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Abstract

The photonic band structure in the transversal electric mode for a one-dimensional superconductor-dielectric super-
lattice is theoretically calculated. By using the Abeles theory for a stratified medium, we first calculate the transmittance
spectrum from which all the possible bands can be directly seen. Then we calculate the real photonic band structure
based on the transcendental equation derived from the transfer matrix method and Bloch theorem. The band structure
is shown to be strongly consistent with the transmittance spectrum. We finally study the three lowest band gaps as a
function of penetration of superconductor, permittivity of dielectric, and angle of incidence, respectively. The optical
properties in a superconductor-dielectric superlattice thus are well disclosed.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that photonic crystals have
photonic band gaps (PBGs) in the photonic disper-
sion relation. In the PBGs, optical waves with cer-
tain frequencies are not allowed to propagate
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through the crystal [1,2]. The PBGs are analogous
to the electronic band gaps in a solid and their
physical origin can be ascribed to the Bragg
diffraction in a periodic multilayer structure. A
simple one-dimensional photonic crystal is, in
general, made of alternating layers of material
with different permittivities, forming a superlattice
with infinite periods. The band structure for a
dielectric–dielectric photonic crystal shows that
the PBG between the first and second bands
ed.
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widens considerably as the difference in dielectric
permittivity is increased [3]. In addition, no
low-frequency band gap below the first (lowest)
band can be found. In a metallic photonic made
of a normal metal and a dielectric, it is however
found that a low-frequency (or metallicity) gap
may exist. Contrary to a PBG, this metallicity
gap which does not depend on the periodicity, is
of the order of the plasma frequency and thus is re-
garded as a modified effective plasma frequency
[4–6].

On the other hand, studies of photonic crystals
consisting of a superconducting material and a
dielectric have also been reported recently [7–9].
The electromagnetic properties of Abrkosov vortex
lattice as a photonic crystal were investigated by
changing the Ginzburg–Landau parameter and sta-
tic magnetic field [7]. In addition to a low-frequency
band gap below the first band, they also obtained
the PBGs for a superconductor in the presence of
vortices. In fact, the issue of a superconducting pho-
tonic crystal was first investigated by a group in
Singapore [8,9]. They considered a one-dimensional
superconductor-dielectric superlattcie. By making
use of the transfer matrix method accompanied by
the Bloch theorem [10], a low-frequency band gap
was seen for both transversal magnetic (TM) and
transversal electric (TE) modes. This band gap
was found to be about one third of the threshold fre-
quency of a bulk superconducting material. The
physical information from this work for TE mode
however is quite limited because only the first band
is given. As for the other higher bands in addition to
the possible PBGs cannot be obtained there. In
other words, a full band structure for this one-
dimensional superconducting photonic crystal
remains unavailable thus far.

A full band structure is a basic and important
means for understanding the fundamental physics
about electromagnetic wave propagation charac-
teristics in a photonic crystal. This information is
not only of fundamental but also of technical use
for a superconducting material. Motivated by this,
in this paper we shall extend the work of Ref. [8].
We would like to present the full photonic band
structure for TE mode in a superconductor-dielec-
tric photonic crystal. Firstly, we use the Abeles
theory for a stratified media to calculate the fre-
quency-dependent transmittance [11]. From the
transmittance spectrum, we can clearly learn the
locations of all possible pass bands and stop
bands. With these in hand, one is able to calculate
the band structure from the transcendental equa-
tion based on the transfer matrix method together
with the Bloch theorem. Then a comparison be-
tween the transmittance spectrum and full band
structure will be made.

The format of this work is as follows: Section
2 describes the theoretical approaches to be used
in the calculation. The calculated transmittance
spectrum and band structure will be given in Sec-
tion 3. Discussion on the PGBs will also be made
in Section 3. A summary will be addressed in Sec-
tion 4.
2. Theory

A one-dimensional nonmagnetic superconduc-
tor-dielectric photonic crystal will be modeled as
a periodic superconductor-dielectric multilayer
structure with a large number of periods, N � 1.
Such an N-period superlattice is shown in Fig. 1,
where a = a2 + a3 is the spatial periodicity, where
a2 is the thickness of the superconducting layer
and a3 denotes the thickness of the dielectric layer.
We consider that a TE wave is incident at an angle
h1 from the top medium which is taken to be free
space with a refractive index, n1 = 1. The index
of refraction of the lossless dielectric is given by
n3 ¼

ffiffiffiffiffi
er3

p
, where er3 is its relative permittivity.

For the superconductor, the index of refraction
can be described on the basis of the conventional
two-fluid model [11]. According to the two-fluid
model the electromagnetic response of a supercon-
ductor can be described in terms of the complex
conductivity, r = r1 � jr2, where the real part,
r1, indicating the loss, is contributed by the nor-
mal electrons, whereas the imaginary part, r2, is
due to the superelectrons. The imaginary part is
expressed as [12]

r2 ¼
1

xl0k
2
L

; ð1Þ

where the temperature-dependent penetration depth
is given by



MðaÞ ¼
m11 m12

m21 m22

" #
¼

cos b2

j

p2
sin b2

jp2 sin b2 cos b2

2
64

3
75 cos b3

j

p3
sin b3

jp3 sin b3 cos b3

2
64

3
75

¼
cos b2 cos b3 �

p3
p2

sin b2 sin b3

j

p3
cos b2 sin b3 þ

j

p2
sin b2 cos b3

jp2 sin b2 cos b3 þ jp3 cos b2 sin b3 cos b2 cos b3 �
p2
p3

sin b2 sin b3

2
664

3
775;

ð7Þ

θ
1

θ
1

n
1

n
1

n
2

n
3

n
2

n
3

Superconductor

Superconductor

Dielectric

Dielectric

a
2

a
3

a

Fig. 1. A superconductor-dielectric periodic layered structure
under consideration in this paper. A transversal electric mode
optical wave is incident obliquely from the top medium at an
angle of incidence h1 on the plane superconductor boundary.
The media are characterized by distinct indices of refraction n1,
n2, and n3, respectively. The period is a and the thicknesses of
superconductor and dielectric layers are denoted by a2, and a3,
respectively.
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k0
kL ¼ kLðT Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f ðT Þ

p ; ð2Þ
where the Gorter–Casimir expression for f(T) is
given by

f ðT Þ ¼ T
T c

� �4

: ð3Þ

We shall consider the lossless case, meaning that
the real part of the complex conductivity of the
superconductor can be neglected and consequently
it becomes

r ¼ �jr2 ¼ �j
1

xl0k
2
L

: ð4Þ

The conditions for a lossless superconductor are
well described in Ref. [8]. With Eq. (4), the relative
permittivity as well as its associated index of
refraction can be obtained, namely

er2 ¼ 1� c2

x2k2L
ð5Þ

and

n2 ¼
ffiffiffiffiffi
er2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

x2k2L

s
: ð6Þ

In order to calculate the transmittance and
reflectance for a periodic multilayered structure,
the elegant Abeles theory will be employed [11].
According to this theory, we must, in advance,
set up the characteristic matrix corresponding to
one period, with the result
where

b2 ¼
2p
k0

n2a2 cos h2; b3 ¼
2p
k0

n3a3 cos h3 ð8Þ
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and

p2 ¼
ffiffiffiffiffi
e0
l0

r
n2 cos h2; p3 ¼

ffiffiffiffiffi
e0
l0

r
n3 cos h3; ð9Þ

where k0 = 2p/k0 = 2pc/x is the wavelength in free
space. The angles h2 and h3, determined by Snell�s
law of refraction, are the ray angles in layer 2 and
3, respectively. Having constructed the matrix in
Eq. (7), the total characteristic matrix for an N-
period structure can be obtained, that is

½MðNaÞ� ¼
M11 M12

M21 M22

� �
¼ ½MðaÞ�N

¼
m11UN�1ðWÞ�UN�2ðWÞ m12UN�1ðWÞ

m21UN�1ðWÞ m22UN�1ðWÞ�UN�2ðWÞ

� �
;

ð10Þ
where

W ¼ 1

2
ðm11 þ m22Þ ð11Þ

and UN are the Chebyshev polynomials of the sec-
ond kind defined by

UN ðWÞ ¼ sin½ðN þ 1Þcos�1W�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

p : ð12Þ

Eq. (10) gives the explicit expressions for matrix
elements M11, M12, M21, and M22 as follows:

M11 ¼ cosb2 cosb3�
p3
p2

sinb2 sinb3

� �
UN�1 Wð Þ�UN�2 Wð Þ;

M12 ¼ j
1

p3
cosb2 sinb3þ

1

p2
sinb2 cosb3

� �
UN�1 Wð Þ;

M21 ¼ j p2 sinb2 cosb3þp3 cosb2 sinb3ð ÞUN�1 Wð Þ;

M22 ¼ cosb2 cosb3�
p2
p3

sinb2 sinb3

� �
UN�1 Wð Þ�UN�2 Wð Þ:

ð13Þ
The reflection and transmission coefficients can be
determined and are given by [11]

~r ¼ M11 þM12p‘ð Þp1 � M21 þM22p‘ð Þ
M11 þM12p‘ð Þp1 þ M21 þM22p‘ð Þ ð14Þ

and

~t ¼ 2p1
M11 þM12p‘ð Þp1 þ M21 þM22p‘ð Þ : ð15Þ

Here p1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
e0=l0

p
ðn1 cos h1Þ is for the first med-

ium, and p‘ ¼
ffiffiffiffiffiffiffiffiffiffiffi
e0=l0

p
ðn‘ cos h‘Þ is for the last med-

ium. Both media here are taken to be free space.
The reflectance (reflectivity) R, transmittance
(transmissivity) T and ~t, ~t are related by

R ¼ j~rj2; T ¼ p‘
p1

j~tj2: ð16Þ

Thus, the transmittance spectrum, T versus x, can
be numerically illustrated, as will be seen in Sec-
tion 3.

Next, we are going to briefly describe the meth-
od used in Ref. [8] for a direct calculation of the
band structure in a periodic superconductor-
dielectric medium. Based on the basic assumption
of translational symmetry and aided by the Flo-
quet (or Bloch) theorem together with the use of
transfer matrix method, one can obtain a transcen-
dental equation determining the band structure,
namely [8,10]

cos Kað Þ ¼ cos ksxa2ð Þ cos kxa3ð Þ

� 1

2

kx
ksx

þ ksx
kx

� �
sin ksxa2ð Þ sin kxa3ð Þ;

ð17Þ
where K is the Bloch wave number,

kx ¼
x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er3 � sin2h1

q
ð18Þ

and

ksx ¼
x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2h1 �

c2

x2k2L

s
: ð19Þ

Eq. (17) can be numerically solved for x as a func-
tion of K, yielding the so-called photonic band
structure or dispersion relation. In Ref. [8], only
the first band is given and thus it is not sufficient
to explore the whole optical properties in a pho-
tonic crystal. In the next section, we shall give
other possible higher bands. The higher bands
then enable us to study the PGBs.

Before presenting the numerical results we men-
tion that the above theoretical formulations are
based on the flat interface model. This is legitimate
and widely used to theoretically study the funda-
mental optical properties in a photonic crystal
[3,10,11]. In the actual material, some interface
issues such as interface roughness, lattice imperfec-
tion, and surface discontinuity may arise due to
the process of a film growth. To study surface
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effect on a photonic crystal, other method such as
the plane-wave expansion may be employed and
some works are available [13]. A study of interface
effect on the photonic crystal is not our interest
here.
3. Numerical results and discussion

Let us now present the numerical results accord-
ing to the aforementioned equations. Two-dimen-
sionless quantities such as X = xa/2pc and K =
a/2pkL will be used as usual in the analysis of pho-
tonic bands. We also define the dielectric thickness
ratio as r = a3/a. Fig. 2 displays the calculated trans-
mittance spectrum (right) and the band structure
(left) for the conditions of h1 = 45�, er3 = 15,
K = 0.05, r = 1/3, and N = 500. It is seen that the
calculated transmission spectrum is in fairly good
agreement with that of the calculated band struc-
ture. For the sake of convenience, the first six cutoff
frequencies (at which T = 0) are denoted by Xi,
K a / 2π
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Fig. 2. The calculated transmittance spectrum (right) based on
Eq. (16) and the band structure (left) calculated from Eq. (17).
The horizontal dash lines mark the first six cutoff frequencies
denoted by Xi, i = 1, 2, 3–6. Excellent agreement is achieved in
both results. The conditions are h1 = 45�, er3 = 15, K = 0.05,
r = 1/3, and N = 500.
i = 1, 2, 3–6, as shown in Fig. 2. The first band
gap, denoted by D1, is equal toX1 = 0.017. The first
band gap is referred to as the low-frequency (LF)
gap [8], which is not seen in the dielectric–dielectric
superlattice. This gap size is nearly equal to one
third of the cutoff frequencyXc for a bulk supercon-
ductor which is in value of 0.05 here. Thus, its origin
can be regarded as a combined effect of the spatial
periodicity and of the addition of dielectric material
[8]. The dimensionless bulk cutoff frequency Xc =
0.05 is equal to a real frequency of xc = c/kL �
1015 s�1, which is of the same order of plasma
frequency for most alkali metals. The dispersion
relation for a bulk superconductor is thus recog-
nized as an analogy to the plasma dispersion inmet-
als [8]. On the other hand, D1 also appears in a
metallic photonic crystal but its size is near the plas-
ma cutoff frequency, meaning that it does not de-
pend on the periodicity [7]. Thus in the metallic
superlatticeD1 is not a real PBG, whereas it is a true
PBG in the superconductor superlattice because D1

is indeed related to the periodicity.
In addition to D1, along with the first band from

X1 = 0.017 to X2 = 0.165, other higher bands
as well as PBGs are also displayed in Fig. 2. The
second PBG is denoted by D2 equal to X3 � X2 =
0. 368�0.165 = 0.203. That is almost twelve times
larger than D1. The second band is located from
X3 = 0.368 to X4 = 0.455. The third PBG, D3, is
X5 � X4 = 0.712 � 0.455 = 0.257 in magnitude
and is greater than D2 appreciably. The third band
is then above X5 and under X6. From the results in
Fig. 2 we can deduce that the photonic band struc-
ture for a one-dimensional superconducting pho-
tonic crystal is quite reminscent of the electronic
band structure. Moreover, it has multiple PGBs,
instead of having just one lowest band gap as re-
ported in Ref. [8].

Fig. 3 shows the first five cutoff frequencies and
PBGs as a function of penetration depth at the
conditions of h = 45�, er3 = 15, r = 1/3, and
N = 500. The first one, X1, being equal to D1, in-
creases with increasing K. The dependence of D2

on K is similar to that of D3. Both also increase
as K increases. The variations in D2 and D3, how-
ever, are not as salient as D1, especially at small
values of K. Fig. 4 shows the calculated frequen-
cies and PBGs as a function of angle of incidence
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at er3 = 15, K = 0.05, r = 1/3, and N = 500. It is
seen that gap D1 essentially does not change with
the variation in the angle of incidence, indicating
an omnidirectional feature. In addition, D2

changes slightly as a function of angle of incidence.
The change in the third gap size, D3 is appreciable
for h1 smaller than 20� and becomes nearly linear
between 20� and 60�. It then approaches a satura-
tion value of about 0.32. In Fig. 5, we have plotted
the cutoff frequencies versus dielectric constant of
dielectric layer for h = 45�, K = 0.05, r = 1/3, and
N = 500. All the cutoff frequencies, in general, de-
crease with increasing dielectric constant. The cor-
responding first three gap sizes are depicted in
Fig. 6, where D1 decreases slowly with increasing
dielectric constant. A peak value in D2 is attained
for er3 = 5, and then decreases as the dielectric
constant increases. As for D3, it also attains a max-
imum when er3 = 10, and D3 is equal to D1 for
er3 = 3.
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In the above numerical results, the calculated
frequency for a superconductor photonic crystal
(SPC) is normalized in 1/k0, the sole material
parameter of a superconductor involved in the for-
mulation. This indicates that the results are valid
for all the possible superconductors described by
the two-fluid model [8]. Most high-Tc cuprates
have a value of k0�200–300 nm, corresponding
to infrared region. As for the conventional super-
conductor such as a typical A15 compound super-
conductor with Tc above 10 K, k0 � 60–90 nm, it
then can work in the yellow to violet region. The
feasibility of a SPC has been well discussed by
Feng et al. [14].
4. Summary

By using the Abeles theory for a stratified med-
ium and two-fluid model for a superconductor, we
have calculated the TE mode transmittance spec-
trum for a superconductor-dielectric superlattice.
We have also presented the photonic band struc-
ture based on the transfer matrix method together
with the Bloch theorem. Results show excellent
agreement for both methods. From the calculated
results, some conclusions can be drawn as follows:
For a one-dimensional superconducting photonic
crystal, the band structure shows a multiple-PBG
structure, not just the first band as shown previ-
ously in Ref. [8]. The fundamental difference is
the existence of the low-frequency band gap which
is not shown in all-dielectric photonic crystals.
This gap is a true PBG, whereas it is not a PBG
for a metallic photonic crystal. Besides the first
band gap, we also have investigated the second
and third PBGs as a function of penetration depth,
angle of incidence, and permittivity of dielectric.
The results reveal more basic information for the
electromagnetic response of superconductor and
it could be of technical use in superconducting
electronics.
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