 <component id="ImageCache"
38 stateful="Yes" relative="No" carried="Yes">
39 </function>
40 <function id="DataAccess">
41 <component id="MSAccess" stateful="Yes" relative="Yes">
42 </function>
43 <function id="ImageTransmitter">
44 <component id="HTTPConnector"
46 stateful="Yes" relative="Yes"/>
47 </function>
48 </application>
49</ascc>

Figure 9. The ASCC profile to describe the structure of ImageGathering.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1363

+switchTo(compID : java.lang.String)

+invoke(params : java.lang.Object[]) : java.lang.Object[]

+...()

Function

+invoke(params : java.lang.Object[]) : java.lang.Object[]

+...()

MyComponent

+invoke(params : java.lang.Object[]) : java.lang.Object[]

+...()

<< >>

IComponent

1..*1

Agent

MyAgen

Application

MyApplication

+initApp()

+invoke()(params : java.lang.Object[]) : Object[]

+...()

<< >>

IApplication

+onStart()

+onReady()

+beforeAdaptation()
+afterAdaptation()

+beforeMigration()

+afterMigration()

+onStop()

+invokeMethod()
+...()

<< >>

IAgent

1..*

1

1..*

1

*1

user-defined

classes

<<interface>>

<<interface>>

<<interface>>

in

in

inin
in

t

Figure 10. The class diagram of programming agents and back-end modules.

of a component, one of which is chosen in each application adaptation. Furthermore, to set a component
as a default component for a function, we can use the element <default>. If we want to set a
component implementing the function which cannot be replaced with others, we can use the property
"unchanging=’Yes’". Figure 10 exhibits the class diagram of the implementation of the back-end
module, which is made up of the classes derived from three original classes. A programmer defines a
personal agent class, which is derived from the Agent class, and lets the agent carry the applications
whose classes derived from the Application class. Furthermore, the programmer can define various
subclasses of the class Component to substantiate and diversify his application. Without loss of
generality, we use MyAgent, MyApplication, and MyComponent as the user-defined classes,
which are illustrated in Figure 10.

4. AGENT MIGRATION

In the application ImageGathering, even when moving from room to room, users can continue
collecting the information. In order to complete this, we need to overcome the following problems:
‘How does the system perceive the situations of users’ movement?’ and ‘How does the system
instruct an agent that serves the user to migrate with the user under perceiving the situations of users’
movements?’.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1364 T.-H. KAO AND S.-M. YUAN

Local Area 1

Wired LANs
IEEE 802.11

Wireless LAN

Local Area 2

Wired LANs

Local Area 3

IEEE 802.11

Wireless LAN
2.5G Network 3G Network

Telecom

Networks

Intra-location Mobility

Inter-location Mobility

Inter-domain Mobility

Data-com Network Tele-com Network

Figure 11. Cases of users’ movements.

4.1. Types of mobility

We can roughly partition off networks into data-com network and tele-com network. Data network
includes IEEE 802.11x [21,22], wired LANs, and bluetooth networks [22]. Tele-com network consists
of 2.5/3G [23] networks (Figure 11). According to the characteristics of these networks, we define
personal mobility and terminal mobility. Personal mobility means that by using any nearby computing
equipment, a user does not need to carry his device wherever he moves. In other words, a user can use a
device to perform his work, and also continue working via another instead. Terminal mobility indicates
that a user can perform his work via his carried device.

As shown in Figure 11, the data-com network contains a large number of LANs, and the three kinds
of networks may be in the same region, as Local Area 1. Furthermore, there is one possible type of
network in a LAN, such as Local Area 2. In a tele-com network, numerous wireless tele-com network
areas, formed by the radio coverage of base stations, are regarded as the same network in our system.

Cases of users’ movements from one region to another can be grouped into three categories: intra-
location mobility, inter-location mobility, and inter-domain mobility. Intra-location mobility means
that the coverage of a user’s movement does not exceed the range of a LAN. For instance, when a
student collects information through his personal computer in his lab, inter-location mobility indicates
that a user’s movement crosses two LANs. A case of this movement might be that a user uses a certain
device in Local Area 1, and then uses another after moving to Local Area 2. Inter-domain mobility

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1365

refers to the fact that a user’s movement crosses data-com networks and tele-com networks. A student,
for example, collects images by using his personal computer in his lab. Next, in place of the personal
computer he uses a Java Phone when moving from his lab to a meeting room.

4.2. Agent registration

The system provides two mechanisms to perceive users’ movements. We call the first mechanism
Passive-Client and Active-Server (PCAS). In this mechanism, the user agent of a user’s device will be
notified to initiate a registration procedure when its user moves to the server’s covered region. We call
the second mechanism Active-Client and Passive-Server (ACPS). By using this mechanism, user agents
of a user’s device will actively inform the repository service if they need to connect to some CAAS
server.

In PCAS, a server located in a region can detect movements of user devices entering into this
region. When a user uses his device and enters this region, the server notifies the user agent
on his device, thereupon the user agent will register with this server. Intrinsically, notification
messages are the advertisements broadcast periodically on the wireless IEEE 802.11 network by
a CAAS server. User agents of client devices continue listening to such messages. Provided that
there is a user entering a new wireless LAN, then the user agent will send a requesting service
message to the server sending the notification without registering to any server. Figure 12 illustrates
the sequence diagram of this procedure. To inform the server of client information, we embed the
CC/PP profile in the request service message. While a server receives the request message from the
ClientInterActionAgent object, it will forward the messages to the RequestResolver
object to resolve the CC/PP profile. The RequestResolver object is capable of retrieving the
profile from the message and passing it to the ProfileProcessor object to resolve the profile.
Then, the result will be passed to the CAAS service object, c2. When receiving the message,
c2 requests CAAS service c1 for the user’s personal agent. The user’s personal agent, therefore,
can be instructed to migrate to the server c2 close to the user. In this mechanism, user agents on users’
devices can automatically register to CAAS servers when their owners move among LANs.

The main difference between ACPS and PCAS is that in ACPS user agents on devices actively
register to the repository service. Thus, ACPS can be applied to solve the condition where user agents
on user devices have not connected to any server. A user agent on a user’s device, for example, sends
a request message to the repository service. Upon receiving a request message, the repository service
redirects the connection to the nearby CAAS server closest to him. This procedure is decomposed into
the steps shown in Figure 13.

It will be possible that agent migration is not needed if the covered regions of user movements are
identical. Perhaps one of the conditions is that the device briefly disconnects, and then reconnects to
the server. Under this condition, the user’s personal agent still resides in this server. Thus, when the
user agent asks the repository service about a CAAS server, the repository service will inform the
user device of the original nearby CAAS server, and redirect the connection to that CAAS server.
Though the user device reconnects to the CAAS server, the personal agent will not be instructed to
migrate.

We explain below how the system perceives users’ movements and when a CAAS server instructs
a user’s personal agent to migrate from another server. Further, the cases of users’ movements can be
considered altogether with PCAS and ACPS, as follows.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1366 T.-H. KAO AND S.-M. YUAN

: UserAgent : ClientInteractionAgent : RequestResolver c2 : CAAS c1 : CAAS

send advertisement

request service

solve request
process profile

get agent

information

: ProfileProcessor

register personal

information

return the

information

adapt

application

current CAAS service

previous CAAS service

Figure 12. The sequence diagram of ACPS.

: UserAgent
: RepositoryService

Manager

request service

redirect service

: ClientInteractionAgent : RequestResolver c2 : CAAS c1 : CAAS

solve request
process profile

get agent

information

: ProfileProcessor

return agent

information

adapt

applications

request service

register personal information

current CAAS service

previous CAAS service

Figure 13. The sequence diagram of ACPS with agent migration.

• In inter-domain mobility, two situations are classified into this category. One condition is that
the underlying network accessed is data-com network first and tele-com network subsequently.
Under this condition, user agents on user devices can register automatically by using ACPS.
The other condition is the opposite of the first condition. Here user agents on user devices can
be notified to register through PCAS, as shown in Figure 14.
• In the cases of inter-location mobility where a user crosses two different kinds of LANs, user

agents on user devices can be notified to register through PCAS.
• Under the conditions of intra-location mobility, it is unnecessary to move users’ personal agents,

because in this case users use their devices on the same network.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1367

: UserAgent
: RepositoryService

Manager : ClientInteractionAgent : RequestResolver : CAAS

solve request
process profile

: ProfileProcessor

register

request service

redirect service

request service

Figure 14. The sequence diagram of ACPS without agent migration.

4.3. Agent migration strategy

In agent migration, we consider the three strategies: Heavyweight Agent Migration (HAM), Flyweight
Agent Migration (FAM), and Lightweight Agent Migration (LAM).

4.3.1. Heavyweight Agent Migration

In the HAM strategy, an agent will carry the components belonging to Type 2 and Type 3 while
migrating, except for those specified as "carried=’No’"∗∗ in the ASCC profile. Figure 15(a)
illustrates an example. Agent migration is a procedure that serializes object instances comprising
a whole agent into a byte array, and then sends the serialized binary data to the target server.
Upon receiving it, the receiving server reconstructs the agent from the byte array.

Suppose that an application is carried with two functions: fun 1 and fun 2. fun 1 can be implemented
by components comp 1 and comp 2, and fun 2 can be realized by comp 3 and comp 4. Figure 16 exhibits
the results of the HAM strategy applied to agent migration. The components comp 1–4 are carried
with agent migration. When the agent reaches CAAS server 2, the server appropriately adapts the
applications carried by the agent. For function fun 1, the component comp 1 is suitable for the context
of the user device used previously. However, it is not suitable for that of the other used subsequently.
As a result, the component comp 2 is chosen to substitute comp 1.

Figure 17 shows the HAM algorithm. At the transmitter side, the immoveable components
are detached and then their IDs are recorded into an absent component array in an agent state S.

∗∗The term ‘not carried’ means nullifying the object references in the implementation code.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1368 T.-H. KAO AND S.-M. YUAN

ImageCache
Size

Tailor
Resizer

Transcoder Cache
Image

Retriever
Image

Transmitter

Data

Access

Image

Gathering

JPEG

Retriever

GIF

Retriever

PNG

Retriever

ImageCache

Transcoder Cache
Image

Retriever
Image

Transmitter

Data

Access

Image

Gathering

ImageCacheResizer

Transcoder Cache
Image

Retriever
Image

Transmitter

Data

Access

Image

Gathering

GIF

Retriever

(a)

(b) (c)

Figure 15. The structure of the application ImageGathering by using three strategies: (a) using
HAM, (b) using FAM, and (c) using LAM.

Agent Body

Agent State

comp 1 Comp 2

fun 1

Comp 3 Comp 4

Fun 2

Application

1

Agent Body

Agent State

comp 1 comp 2

fun 1

comp 3 comp 4

fun 2

Application

1

CAAS server 1 CAAS server 2

Agent Body

Agent State

comp 1 comp 2 comp 3 comp 4

Application

1

fun 1 fun 2

Figure 16. Agent migration using HAM.

While accepting the agent on the receiver side, the receiving server will retrieve the application IDs
from the agent state and record them into array A (lines 1–2). If, for each function, a certain component
implementing this function is unsuitable, another proper component will be chosen to substitute for that
component by means of DECIDE-PROPER-COMPONENT(A[i], F[j], T, Q, D). Eventually, line 16
switches each unsuitable attached component to a more appropriate one for each function F [j] of an
application A[i] in the agent G.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1369

G: an agent; S: the agent state of the agent G; A: an array recording IDs of the applications carried
by the agent G; F : functions comprise an application A[i]; T : a previous context profile; Q: a current
context profile; C: an array recording IDs of un-carried components of an application A; D: a decided
components for functionsF of an application A[i]
HAM - TRANSMITTER(G)
1 GET - AGENT - STATE(G,S)
2 GET - APPLICATION - IDs(S,A)
3 for i ← 0 to length[A]
4 do GET - FUNCTION - IDs(S,A[i], F)
5 for j ← 0 to length[F]
6 do DETACH - IMMOVEABLE - COMPONENT(G,A[i], F [j], C)
8 for k← 0 to length[C]
8 do ADD - TO - ABSENCE - COMPONENT(G,S, A[i], F [j], C[k])
9 return G

HAM - RECEIVER(G,T, Q)
10 GET - AGENT - STATE(G,S)
11 GET - APPLICATION - IDs(S, A)
12 for i ← 0 to length[A]
13 do GET - CHANGED - OR - ABSENCE - FUNCTION - IDs(S, A[i], F)
14 DECIDE - PROPER - COMPONENT(A[i], F, T , Q, D)
15 for j ← 0 to length[D]
16 do SWITCH - COMPONENT - TO(G,A[i], F [j], D[j])
17 return G

Figure 17. The algorithm of HAM.

4.3.2. Flyweight Agent Migration

The principle of this strategy is to minimize the data size needed to transfer an agent between servers.
In other words, the components, except for those classified to Type 2 and Type 3 and indicated as
"carried=’Yes’", are not carried with agent migration. Figure 18 illustrates this example since,
except for the component Image Cache, no component is carried with agent migration. This is because
Image Cache is Type 2 and declared "carried=’Yes’", but the other components are the cases
in either Type 1 or Type 2/3 components declared "carried=’No’" (see Figure 3). Figure 19
illustrates that the components comp 1–4 are not carried since these components are classified to
Type 2/3 but not specified "carried=’Yes’". Then, in CAAS server 2, for each function, proper
components are decided upon. Additionally, their object instances are reconstructed if necessary.

The algorithm of FAM is shown in Figure 20, where components, except for the Type 2/3
components specified "carried =’Yes’", are not carried in agent migration. At the acceptance
of the agent, the server can examine the missing components (retrieved into array F). After deciding
upon proper components for each function in line 14, the receiver creates object instances for those

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1370 T.-H. KAO AND S.-M. YUAN

Agent Body

Agent State

comp 2

fun 1

comp 4

fun 2

app 1

Agent Body

Agent State

comp 1 comp 2

fun 1

comp 3 comp 4

fun 2

app 1

CAAS server 1 CAAS server 2

Agent Body

Agent State

fun 1 fun 2

app 1

Figure 18. Agent migration using FAM.

Agent Body

Agent State

comp 2

fun 1

comp 4

fun 2

app 1

Agent Body

Agent State

comp 1

fun 1

comp 3

fun 2

app 1

Agent Body

Agent State

comp 1

fun 1

app 1

CAAS server 1 CAAS server 2

comp 3

fun 2

Figure 19. Agent migration using LAM.

in F , and plugs the suitable ones into their corresponding functions (in lines 15–16). However, there
is likely to be a problem: the required classes (the user-defined subclasses of Component) are not
found. If this problem occurs after an agent migrates, the needed classes can be loaded through the
component manager. Details of this will be given in Section 4.4.

4.3.3. Lightweight Agent Migration

The substance of this strategy is that one component is carried for each function in an application,
except for Type 1 components, when agents migrate. A possible method we propose is to carry
the only components which implement its corresponding functions in agent migration. Figure 15(c)
illustrates this strategy, where only the components implementing their corresponding functions are
carried. Except for Type 1 components (Data Access and Image Transmitter), the components of the
functions Image Retriever, Transcoder, and Cache are carried.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1371

FAM - TRANSMITTER(G)
1 GET - AGENT - STATE(G,S)
2 GET - APPLICATION - IDs(S,A)
3 for i ← 0 to length[A]
4 do GET - FUNCTION - IDs(S, A[i], F)
5 for j ← 0 to length[F]
6 do DETACH - ALL - EXCEPT - CARRIED - COMPONENT(G,A[i], F [j], C)
7 for k← 0 to length[C]
8 do ADD - TO - ABSENCE - COMPONENT(G,S,A[i], F [j], C[k])
9 return G

FAM - RECEIVER(G,T,Q)
10 GET - AGENT - STATE(G,S)
11 GET - APPLICATION - IDs(S,A)
12 for i ← 0 to length[A]
13 do GET - CHANGED - OR - ABSENCE - FUNCTION - IDs(S,A[i], F)
14 DECIDE - PROPER - COMPONENT(A[i], F, T ,Q, D)
15 for j ← 0 to length[D]
16 do ATTACH - COMPONENT - TO(G,A[i], F [j], D[j])
17 return G

Figure 20. The algorithm of FAM.

Likewise, in Figure 19, before the agent migrates, the components comp 2 and comp 4 are detached
from the functions fun 1 and fun 2, respectively. While the agent arrives in CAAS server 2, comp 2 and
comp 4 are chosen as the proper components for fun 1 and fun 2, individually. Therefore, instances of
the two components will be reconstructed, and then attached to their corresponding functions.

Figure 21 presents the algorithm. At the transmitter side, line 6 detaches all components, except for
the Type 2 and Type 3 components implementing their functions. Their IDs are recorded to an agent
state S (line 8). When accepting the agent, the proper components will be determined and substitute
for the components that are absent or unsuitable, as shown in lines 13–16.

4.3.4. Comparison

In this section, we tested these three strategies to see how the size and number of components
affect time cost (ms) of agent migration and application adaptation. In the experiments, we consider
HAM, FAM and LAM under the worst case. In addition, in LAM we measure cases of LAM under
the best case. The best case means that all components carried by an agent do not need to be
replaced. The worst case indicates that all components carried by an agent need to be switched to
the proper components. Figure 22 shows the experimental setting. We measure the round trip time
during which CAAS server 1 informs CAAS server 2 to instruct an agent to migrate successfully.
To analyze the results accurately, we measure each case 10 000 times to compute the average of the
results.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1372 T.-H. KAO AND S.-M. YUAN

LAM - TRANSMITTER(G)
1 GET - AGENT - STATE(G,S)
2 GET - APPLICATION - IDs(S, A)
3 for i ← 0 to length[A]
4 do GET - FUNCTION - IDs(S, A[i], F)
5 for j ← 0 to length[F]
6 do DETACH - ALL - EXCEPT - IMPLEMENTING - COMPONENT(G,A[i], F [j], C)
7 for k← 0 to length[C]
8 do ADD - TO - ABSENCE - COMPONENT(G,S, A[i], F [j], C[k])
9 return G

LAM - RECEIVER(G,T, Q)
10 GET - AGENT - STATE(G,S)
11 GET - APPLICATION - IDs(S,A)
12 for i ← 0 to length[A]
13 do GET - CHANGED - OR - ABSENCE - FUNCTION - IDs(S,A[i], F)
14 DECIDE - PROPER - COMPONENT(A[i], F, T , Q,D)
15 for j ← 0 to length[D]
16 do SWITCH - COMPONENT - TO(G,A[i], F [j], D[j])
17 return G

Figure 21. The algorithm of LAM.

(1)

(2)

100 M Ethernet

CAAS 1:
 CPU : Intel(R) Pentium(R) 4 2.40GHz
 Memory : 512M Bytes RAM
 Network Adapter : Intel(R) PRO/100 VE

Network Connection
 Operating system : Microsoft Window 2000

Service Pack 3
 Java Virtual Machine : J2SE 1.4.2

CAAS 2:
 CPU : Intel(R) Pentium(R) 4 2.40GHz
 Memory : 1 ,024M Bytes RAM
 Network Adapter : Intel(R) PRO/100 VE

Network Connection
 Operating system : Microsoft Window XP Professional

Service Pack 1
 Java Virtual Machine : J2SE 1.4.2

Figure 22. The experimental setting.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1373

Table II. The results of the first measurement (one application, one
function, two components).

Component size (bytes) HAM FAM LAM-B LAM-W

512 3.134 3.195 3.027 3.125
1024 3.345 3.409 3.249 3.253
2048 3.911 4.136 3.633 3.890
4096 4.250 4.333 4.192 4.284
8192 6.514 6.663 6.431 6.483

16 384 8.472 8.627 8.494 8.556
32 768 15.153 14.463 14.158 14.380
65 536 28.467 28.242 27.942 28.063

131 072 124.181 122.134 121.713 122.29

Table III. The results of the second measurement (one application,
one function, one component).

Component number HAM FAM LAM-B LAM-W

50 7.016 7.021 6.816 6.800
75 9.895 10.050 9.793 9.825

100 13.866 14.656 12.473 12.029
125 14.160 14.340 14.018 14.045
150 19.667 20.514 19.430 19.444
175 20.482 20.994 20.712 20.732
200 21.844 22.141 21.931 21.841
225 24.719 24.323 24.378 24.380
250 28.770 29.221 28.443 28.422

We experiment on the strategies through two measurements. First, we let an agent carry an
application containing one function, which is implemented by two components. We consider the cases
of HAM, FAM, LAM-B, and LAM-W by gradually increasing the size of the two components from
512 to 128 kB. Table II and the upper part of Figure 23 demonstrate the time cost (ms) of the cases.
As we can see, FAM performs worse than the other three; on the whole the cases of LAM-B and
LAM-W cost less than the others, and LAM-B performs best. Second, we let an agent carry an
application composed of one function, which can be implemented by 50, 75, 100, . . . , 250 components
separately. In Table III and the lower part of Figure 23, the results indicate that HAM and FAM perform
worse than LAM-B; while LAM performs better than the others. In this situation, the time needed
increases with an increasing number of components. This is because each of the algorithms performs a
certain operation one by one for each component attached. For example, the HAM algorithm detaches
all of the immoveable components.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1374 T.-H. KAO AND S.-M. YUAN

Figure 23. The experimental results for HAM, FAM, LAM-B, and LAM-W.

4.4. Class loading for composing application

We have mentioned that the proper components can be reconstructed and attached to implement
their corresponding functions. Nevertheless, we encounter the problems of how to bind the necessary
components to applications of agents, or how to distribute the classes and the information of the
deployed applications to the CAAS server. In this section we will explain two methods used in our
current system to solve these problems.

However, the problem that the required classes cannot be found may occur in class loading after an
agent migrates to a new CAAS server. To solve this, we have designed two approaches: application
preloading and application remedying. Application preloading is to load in advance the classes that
the applications need. We can make the component managers on CAAS servers load the classes of
applications while the applications are deployed into the repository service. After that, object instances
of the classes required can be created and initialized without loading classes. Suppose that an agent
migrates to a CAAS server, and the applications carried are adapted, we can use application preloading
when these classes are not found. A CAAS server can retrieve the required classes to declare their

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1375

Repository Service

Manager

CAAS 1

CAAS 2

CAAS n

.

.

.

Programmer

2

3

2

2

4

5

1

Context-aware

adaptation service tier

Repository

Service tier

Figure 24. Application preloading.

object instances of the classes through the component manager. Figure 24 exhibits the scenario of
application preloading. A programmer first finishes developing an application, and afterwards he
deploys the application into the repository service. While receiving the deployment, the repository
service will send the notifications to CAAS servers via IP multicasting. Once the CAAS servers get the
notification, they will load the classes of the deployed applications.

However, in this scenario, the other problem is that the server has not loaded the required classes
when an agent arrives in a CAAS server. This circumstance occurs right after the migration of the agent
to a server which has not yet received the information of the deployed applications. This scenario
might occur when the server is recovering from a crash. Therefore, we can solve this problem via
application remedying. Provided that an agent carries back-end module 1 and migrates to CAAS
server 2, an object instance of a certain class will have to be constructed. Therefore, two flows,
1→ 2→ 3→ 4→ 4→ 9→ 10 and 1→ 2→ 5→ 6→ 7→ 8→ 9→ 10→ 11, are executed
to complete this work, as shown in Figure 25. The former is where the component manager has finished
loading the classes before the agent migrates. The latter is where the required classes are not found at
that moment; thereupon, they will be loaded from the repository service via URLClassLoader, and
then stored in the component repository at the CAAS server.

4.5. Component replacement issues

After application adaptation, invoking the same method will yield different results. Figure 26(a), for
example, illustrates that after adaptation the component GIF Retriever replaces the component JPEG
Retriever to implement the function Image Retriever. Invoking the same method of Image Retriever
after adaptation, Object A can obtain a GIF image. Its implementation is shown in Figure 27. An object
instance of the class Function can record a number of references of its candidate components.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1376 T.-H. KAO AND S.-M. YUAN

Back-end Module 1

Context-Aware Adaptation Server 2

Component

Manager

Agent

Manager

Component

Factory

Context-Aware Adaptation Service

D
a
ta

 A
cc

ess A
g
e

n
t

Repository Service

Manager

1

2

3 4

9

10

5

8

6

7
11

Figure 25. Loading classes through the repository service.

In addition, within a Function class a reference is used to keep the component that is implementing
this function. If a method of a front-end module is invoked, the invocation will be sent to its back-
end module. Accordingly, the method invoke() of the object reference (currentComp) kept in
this back-end module will be invoked, as shown in lines 8–12. When the component implementing
the function is replaced with another component, line 5 will be executed to change the kept object
reference. Thus, if line 8 is invoked again, the result returned will be that of invoking the method
invoke() of the new component. Therefore, in our system each user-defined component needs to
implement the method invoke() (line 8) of an interface IComponent. As a result, we can invoke
the same interface, and then our system can invoke the method invoke() of the component that
currently implements this function.

Although adapting these components can simplify the programming, it might lead connections and
data to change after application adaptation. For example, in Figure 26(b) the function Cache retains
certain images, but the same result may not be retrieved after adaptation due to the replacement by
Image Cache 2. On the other hand, certain components, connecting to resources and objects (TCP/IP
links, HTTP request/reply, database connections), are treated as Type 1 components in our system.
While a transaction is being executed or messages are delivered (in Execution state) via Type 1
components, no migration and adaptation of the agent can be performed. In some situations, new
instances of the components can be established to continue execution of the same process after
migration or adaptation. Figure 26(c) shows this example. In it, the component HTTP Connector 1
of the function Image Transmitter is substituted for HTTP Connector 2 after the agent migration, and
images can be retrieved. However, the process of Figure 26(c) cannot guarantee the completeness of
the whole transaction. Thus, exploiting Type 1 components, programmers can specify the components
"unchanging=’Yes’" in the ASCC profile and let agents anchor at a server without movements
through registerSynchronous() in the API of the front-end module. Accordingly, agents do not
follow their owners, and also components cannot be replaced. Briefly, when using Type 1 components

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1377

Image

Retriever

JPEG

Retriever

Image

Retriever

GIF

Retriever

Object AObject A

(a)

ImageCache

1

Cache

ImageCache

2

Cache

HTTP

Connector

1

Image

Transmitter

HTTP

Connector

2

Image

Transmitter

(b) (c)

Figure 26. Cases of component replacement.

to connect to certain resources and Type 2 components to retain information, programmers need to
notice the semantics of the adaptation on components.

5. CONTEXT-AWARE ADAPTATION

The use of the context profile to decide upon proper components in application adaptation is a
critical issue. In this paper, we aim to develop an attribute-based algorithm that chooses components
appropriately by using CC/PP and WAP UAProf profiles.

5.1. CC/PP and WAP UAProf

Figure 28 illustrates a profile of WAP UAProf in Resource Description Framework RDF
format. RDF is a general-purpose language for representing information on the Web.
This description covers six parts describing some characteristics of devices: Hardware Platform,

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1378 T.-H. KAO AND S.-M. YUAN

1<?xml version={"}1.0{"}?>
2 <rdf:RDF ...>
3 <rdf:Description rdf:ID={"}Nokia8310{"}>
4 <prf:component>
5 <rdf:Description rdf:ID={"}HardwarePlatform{"}>
6 <rdf:type rdf:resource= {"}http://www.wapforum.org/profiles
7 /UAPROF/cppschema-20010430{\#}HardwarePlatform{"}/>
8 <prf:Keyboard>PhoneKeypad</prf:Keyboard>
9 <prf:NumberOfSoftKeys>2</prf:NumberOfSoftKeys>
10 <prf:ScreenSize>84x30</prf:ScreenSize>
11 <prf:ScreenSizeChar>10x3</prf:ScreenSizeChar>
12 <prf:StandardFontProportional>
13 Yes
14 </prf:StandardFontProportional>
15 <prf:Vendor>Nokia</prf:Vendor>
16 <prf:Model>8310</prf:Model>
17 <prf:TextInputCapable>Yes</prf:TextInputCapable>
18 </rdf:Description>
19 </prf:component>
20 ...
21 </rdf:Description>
22 </rdf:RDF>

Figure 27. The XML serialization form of the profile in Figure F28.

Software Platform, Network Characteristics, BrowserUA, WAP Characteristics, and Push
Characteristics. As in Figure 28, Hardware Platform specifies the hardware properties of devices.
These properties include prf:Keyboard, prf:NumberOfSoftKeys, prf:ScreenSize, and
prf:ScreenSizeChar, whose values can be PhoneKeypad, 2, 84x30, or 10x3, respectively.
Figure 27 demonstrates the XML serialization form of the context profile in RDF.

5.2. Attribute-based component decision algorithm

Take a profile Q for example. The profile Q includes a set of attributes, which can be expressed
as {ai | 1 � i � n}, where ai and n denote an attribute and the total number of the attributes
in the profile individually. Let domain(ai) = {avi,ki | 1 � i � n and 1 � ki � vi} indicate
the domain of the attribute ai , and value[ai] be the value of the attribute, where vi is the number
of possible values of ai . For instance, Figure 27 involves the attribute TextInputCapable, which has
value[TextInputCapable] = yes and domain(TextInputCapable)= {yes,no}.

An agent body contains a number of applications. An application comprises one or more
functions fun1, fun2, . . . , funm. Each of them can be implemented by at least one component,
compi

1, compi
2, . . . , compi

ri
, where 1 � i � n and ri denotes the number of the user-defined

components implementing funi . For example, fun1 can be implemented by components comp1
1 and

comp1
2 (illustrated in Figure 29). Each component compx

y has a constraint set CSx,y , which contains

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1379

Nokia8310

Hardware

Platform

Software

Platform

Network

Characteristics

BrowserUA

Wap

Characteristics

Push

Characteristics

prf:component

prf:component

prf:component

prf:component

prf:component

prf:component

prf:Keyboard

prf:NumberOfSoftKeys

prf:ScreenSize

prf:ScreenSizeChar

prf:StandardFont

Proportional

prf:Vendor

prf:Model

prf:TextInputCapable

rdf:type
http://www.wapforum.org/profiles/

UAPROF/ccppschema-

20010430#HardwarePlatform

PhoneKeypad

2

8310

Nokia

10x3

Yes

84x30

Yes

Figure 28. A segmentation of Nokia 8310’s WAP UAProf profile.

zero or more tuples (ai, avi,ki), where 1 � i � n and 1 � ki � |domain(ai)|, annotated under each
component shown in Figure 29. We can accomplish the testing of a component to see if it can be chosen
to implement its corresponding function by using this constraint set. For a component compx

y , if for the
given profile Q, compx

y can be chosen, it must be true that each attribute value avi,ki of (ai, avi,ki)

in its CSx,y is equal to the value of the same attribute ai in Q. If so, we say that the component
is satisfied. For example, assume that a certain profile and two components comp1

1 and comp1
2, and

the function fun1 are given. The component comp1
1 has the constraint set {(ColorCapable, yes)} and

comp1
2 has {(ColorCapable, no)}. Because the value of the same attribute ColorCapable in this profile

is yes, comp1
1 is satisfied. comp1

1 can be chosen to implement fun1 accordingly. A constraint set, in
implementation, can be established by a <constraints> element in the ASCC description. As in
Figure 3, lines 9–10 describe two elements, <prf:ImageCapable> and <prf:CcppAccept>.
Therefore, the component comp1

1 is declared suitable for processing JPEG files. As a result, the
constraint set CS1,1 = {(ImageCapable, yes), (CcppAccept,image/jpeg)} will be generated.

A component decision tree can be seen as a tree hierarchy. It comprises a number of attribute nodes,
each of which has several branches linked to other attribute nodes as its child nodes. Let ani,di indicate

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1380 T.-H. KAO AND S.-M. YUAN

.

.

.

Function Component Component Decision Tree

1fun

1

1comp

1

2comp

2

1comp

2

2comp

1,1av 2,1av1,1an

1,2an

1,3an

1,2av 2,2av

1,3av 2,3av

2,3an

1,3av
2,3av

2,2an

3,3an

1,2av 2,2av

1,3av 2,3av

4,3an

1,3av 2,3av

cursor
2fun

)},(),,{(2,222,11 avaava

)},(),,{(1,221,11 avaava

)},{(1,22 ava

)},{(2,22 ava

Figure 29. A component decision tree and its linked components.

an attribute node, which is semantically equivalent to the attribute ai with the same name in the given
profile Q. Let avi,ki denote a branch of an attribute node ani,di , where 1 � ki � |domain(ai)|, di is
between 1 and the component number at the same level in a tree, and 1 � i � n.

Each attribute node ani,di has a linked component set LCi,di that includes the components associated
via dotted lines in the component decision tree, illustrated in Figure 29. As in the figure, the linked
component sets of the attribute nodes an3,1 and an3,2 are LC3,1 = {comp1,1, comp2,1} and LC3,2 =
{comp2,2}, respectively.

To operate a component decision tree, there are a pointer cursor and two operations,
NEXT(ani,di , ani+1,di+1) capable of moving cursor from an attribute node ani,di to its child node
ani+1,di+1 , and VISIT(ani+1,di+1) representing cursor visiting an attribute node ani+1,di+1 . Taking
Figure 29, for example, the pointer cursor will point to the attribute an3,1 when the operation
NEXT(an2,1, an3,1) is applied; thereupon an3,1 is visited, denoted by VISIT(an3,1). Furthermore,
let t denote a traverse from the root to a certain leaf node. A traverse t , a sequence of VISIT()

and NEXT(), can be expressed as SEQ(t) = <VISIT(an1,1), NEXT(an1,1, an2,d2), VISIT(an2,d2),
NEXT(an2,d2, an3,d3), . . . , NEXT(ani,di , ani+1,di+1), . . . , VISIT(ann,dn)>. In Figure 29, for instance,
a traverse t starts from the attribute node an1,1 to the attribute node an3,1. Thus, SEQ(t) is equal to
<VISIT(an1,1), NEXT(an1,1, an2,1), VISIT(an2,1), NEXT(an2,1, an3,1), VISIT(an3,1)>. Accordingly,
while a traverse t is built, the linked component set LCi,di of each attribute node ani,di visited can be
united to establish a proper component set

P(t) =
⋃

for each i and di,
where VISIT(ani,di

) in SEQ(T)

LC(ani,di).

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1381

Function Component Component Decision Tree

JPEG

Retriever

GIF

Retriever

PNG

Retriever

Image

Capable

CCPP

Accept

Java
Platform

yes

image/jpeg

image/gif

MIDP/1.0-
compatible

image/png

no

Java
Platform

Java
Platform

Image

Retriever

)},(

),{(

image/jpegCcppAccept

,yesleColorCapab

)},({ image/figCcppAccept

)}1.0,(

),,(

),{(

e-compatiblMIDP/rmJavaPlatfo

image/figCcppAccept

,yesleColorCapab

cursor

Figure 30. An instance of a component decision tree on the right-hand side, and the associated components of the
application ImageGathering on the left-hand side.

For example, suppose that there is a profile {ImageCapable, CCPPAccept, JavaPlatform, . . . }, and
their domains can be expressed as domain(ImageCapable)={yes,no}, domain(CCPPAccept)={yes, no},
etc. Figure 30 demonstrates the structure of the functions and components of an appli-
cation. The function Image Retriever can be implemented by three components: JPEGRe-
triever, GIFRetriever, and PNGRetriever. The constraint set of the first component is CS1,1 =
{(ColorCapable, yes), (CcppAccept, image/jpeg)}, and that of the second component is CS1,2 =
{(ColorCapable, yes), (CcppAccept, image/gif)}. Moreover, in the component decision tree, each
attribute node ani,di has a number of branches and a linked component set LCi,di . As in Figure 30,
the attribute node ImageCapable has two branches, yes and no. The attribute node CCPPAccept has
three branches encompassing image/jpeg, image/gif, and image/png. In addition, the attribute node
an3,1 is a JavaPlatform whose linked component set is LC3,1 = {JPEGRetriever}, and that of an3,2 is
LC3,2 = {ImageRetriever}.

Let us assume that a traverse t is made by moving cursor from the root an1,1 (ImageCapable)
to the leaf node an3,1 (JavaPlatform). As a result, the sequence SEQ(t) = <VISIT(ImageCapable),
NEXT(ImageCapable, CCPPAccept), VISIT(CCPPAccept), NEXT(CCPPAccept,JavaPlatform),
VISIT(JavaPlatform)> and the proper component set of t , P(t) = {JPEGRetriever} are established.

The problem to be solved through the attribute-based component decision algorithm is how to
decide upon a proper component to implement each function f if given an application p and each
function f of the application p; or how to adapt an application p. This is because SEQ(t) and P(t)

will be generated after traversing from the root to a leaf node. In SEQ(t), NEXT(ani,di , ani+1,di+1)

implies VISIT(ani,di) and value[ani,di] = avi,di . Therefore, if a component compx
y exists in P(t), then

∀i, ki value[ani,di] = avi,di = value[ai], where ani,di = ai and ai in CSx,y . In other words, for a

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1382 T.-H. KAO AND S.-M. YUAN

traverse t the proper component set P(t) contains the components which are satisfied. Specifically
speaking, given an application, if a suitable component exists for each function, this component can be
chosen from P(t). Moreover, if there are two or more suitable components at the same time, the last-
examined component will be chosen as the default. This algorithm solves the problem and eliminates
the need for traversing a tree from the root to a leaf node. Once sufficient components exist in the proper
component set P(t), traversing a component decision tree can terminate at some internal attribute node
which is not a leaf node.

In implementation, instead of realizing this algorithm by using the data structure tree, we realize
this algorithm by means of a linking list. The reason for this is that using the tree as the data structure
consumes more memory space to choose proper components. For each attribute node ani,di at the
same level of a component decision tree, the information recorded for the nodes seems different,
except for the linked component set LCi,di . However, the information is essentially identical. Take the
previous profile Q and the tree in Figure 29 as an example. At level 3, an3,1, an3,2, an3,3, and an3,4
are semantically equivalent to the attribute a3 in the profile Q. Therefore, to implement the concept
tree, we use a linking list. In this way, for each level in a tree, attribute nodes ani,di , for all di , where
1 � i � n and 1 � di � vi , are regarded as one node in a linking list. Figure 31 represents a
linking list that starts from the root attribute node connecting to its child attribute node in the tree as
the next node, which also links to its child node as the next node, and so on. This hierarchy of the
linking list equals that of the component decision tree. In this list, an attribute node ani has two links:
one connects to a child attribute node ani+1; the other binds its linked component set (a hash table
in practice). In Figure 31, for example, the linking list, kept by a table index, starts from the attribute
node an1 to the attribute an4, each of which binds a linked component set. For instance, the attribute
node an3 retains a link component set containing two components comp1

1 and comp1
2.

Figure 32 illustrates the implementation of the component decision tree (Figure 30). Symmetrically,
by traversing from the root node Image Capable to the node Java Platform, the proper component JPEG
Retriever for the function Image Retriever can be chosen.

In our system, we apply an attribute-based component decision algorithm to the application
adaptation. Applications carried by the agent are adapted when the agent migrates to a new CAAS
server. Implementing the component decision tree by a linking list simplifies the maintenance of
attribute nodes. The space complexity is the sum of linked component hash tables |∑all di

LCi,di | for
all i, where 1 < i � M . It is less than nm ∗M , where nm is the number of attributes, and M is the
size of the maximum linked component hash table. M is a constant. Therefore, the space complexity
is O(nm).

In terms of time complexity, the time complexity is constant for the attribute-based algorithm as
the processing time does not depend on the number of components. By contrast, we can consider
a simple algorithm that decides upon proper components by examining each component. Thus, we
inspect the constraint set CSx,y for each component compx

y . This costs O(nc ∗ nm) worst-case time,
where nc denotes the total number of components of an application, and nm = max(|CSx,y |) indicates
the total number of attributes. The cost of the attribute-based algorithm is merely affected by the
length of the linking list (the height of the component decision tree). In addition, the link can be
built from the attributes in CSx,y for all components compx

y in an application instead of generating
it from all attributes in a given profile. Therefore, its time complexity costs nm = max(|CSx,y|).
This means that the time complexity is dominated by the size of the maximum constraint set. As it can
be seen, using the attribute-based algorithm to support decisions about component selection facilitates

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1383

Component Decision Tree

Table

Index

Attribute

Node

Linked

Component

Hash Table

Function 1fun

Component
1
1comp 1

2comp
1
3comp

2an 4an1an 3an

Figure 31. The implementation (linking list) of a decision tree.

programming of adaptive applications. It can support a large-scale system with a large number of
diverse implementations of particular functions.

5.3. Hash tables in the application context

We explained the algorithm in the previous section. The algorithm uses auxiliary hash tables providing
the functionalities that include choosing the component, creating the component, and constructing
application for the application adaptation. Therefore, the time cost of searching for the required
components is decreased to O(1) constant time.

Figure 33 illustrates the structure of these hash tables in an ApplicationContext class.
This class contains the application structure and component constraints generated from an ASCC
profile and keeps them by using hash tables. In the top-left of this figure, an index hash table is

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1384 T.-H. KAO AND S.-M. YUAN

Component Decision Tree

Table

Index

Attribute

Node

Linked

Component

Hash Table

Function

Component
JPEG

Retriever

GIF

Retriever

PNG

Retriever

Image

Capable
CCPP

Accept

Java
Platform

Image
Retriever

)},(

),{(

image/jpegCcppAccept

,yesleColorCapab)},({ image/figCcppAccept

)}compatible-MIDP/1.0orm,(JavaPlatf

),,(

),{(

image/figCcppAccept

,yesleColorCapab

Figure 32. The linking list of the decision tree illustrated in Figure 30.

associated with the hash tables: a changed components hash table, a component hash table, a function
hash table, and so forth. Furthermore, it has a component context table, which includes stateful/stateless
component hash tables, relative/irrelative component hash tables, etc.

A function hash table records the functions that make up an application, and a component hash table
retains the components capable of implementing these functions. Through a changed component hash
table and a component context table, information on components can also be retrieved. The former is
used to retrieve the information related to the components needed to switch in application adaptation.
The latter can be used to get components with particular semantics depending on their characteristics,
including stateful/stateless, relative/irrelative, and moveable/immoveable. As in Figure 33, a stateless
component hash table keeps a number of pairs, each of which keeps two references: one is the reference
of a certain component and the other is its corresponding function. Component 1, for instance, is
declared a stateless component and fun 1 its corresponding function.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1385

.

.

.

device 1 device 2 device p

device 1

device 2

device p

. . .

.

.

.

fun 1

fun 2

.

.

.

fun m

Stateful Components

Hash Table

Stateless Components

Hash Table

Relative Components

Hash Table

Irrelative Components

Hash Table

Changed Components

Hash Table

Component

Hash Table

Function Hash Table

Component Decision Tree

Immoveable Components

Hash Table

Moveable Components

Hash Table

Component Context Tables

.

.

.

component 1

info.

component 4

info.

.

.

.

component n

info.

component 2

info.

component 3

info.

function 1

info.

function 4

info.

.

.

.

function m

info.

function 2

info.

function 3

info.

Table Index

Figure 33. Hash tables in an application context.

6. REMOTE DYNAMIC INVOCATION

We have designed APIs for the development of the front-end module (Figure 34) and the back-end
module (Figure 10). For programming on user devices, a programmer can use the IUserAgent
interface. Through the API, programmers can set the synchronous/asynchronous mode of their
personal agents through registerSynchrony(). Furthermore, we can obtain the Method object
associated with a method of an application in the back-end module by means of the getMethod()
method. In this way, if a programmer wants to let his front-end module invoke the method of the back-
end module, he can use getMethod() to get the method he wants by specifying the method name
as the parameter of getMethod(). Actually, while the invoke() method of the Method object
is invoked, the invocation is essentially serialized into a byte message and transmitted to the remote
back-end module. Figure 35 demonstrates the execution sequence of this procedure.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1386 T.-H. KAO AND S.-M. YUAN

+invoke(Params : java.lang.Object[]) : java.lang.Object[]

+...()

Method

+registerSynchrony(synchrony : boolean)

+sendMessage(msg : java.lang.String)

+getMethod(appID : java.lang.String, funID : java.lang.String) : Method

+...()

UserAgent

+registerSynchrony(synchrony : boolean)

+sendMessage(msg : java.lang.String)

+getMethod(appID : java.lang.String, funID : java.lang.String) : Method

+...()

<< >>

IUserAgent

*

1

in
in

in in

inin
in

in

in

<<interface>>

Figure 34. Application interfaces (APIs) on client devices.

:User Agent

:ClientInteractionAgent

:MyAgent

:RequestSolver

:AddComponent

Web Server

1: send

2: doGet()
3. solveRequest()

4:invokeMethod()

5: Add()

result back

an invocation to

6: send the

Figure 35. Sequence flow of remote dynamic invocation.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1387

To design applications in back-end modules, programmers can declare three kinds of user-
defined classes (MyAgent, MyApplication, and MyComponent, as mentioned in Section 3.3).
The first class can be used to construct a personal agent. An application carried by the agent can
be created through the MyApplication class. Further, the components of the application can
be derived from the Component class. Each of these classes has the substantial computational
logic of the application. Programmers can declare the subclasses of the Component class to
actualize the functions of applications. For instance, programmers can define AddComponent and
SubComponent components to sum and subtract two numbers, respectively.

Figure 35 exhibits a process flow of remote dynamic invocation. The front-end module and the
back-end module, in effect, run on a client device and on the server side, respectively. The classes
related to Agent, Function, Component can be referred to in Figure 10 (Section 3.3). Suppose
that there is a simple calculator application developed based on our system, users can add or subtract
two numbers. A user can input two numbers and then press a compute button to calculate the two
numbers by using the two components AddComponent or SubComponent. In this application,
we let the back-end module compute the two numbers using AddComponent when users utilize
Nokia 6600, or instead using SubComponent when users utilize Nokia 3300. This can be described
in the ASCC profile of the application. Depending on the description, CAAS servers can choose one of
the two components in application adaptation. We consider the following scenario. A user uses a J2ME-
enabled phone and inputs two numbers. After he presses the compute button, ClientDevice of the
front-end module of the application can send the serialized byte string of the invocation to the back-end
module. While receiving the message, the system component ClientInteractionAgent will
invoke invokeMethod() of the MyAgent class, and the method invoke() of the Function
object appointed thereupon. Subsequently, the component implementing this Function object
will be invoked. At that moment, if the user is utilizing Nokia 6600, the method invoke() of
AddComponent will be invoked; if instead he is utilizing Nokia 3300, that of SubComponent
will be invoked.

7. RELATED WORK

In our design, remote dynamic invocation acts to complete invocations between the front-end and
back-end modules. RMI, a method invocation on remote objects, is a widely used interaction
paradigm. However, not all devices support RMI. Java reflection [24] (Section 4.4) lets programmers
invoke the appointed method of the object determined dynamically at run-time. The mature RMI
and Java reflection techniques enable programmers to develop applications efficiently, but have not
been completely supported in mobile execution environments. For example, in the J2ME run-time
environment, Sun Microsystems has not defined the RMI mechanism in the J2ME specification.
Though Sun Microsystems defined the RMI interfaces on the CDC environment (an optional package
of CDC), it did not provide the RMI interfaces on the CLDC environment. As can be seen in Figure 2,
the devices being used in the CDC environment are PDA, Palm, Pocket PC, and Smart Phone, while
the devices with lower computational power only provide the CLDC environment.

Most mobile agent systems [25,26] provide abundant functions, including agent migration,
communication of agents with other agents and with the underlying system, as well as support for
security, transactions and controlling agents. For instance, MOLE [27] offers an agent migration

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1388 T.-H. KAO AND S.-M. YUAN

infrastructure with all of these functions, such as a protocol for fault-tolerant execution of mobile
agents, accounting and billing, and control algorithms for finding agents, terminating agents, and
orphan detection. Though complete functions support the mobile agent, adapting application according
to the characteristics of the small and handheld devices has not been provided yet.

Some previous research has focused on the intrinsic structure of mobile agents and mobility
behaviors of mobile agents, such as MobileSpaces [28]. MobileSpaces proposes agent hierarchy and
inter-agent migration. The former is so that an agent can have several child agents, each of which
also has agents as its child agents, and so on. The latter means that an agent is capable of migrating
into another computer or to within an agent. Also, this framework makes agents adaptable. It regards a
mobile agent as a component, and can combine a collection of agents into a single agent. Several agents
are organized hierarchically into one agent. Additionally, this compound mobile agent can be adapted
to the target environments. Although the hierarchical structure and adaptable concept for the mobile
agents are provided in this framework, it does not structure the application or consider the context-
aware adaptation for various mobile devices.

m-P@gent [27,29] provides environment-aware mobile agents capable of running on resource-
limited devices and appliances. In addition, it supports the run-time environment with mobile
applications on the mobile devices, and contains four subsystems—@Desk for the PC platform, @Palm
for the Palm device platform, @Pocket for the PocketPC platform, and @TINI for the TINI device
platform. Moreover, it divides a mobile agent into two parts: a core and add-on functional modules.
Then, it can adapt add-on modules of the agent to a run-time environment via a specific profile for each
run-time environment, such as the profile for J2SE and another profile for J2ME. Yet, this framework
lacks the ability to distribute the computational loading of applications on the small and handheld
devices. In other words, the capabilities of the applications on this mobile agent system are restricted
by the limitations of the devices. Furthermore, to adapt each component of the mobile agent, it is
necessary to describe the type and class of a component for each run-time environment. In our system,
only a description of the component constraints in an ASCC profile is needed for the same purpose.

On the other hand, some researchers [1,2,6] have explored the follow-me applications.
Harter et al. [2] describe a sensor-driven, or sentient, platform for context-aware computing that enables
applications to follow users while they move around a building. Takashio et al. [6] also propose a
mobile agent framework f -Desktop for the migration mechanisms of follow-me applications in an
ubiquitous computing environment and evaluate its basic performance. Even though the basic functions
of migration and adaptation of applications are provided, this framework does not concern the real
context profiles of mobile devices for adaptation, and does not help run applications on these mobile
and embedded devices.

In context sensing and modeling, Schmidt et al. have explored context acquisition from sensors [30],
and aim to model the context information [31,32]. Gray and Salber [31] present a way of analyzing
sensed context information formulated to help in the generation, documentation and assessment of the
designs of context-aware applications. Furthermore, to use CC/PP as the context information, Indulska
et al. [33] address a context model and a context management system able to offer pervasive systems,
and discuss the pros and cons of the CC/PP framework.

For developing context-aware applications, Dey et al. [34] describe a distributed software
infrastructure to support context-aware applications in the Aware Home, a prototype smart
environment. Their infrastructure is similar to the Situated Computing Service [35]. Both of them
discuss polling and notification mechanisms to impart application information of context changes.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1389

Kermarrec et al. [36] focus on a contextual object, a conceptual object model, for developing
applications toward adaptation on the continuous changes of the mobile environment. A contextual
object has a context-sensitivity list (similar to component constraints in our framework) for describing
the dependencies of an object and the kind of context that it senses. In addition, it has a reference
to some real object (e.g. HTML page, Java Class, etc.) to represent the value of this object in the
current context. A conceptual framework for context-aware applications in current mobile and Internet
environments has also been proposed [37]. The framework contains three parts. The first is the
context management part capable of sensing and aggregating data, and managing the set of context
groups. The second is the service management part that selects the appropriate services with context
information from the context management part, and returns the services to the adaptive user interface
part. The third is the adaptive user interface part, which provides users with the adaptive and Web-based
user interface with selected services. All of the frameworks can facilitate the development of context-
aware applications and a fundamental adaptation infrastructure for the applications on a ubiquitous
computing environment. Nevertheless, the weakness of their frameworks lies in the decision of the
appropriate component or service for application adaptation according to context information.

8. CONCLUSION AND FUTURE WORK

In summary, we have explained our focus on transmitting agents efficiently and adapting applications to
cope with the variability of user devices. By means of the front-end module and the back-end module,
the restrictions in developing applications on small and mobile devices can be decreased. Furthermore,
agents can synchronously migrate with their owners or be asynchronously anchored to their resident
server. To transmit the agent efficiently, we experiment on agent migration strategies, and use the
LAM as the default strategy for the agent migration. Additionally, by structuring applications in ASCC
profiles, and leveraging CC/PP and WAP UAProf frameworks, the attribute-based component decision
algorithm can choose the components suitable for the context of the user’s devices.

Currently, there are some issues that need addressing, including the replacement of the stateful and
relative components, the conflict of the component property declaration, the consistency between the
ASCC profile and the back-end module, and the lack of proper component declaration. Therefore, in the
future we will attempt to design a software development kit (SDK) to aid programming and consistency
checking. To further enhance this framework, some services related to the integration of this framework
will be discussed in the future. Transaction and security handling, as well as load balancing and
faulty recovery can be achieved by including services of distributed computing platforms, such as
J2EE [38]. The J2EE environment offers a distributed application model, a unified security model,
flexible transaction control, etc. In transaction, several invocations between the front-end module and
the back-end module of an application are regarded as an atomic unit. This transaction can be handled
through some particular operations, such as commit or abort, and the two phases commit protocol.
Security consists of authentication and authorization, which can be used to protect servers against
malicious applications, and vice versa. In addition to the methodologies, we will attempt to integrate
our framework with some mobile agent systems. IBM Aglet [25] and MOLE [26], for instance, have
full-fledged mechanisms of security, transaction, etc. Furthermore, we intend to exploit the context
sensing and modeling technologies to increase the use of contextual information toward adaptation in
ubiquitous computing environment.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

1390 T.-H. KAO AND S.-M. YUAN

ACKNOWLEDGEMENT

This work was partially supported by the National Science Council under grant No. NSC93-2752-E-009-006-
PAE, Advanced Technologies and Applications for Next Generation Information Networks (II)—Sub-project 5:
Network Security.

REFERENCES

1. Schilit BN, Adams N, Want R. Context-aware computing applications. Proceedings of the IEEE Workshop on Mobile
Computing Systems and Applications, Santa Cruz, CA, 1994; 85–90.

2. Harter A, Hopper A, Steggles P, Ward A, Webster P. The anatomy of a context-aware application. Mobile Computing and
Networking 1999; 59–68.

3. Chen G, Kotz D. A survey of context-aware mobile computing research. Technical Report TR2000-381, Department of
Computer Science, Dartmouth College, Hanover, NH, November 2000.

4. Cheverst K, Davies N, Mitchell K, Friday A, Efstratiou. Developing a context-aware electronic tourist guide: Some issues
and experiences. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2000; 17–24.

5. Asthana A, Cravatts M, Krzyanowski P. An indoor wireless system for personalized shopping assistance. Proceedings of
the IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, 1994; 69–74.

6. Takashio K, Soeda G, Tokuda H. A mobile agent framework for follow-me applications in ubiquitous computing
environment. Proceedings of the 21st International Conference on Distributed Computing Systems Workshops (ICDCSW
’01), Mesa, AZ, 2001.

7. Klyne G, Reynolds F, Woodrow C, Ohto H, Hjelm J, Butler MH, Tran L. Composite Capability/Preference Profiles
(CC/PP): Structure and vocabularies. W3C Working Draft, March 2003. http://www.w3.org/TR/CCPP-struct-vocab/.

8. Reynolds F, Hjelm J, Dawkins S, Singhal S. Composite Capability/Preference Profiles(CC/PP): A user side framework for
content negotiation. W3C Note, 1999. http://www.w3.org/TR/NOTE-CCPP/.

9. Hjelm H, Suryanarayana L. CC/PP implementors guide: Harmonization with existing vocabularies and content
transformation heuristics. W3C Note, December 2001. http://www.w3.org/TR/CCPP-COORDINATION/.

10. Ohto H, Hjelm J. CC/PP exchange protocol based on HTTP extension framework. W3C Note, June 1999.
http://www.w3.org/TR/NOTE-CCPPexchange.

11. Butler MH. Implementing content negotiation using CC/PP and WAP UAProf. External Technical Report HPL-2001-190,
2001. Available at http://www.hpl.hp.com/techreports/2001/HPL-2001-190.html.

12. AP Forum. User agent profiling specification, October 2001.
http://www.wapforum.org/tech/terms.asp?doc=WAP-248-UAProf-20011020-a.pdf.

13. Sun Microsystems. Java 2Platform micro edition technology for creating mobile device. Sun Microsystems, Inc, 2000.
14. JSR 118 Expert Group. JSR-000118 Mobile Information Device Profile 2.0 (Final Release), May 2002.

http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html.
15. Brickley D, Guha RV, McBride B. RDF Vocabulary Description Language 1.0: RDF Schema. W3C Working Draft, January

2003. http://www.w3.org/TR/rdf-schema/.
16. Lassila O, Swick RR. Resource Description Framework (RDF) model and syntax specification. W3C Recommendation,

February 1999. http://www.w3.org/TR/REC-rdf-syntax.
17. Maruyama H et al. XML and Java. Developing Web Applications (2nd edn). Addison-Wesley: Reading, MA, 2002.
18. Wollrath A, Waldo J. Trail: RMI. http://java.sun.com/docs/books/tutorial/rmi/index.html.
19. Butler MH. DELI: A DElivery context LIbrary for CC/PP and UAProf. External Technical Report HPL-2001-260, February

2002. Available at: http://www.hpl.hp.com/personal/marbut/DeliUserGuideWEB.htm.
20. McBride B, Seaborne A, Carroll J. Jena Tutorial for Release 1.4.0, April 2002. http://www.hpl.hp.com/semweb/.
21. Geier J. Wireless LANs. SAMS, 2002.
22. Held G. Data Over Wireless Networks: Bluetooth, WAP, and Wireless LANs. McGraw-Hill: New York, 2001.
23. Wang J. Broadband Wireless Communications: 3G, 4G, and Wireless LAN. Kluwer Academic: Dordrecht, 2001.
24. Green D. Trail: The reflection API. http://java.sun.com/docs/books/tutorial/reflect/index.html.
25. Lange D, Oshima M. Programming and Deploying Java Mobile Agents with Aglets. Addison-Wesley: Reading, MA, 1998.
26. Baumann J, Hohl F, Rothermel K, Strasser M, Theilmann W. MOLE: A mobile agent system. Software—Practice and

Experience 2002; 32:575–603.
27. Takashio K, Mori M, Funayama M, Tokuda H. Constructing Environment-Aware Mobile Applications Adaptive to Small,

Networked Appliances in Ubiquitous Computing Environment (Lecture Notes in Computer Science, vol. 2574). Springer:
Berlin, 2002; 230–246.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

AUTOMATIC ADAPTATION OF MOBILE APPLICATIONS 1391

28. Satoh I. MobileSpaces: A framework for building adaptive distributed applications using a hierachical mobile agent system.
Proceedings of the 20th International Conference on Distributed Computing Systems (ICDCS 2000), Taipei, Taiwan, 2000.

29. Takashio K, Mori M, Tokuda H. m-P@gent: A framework of environment-aware mobile applications for small, networked
appliances. Proceedings of the 2002 IEEE 4th International Workshop on Networked Appliances, Gaithersburg, MD, 2001.

30. Schmidt A, Asante Aidoo K, Takaluoma A, Tuomela U, Van Laerhoven K, Van de Velde W. Advanced interaction in
context. Proceedings of the First International Symposium on Handheld and Ubiquitous Computing, Karlsruhe, Germany,
September 1999; 89–101.

31. Gray PD, Salber D. Modelling and using sensed context information in the design of interactive applications. Proceedings
of the 8th IFIP Working Conference on Engineering for Human-Computer Interaction (EHCI’01), Toronto, 2001.

32. Henricksen K, Indulska J, Rakotonirainy A. Modeling context information in pervasive computing systems. Proceedings of
the 1st International Conference on Pervasive Computing, Pervasive 2002 (Lecture Notes in Computer Science, vol. 2414).
Springer: Berlin, 2002; 169–180.

33. Indulska J, Robinson R, Rakotonirainy A, Henricksen K. Experiences in using CC/PP in context-aware systems.
Proceedings of Mobile Data Management, 4th International Conference, MDM 2003 (Lecture Notes in Computer Science,
vol. 2574). Springer: Berlin, 2003.

34. Dey AK, Salber D, Abowd GD. A context-based infrastructure for smart environments. Proceedings of the 1st International
Workshop on Managing Interactions in Smart Environments (MANSE ’99), 1999; 114–128.

35. Hull R, Neaves P, Bedford-Roberts J. Towards situated computing. Proceedings of the International Symposium on
Wearable Computers, 1997; 146–153.

36. Kermarrec A-M, Couderc P, Banatre M. Introducing contextual objects in an adaptive framework for wide-area global
computing. Proceedings of the 8th ACM SIGOPS European Workshop, September 1998; 229–236.

37. Jang S-I, Kim J-H, Ramakrishna RS. Framework for building mobile context-aware applications. Proceedings of the
1st International Conference on The Human Society and the Internet—Internet Related Socio-Economic Issues Citation,
4–6 July 2001.

38. Armstrong E et al. The J2EE. 1.4 Tutorial. Sun Microsystems, Inc., 16 November 2003.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:1349–1391

	1 INTRODUCTION
	1.1 Motivation
	1.2 Objectives and methodologies

	2 SYSTEM OVERVIEW
	2.1 Example scenario
	2.2 System infrastructure overview
	2.3 System architecture
	2.3.1 Client tier
	2.3.2 Context-aware adaptation service tier
	2.3.3 Repository service tier

	3 PERSONAL AGENT
	3.1 The state transfer of the agent
	3.2 The structure of an agent
	3.2.1 Agent state
	3.2.2 Agent body

	3.3 Application structure and component constraints

	4 AGENT MIGRATION
	4.1 Types of mobility
	4.2 Agent registration
	4.3 Agent migration strategy
	4.3.1 Heavyweight Agent Migration
	4.3.2 Flyweight Agent Migration
	4.3.3 Lightweight Agent Migration
	4.3.4 Comparison

	4.4 Class loading for composing application
	4.5 Component replacement issues

	5 CONTEXT-AWARE ADAPTATION
	5.1 CC/PP and WAP UAProf
	5.2 Attribute-based component decision algorithm
	5.3 Hash tables in the application context

	6 REMOTE DYNAMIC INVOCATION
	7 RELATED WORK
	8 CONCLUSION AND FUTURE WORK

