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ABSTRACT The difficulties in predicting di-
sulfide connectivity from protein sequences lie in
the nonlocal properties of the disulfide bridges
that involve cysteine pairs at large sequence sepa-
ration. Though some progress has been recently
made in the prediction of disulfide connectivity,
the current methods predict less than half of the
disulfide patterns for the data set sharing less
than 30% sequence identity. In this report, we use
the support vector machines based on sequence
features such as the coupling between the local
sequence environments of cysteine pair, the cys-
teines sequence separations, and the global se-
quence descriptor, such as amino acid content.
Our approach is able to predict 55% of the disul-
fide patterns of proteins with two to five disulfide
bridges, which is 11–26% higher than other meth-
ods in the literature. Proteins 2005;61:507–512.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION

Disulfide bonds are known to play an important struc-
tural role in stabilizing protein conformations by reducing
the number of unfolded conformations.1–7 Since disulfide
bonds impose geometrical constraints on the protein back-
bones, the disulfide patterns may well dictate to a certain
degree the overall three-dimensional (3D) protein struc-
tures. Indeed, recent works8–11 have shown that the
disulfide patterns are closely related to protein structures.
There are a number of efforts12–21 to model disulfide
bridges or disulfide-rich systems either from protein se-
quences or from 3D structures. On the other hand, disul-
fide bonds are more than just inert structural motifs: It is
known that the functions of some secreted soluble proteins
and cell-surface receptors depend on the cleavage of their
disulfide bonds.22 Therefore, the knowledge of the disul-
fide patterns is vital in the study of structure and function
of proteins.

Recently, computational biology has made significant
progress in the prediction of the bonding states from
protein sequences.23–26 A number of approaches based on
neural networks,23,25 statistical analysis,24 or support
vector machines26 (SVMs) have been shown to be quite
effective in predicting the bonding state of cysteine (around
81–90% prediction accuracy). However, predicting disul-

fide connectivity from protein sequences remains a chal-
lenging problem in computational biology. This is because
the disulfide bridges are nonlocal in nature (i.e., though
the two cysteines that form the disulfide bridge are close in
3D space, they may be far apart from each other in the
sequence). Hence, the prediction of disulfide connectivity
requires extracting information about spatial proximity of
cysteine pairs from one-dimensional protein sequences.
The problem is further complicated by the rapid increase
of possible disulfide patterns as the number of disulfide
bridges increases. For example, when the number of
disulfide bridges is two, there are three possible disulfide
patterns; but when the number of disulfide bridges in-
creases to five, the possible number of disulfide patterns
rapidly increases to 945. To the best of our knowledge, the
first attempt to predict the locations of disulfide bridges
directly from protein sequences was done by Fariselli and
Casadio.27 They reduced disulfide connectivity to the
graph matching (GM) problem in which the graph vertices
are equivalent to the residues of cysteine-forming disulfide
bridges, and the weight edges contact potentials. The
Monte Carlo (MC) simulated annealing method is used to
optimize the weights, and the disulfide bridges are then
identified by finding the maximal weight perfect matching.
We will refer to this method as MCGM. Fariselli et al.28

improved their results by using neural networks (NNs) to
predict the cysteine pairwise interactions. This method
will be referred to here as NNGM. Later, Vullo and
Frasconi29 used an ad hoc recursive neural network (RNN)
to predict disulfide connectivity. The performance of RNN
is comparable or better than MCGM and NNGM. In
general, these approaches predict 29–44% of the disulfide
patterns for a data set sharing less than 30% sequence
identity, after a four-fold cross-validation procedure. In
this report, we use SVMs based on feature vectors such as
the coupling between the local sequence environments of
cysteine pairs, the cysteine separations, and the amino
acid content. Our results compare favorably with those of
other approaches.27–29
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METHODS
Support Vector Machines

The SVM has found many applications26,30–32 in compu-
tational biology and has been shown to be a quite effective
machine-learning method. Since this method is quite well
known, we give only a brief description of the basic theory
behind the SVM. The SVM is basically a binary classifier.
Given training vectors xi, i � 1,…,l and a vector y defined
as yi � 1 if xi is in class I, and yi � �1 if xi is in the class II.
The support vector technique tries to find the separating
hyperplane wTxi � b � 0 with the largest distance between
two classes, measured along a line perpendicular to this
hyperplane, which is equivalent to solving the following
problems:

min
w,b,�

1
2

Tw � C��
i�1

1

�i� and yi��wT��xi� � b	 � 1 � �i. (1)

Constraints yi��wT��xi�� � b	 � 1 � �i allow that training
data may not be on the correct side of the separating
hyperplane wTx � b � 0. C is the penalty parameter to be
optimized. In practice, the explicit form of �(x) is not
required, and we only need to calculate the kernel function
given by K(xi,xj) 
 �(xi)

T �(xj). We use the radial basis
function (RBF) kernel given by e���xi�xj�2

for all the compu-
tations, where � is the kernel parameter. All the SVM
calculations are performed using LIBSVM.33 For SVM
training, a few parameters such as the penalty parameter
C and the kernel parameter � of the RBF function must be
determined in advance. Choosing optimal parameters for
SVMs is an important step in SVM design. In this work, we
use cross-validation on different parameters for the model
selection.34

Data Sets

We followed the same criteria as previous works27,29 in
selecting the sequences from the SWISS-PROT database
release No. 39.35 The constructed data set contains only
the sequences with experimentally verified intrachain
disulfide bridge annotations, and excludes the sequences
whose disulfide bonds are assigned as “probable,” “poten-
tial,” or “by similarity.” We consider the sequences with
two to five disulfide bridges (B � 2,…,5), which account for
more than 80% of SWISS-PROT sequences. The final data
set contains 482 sequences, of which 168 have two disul-
fide bonds (B � 2), 177 have three (B � 3), 95 have four
(B � 4), and 42 have five (B � 5). We further group the
sequences into four sets: Each set is selected in such a way
that sequence homology among the sets is less than 30%,
and the number of sequences of each set is approximately
equal. These sets are used for the four-fold cross-validation
procedures, as in the previous works.27,29

Feature Vectors

The selection of relevant features in large and complex
biological data sets significantly affects the effectiveness of
the SVM method. We select three types of feature vectors:
the coupling between the local sequence environments of

cysteine pairs, the cysteine sequence separations, and the
amino acid content.

Cysteine–cysteine coupling

A sequence window of size 2l � 1 amino acids centered
on the cysteine is used to describe the neighboring se-
quence environment of the cysteine. Evolution information
of the protein sequence is included in the window by using
the sequence profile generated by PSI-BLAST36 [i.e., the
position-specific substitution matrix (PSSM)]. The use of
the PSSM has the advantage of avoiding the time-
consuming multiple-sequence alignment procedures. The
PSSM of a protein sequence is an L � 20 matrix, where L is
the sequence length and 20 is the number of amino acid
types (amino acid types are numbered from 1 to 20). The
matrix element pij of the PSSM represents the log-odds
score of the ith amino acid of type j. Each 20-element row
vector of the PSSM represents the distribution of the
occurrences of 20 amino acid types at the specific position.
Let wi � (ai�l,…,ai�1,ai,ai�1,…ai�l) denote the sequence
window of size 2l � 1 centered around the bonded cysteine
at the ith position, where ak is the kth amino acid. We
define a 20-element vector vw�(
1

wi,
2
wi. . .
20

wi) associated
with the sequence window wi, where 
k

wi is the PSSM
element of the amino acid type k. If the amino acid of a
given type occurs more than once within the window, 
k

wi is
the sum of the associated PSSM elements. The coupling
between the ith and jth cysteines is computed by sij

� c�ivwj�c�jvwj, where c�k is the PSSM element of cysteine
type at the kth row. For a given disulfide pattern, we sum
up all the possible cysteine pairs to get s � �ijsij. We use
the symbol S to denote the cysteine–cysteine coupling of
disulfide patterns. After preliminary experiment, we set
the window size to be 21 for B � 3 and 5, 7 for B � 2, and 27
for B � 4.

Cysteine spacing patterns

For a disulfide protein with n cysteines (i.e., c1,c2,…,cn),
its disulfide pattern is denoted by (cicj,ci�cj� ,…), where cicj

designates a disulfide bridge formed between cysteines i
and j. For a given disulfide pattern (cicj,ci�cj� ,…), there is
an associated cysteine spacing pattern given by (dji,dj�i�,…),
where dji is the sequence spacing between ci and cj. An
example is given in Figure 1. For a protein with four
cysteines, c1c2c3c4, which form two disulfide bonds, there
will be three possible disulfide configurations: C1 �
(c1c2,c3c4), C2 � (c1c3,c2c4), and C3 � (c1c4,c2c3). The three
corresponding cysteine spacing patterns are given by D1 �
(d12,d34), D2 � (d13,d24), and D3 � (d14,d23). We use the
symbol D to denote the cysteine separation vector.

Amino acid content

Amino acid content has been shown to be a useful global
sequence descriptor in fold recognition,31 and in the predic-
tion of the bonding states of cysteines26 and protein
subcellular localization.32 Amino acid content is repre-
sented by the composition vector A � (a1,a2,…,a20), where
ak � nk/n0. Here nk is the number of occurrences of the
amino acid of type k, and n0 is the total number of amino
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acids of the query sequence. We will use the notation A to
denote the encoding of the amino acid content.

Performance Assessment

To evaluate the performance of the classifiers, we use
two assessment of measures27,29: Qc, a cysteine pair-based
measure of the fraction of the correctly predicted disulfide
bridges, and Qp, a pattern-based measure of the fraction of
proteins whose global disulfide pattern is correctly pre-
dicted. Qp is the more stringent performance index. Specifi-
cally, they are defined as

Qc �
1

Nc
�
i�1

Nc

�ci (2)

Qp �
1

Np
�
i�1

Np

�pi, (3)

where �ci
is defined for the ith disulfide bridge as

�ci � �
1, if the ith predicted disulfide

bridge is correct
0, if the ith predicted disulfide

bridge is incorrect
�

and Nc is the total number of disulfide bridges. Similarly,
�pi

is defined for the ith disulfide proteins as

�pi � �
1, if the predicted connectivity pattern

of the ith protein is correct’
0, if the predicted connectivity pattern

of the ith protein is incorrect’

and Np is the total number of disulfide proteins.

RESULTS AND DISCUSSION

Table I summarizes the performances of SVMs based on
various encodings. We also list the results computed from
the random predictor, referred to as R, as the reference of
the base performance. The Qp and Qc of the random
predictor are given by 1/(2B � 1)!! and 1/(2B � 1),
respectively.27 In general, the pattern-based Qp is lower
than the disulfide bridge-based Qc, since the former counts
only those proteins whose complete disulfide patterns are
correctly predicted. In the case of B � 2, both D and S
classifiers perform similarly (67%). However, it is interest-
ing to note that the much simpler A classifier, which uses
only global sequence information of amino acid content,
gives fairly good results (61%). In the case of B � 3, the
differences in the predictive performance among the classi-
fiers start to show themselves. The D classifier performs
significantly better, and, in terms of the more stringent Qp,
it is 16% and 7% higher than A and S, respectively. Note
that the D encoding does not contain any information
about the explicit amino acid sequence other than the
cysteine separations. This is consistent with previous
works10,11 indicating that disulfide patterns and cysteine
separations are closely related to each other and that
disulfide patterns can be effectively used to detect remote
homologues undetectable by the sequence alignment meth-
ods. In the case of B � 4 and 5, the prediction accuracies of
the SVMs, though significantly better than those of the
random predictor, are not yet practical at present. The
poor results for these cases are due to the relatively
smaller number of the reliably annotated proteins with
higher number of disulfide bridges in the data set (see the
Methods section on data sets). However, the situation is
expected to improve when more structures are available in
the future. On the other hand, when comparing the results
of the D classifiers with those of the random predictor R,
we found that, the ratios of Qp between D and R are 28 and
120 for B � 4 and 5, respectively, indicating that the SVM
is still effective in these cases.

We have previously shown in many biological applica-
tions26,31,32 that using multiple-feature vectors can im-
prove on the performance of the SVM classifiers based on a
single-feature vector type. We selected the following linear
combinations: D � wAA, D � wSS, and D � wAA � wSS,
where wd is the weight associated with the d encoding.
After preliminary experiment, we set the weights to be wA

� 1 and ws � 0.001. For the sake of simplicity, we will use
the simpler notations D � A, D � S, and D � A � S, with
the understanding that wA and wS are omitted from the
notations. Table II compares the performances of the

TABLE I. Performance of the SVMs Based on a Single-Feature Vector Type

Method

B � 2 B � 3 B � 4 B � 5 B � 2. . .5

Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc

R 0.33 0.33 0.06 0.20 0.01 0.14 0.001 0.11 0.14 0.20
A 0.61 0.61 0.38 0.51 0.13 0.20 0.07 0.27 0.39 0.42
S 0.67 0.67 0.47 0.60 0.17 0.24 0.12 0.32 0.45 0.48
D 0.67 0.67 0.54 0.64 0.28 0.39 0.12 0.30 0.50 0.54

Fig. 1. Example of disulfide patterns consisting of four cysteines
c1c2c3c4, which form two disulfide bonds. Three possible disulfide pat-
terns are (c1c2,c3c4), (c1c3,c2c4), and (c1c4,c2c4), where cicj indicates a
disulfide bridge between ci and cj. And the corresponding cysteine
spacing patterns are given by (d12,d34) (solid lines), (d13,d24) (dashed
lines), and (d14,d23) (dotted lines).
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Fig. 2. The ribbon models of (A) the bovine pancreatic trypsin inhibitor (1tpa:I), (B) the nonspecific lipid transfer protein (1afh), (C) porcine pancreatic
procolipase (1pcn), and (D) peptidylglycine �-hydroxylating monooxygenase (1phm). The disulfide bonds are represented in the ball-and-stick model.
The correctly predicted disulfide bridges are in red, while the incorrectly predicted ones are in green. The molecular images were generated by UCSF
Chimera.41

TABLE II. Performances of the SVMs Based on Multiple-Feature Vectors

Method

B � 2 B � 3 B � 4 B � 5 B � 2. . .5

Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc

D � A 0.74 0.74 0.54 0.64 0.28 0.39 0.12 0.30 0.52 0.55
D � S 0.71 0.71 0.60 0.66 0.30 0.41 0.12 0.30 0.54 0.55
D � S � A 0.74 0.74 0.61 0.69 0.30 0.40 0.12 0.31 0.55 0.57
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SVMs based on the multiple feature vectors. As expected,
the SVMs based on the multiple-feature vectors in general
perform better than those based on a single-feature vector
type.

Figure 2 shows some typical examples of the predictions
by the D � A � S classifier. Figure 2(A) shows the case of
B � 3, 1tpa:I,38 which is a bovine pancreatic trypsin
inhibitor; Figure 2(B), the case of B � 4, 1afh,39 a
nonspecific lipid transfer protein; and Figure 2(C), the case
of B � 5, 1pcn,40 a porcine pancreatic procolipase. In these
cases, the disulfide bridges are all perfectly predicted. The
number of incorrectly predicted disulfide bridges, if any,
will be either greater than or equal to 2, since one
incorrectly predicted disulfide bridge will necessarily give
rise to another one. An example is given in Figure 2(D).
The observed and the predicted disulfide patterns of
1phm41 (peptidylglycine �-hydroxylating monooxygenase)
are [1–6,2–4,3–5,7–10,8–9] and [1–6,2–4,3–8,7–10,5–9],
respectively (the incorrect predictions are in italics). Hence,
in the case of B � 2, the cysteine pair-based measure Qc of
a protein is either 0 or 1, while in the case of B � 3, Qc is 1,
1
3
, or 0.

Comparison with other methods: Table III compares the
results of the D � A � S with those of other methods. The
D � A � S is the only method that gives the overall
prediction accuracy above 50% (Qp � 0.55 and Qc � 0.57),
while the other methods give 0.29–0.44 in Qp and 0.38–
0.49 in Qc. In the case of B � 2, the D � A � S and the RNN
give similar prediction accuracies. In the case of B � 3, the
D � A � S outperforms other approaches by 20–40% in Qp

and by 14–30% in Qc. In the case of B � 4, the D � A � S is
better than or comparable with those of other methods;
however, since the sample size of these cases is relatively
small, it is not easy to draw a conclusion of statistical
significance.

CONCLUSION

Though the SVM is known to be a powerful machine
learning method, due to the complexity of biological data,
the identification and selection of relevant biological fea-
tures become an important issue in the applications of
SVMs to biological problems. In this work, we tested SVMs
in the prediction of disulfide connectivity using biological
features characteristic of disulfide bridges. Our results
indicate that both cysteine–cysteine sequence couplings
and cysteine separations are important features in predict-
ing disulfide connectivity. This is consistent with the
previous studies10,11 indicating that a close relationship
exists between cysteine separations and disulfide pat-
terns, and that such a relationship can be utilized to

identify the remote homologs undetectable by sequence
alignments. We showed that the SVM based on the
cysteine separations give the best predictive performance
among the SVMs based on the single-feature vector. We
also showed that the SVMs based on the multiple-feature
vectors outperform those based on the single-feature vec-
tor. At present, our method may be useful in the prediction
of disulfide bridges, especially in the cases of B � 2 and 3.
As for the cases of higher number of disulfide bridges (i.e.,
B � 4), our approach is expected to be applicable when
there are more reliably annotated disulfide proteins avail-
able in the future.
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