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In this paper we consider a simple generalization of the method of Lunin and Maldacena for generating
new string backgrounds based on TsT transformations. We study multishift Ts � � � sT transformations
applied to backgrounds with at least two U(1) isometries. We prove that the string currents in any two
backgrounds related by Ts � � � sT transformations are equal. Applying this procedure to the AdS5 � S5,
we find a new background and study some properties of the semiclassical strings.
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I. INTRODUCTION

In this paper we present a simple generalization of the
method for obtaining deformed string backgrounds pro-
posed by Lunin and Maldacena [1] and developed in detail
by Frolov [2]. The method in the above papers is based on
T-duality on one of the U(1) variables, shift of another U(1)
variable, and T-duality back on the first U(1) variable
(called TsT transformation).1 Our method consists in mul-
tishifts at the second step which allows one to obtain new
string backgrounds (we call this Ts1 � � � snT transforma-
tion). We prove also that the U(1) string currents in any two
backgrounds related by Ts1 � � � snT transformations are
equal. We present also an application of our method to
string theory in AdS5 � S5 background.

In the past few years, the main efforts in string theory
were directed towards establishing string/gauge theory
correspondence. The vast majority of papers were on
qualitative and quantitative descriptions of N � 4 super-
symmetric Yang-Mills (SYM) theory with a SU�N� gauge
group by making use of the string sigma model on AdS5 �
S5 [3–5]. The AdS/CFT correspondence implies that the
energy of closed string states is equal to the anomalous
dimensions of certain local SYM operators [6,7]. At su-
pergravity level this correspondence has been checked in a
number of cases (for review, see for instance [8]) but the
match between the string energy and the anomalous di-
mensions beyond that approximation still remains a
challenge.

The first important step in establishing AdS/CFT corre-
spondence is to obtain the spectrum of the anomalous
dimensions of the primary operators made up of local
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cussion in Sec. II.
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gauge fields. On the string theory side, it requires one not
only to solve the theory at the classical level but also
include its quantization.

The main challenge in quantizing string theory is that it
is highly nonlinear and thus difficult to manage. The only
option available so far is to look at the semiclassical region
of large quantum numbers where the results are reliable.
On the gauge theory side, the derivation of the anomalous
dimensions is also a difficult task. A breakthrough in this
direction has been the observation of Minahan and
Zarembo that a one loop dilatation operator restricted to
the bosonic sector ofN � 4 SYM theory can be interpreted
as the Hamiltonian of the integrable spin chain [9]. This
observation raised the question about the dilatation opera-
tor in N � 4 SYM theory and integrability (for a recent
review, see for instance [10] and references therein).

On the other hand, the question of reduction of the string
sigma model to particular integrable systems and the ques-
tion of integrability of string theory at the classical and the
quantum level was considered in a number of papers [11–
14]. The intensive study of ‘‘nearly’’ Bogomol’nyi-Prasad-
Sommerfield saturated (BPS), or Berenstein-Maldacena-
Nastase (BMN) type, quantum strings and non-BPS ones
gives a remarkable match with the results from the gauge
theory side at least at the first few loops [9,10,12–20]. This
match however is not a coincidence. In the above papers it
was suggested that certain spin chains should describe
particular string sectors and thus should allow the com-
parison to the gauge theory computations. Subsequently, it
has been found that the match between string theory and
SYM theory in the examples discussed above lies in the
Yangian symmetries responsible to a large extent for the
integrability on both sides [21,22]. Since in this paper we
will consider the string theory side, we refer the reader to
the above papers for details on this connection.
-1 © 2005 The American Physical Society
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From the picture emerging from the above studies, one
can conclude that the integrable structures play an impor-
tant role in establishing the AdS/CFT correspondence at
the classical and hopefully at the quantum level as well.

Although we already have some understanding of string/
gauge theory correspondence in the case of AdS5 � S5

background and N � 4 SYM, much less is known in
the case of theories with less than maximal supersymmetry.
There have been some studies of AdS/CFT correspondence
for less supersymmetric string backgrounds [23–44].
However, it is not quite clear how exactly to implement
the correspondence. The main obstacles lie in knowing if
and how Kaluza-Klein modes naturally present in such
backgrounds contribute to the string energy, which corner
in the space of gauge operators is described by these
strings, and if these subsectors are closed under the renor-
malization group flow.

An important step towards a deeper understanding of
AdS/CFT correspondence in its less supersymmetric sector
was recently given by Lunin and Maldacena [1]. From the
gauge theory point of view, the possible deformations of
N � 4 SYM gauge theory that break the supersymmetry
were studied by Leigh and Strassler [45]. It should be
mentioned that the deformations of N � 4 SYM theory
and integrable spin chains have been considered in some
detail in [46]. In [1] Lunin and Maldacena found the
gravity dual to the �-deformations of N � 4 SYM theory
studied in [45]. They demonstrated that a certain deforma-
tion of the AdS5 � S

5 background corresponds to a gauge
theory with less supersymmetry classified in [45]. This
deformation of the string background can be obtained
applying two T-dualities accompanied by certain shift
parametrized by � (TsT transformation). For real values
of �, Frolov obtained the Lax operator for the deformed
background which proves the integrability at classical level
[2]. String theory in this background was studied in [47,48]
and its pp-wave limit was investigated in [49,50]. The
�-deformations of more complicated (non)supersymmet-
ric backgrounds was considered also in [51,52].

The aim of this paper is to consider a simple extension of
the transformations considered in [1,2] and to prove that,
under TsT transformations applied to any background
possessing U(1) symmetries, the corresponding currents
before and after the transformation are equal.

The paper is organized as follows. In the next section we
give a brief review of the �-deformations of the N � 4
gauge theory and its gravity dual. In Sec. III we consider a
general background with at least two U(1) isometries. We
show that the U(1) currents are equal after Ts1s2 � � � snT
transformations where s1 � � � sn means multishifts along
the remaining U(1) variables. In the next section, as an
example for multishift procedure, we consider AdS5 � S5

and find a new background parametrized by two real
parameters. We show that the new background reduces to
those found in [1,2] when one of the parameters vanishes.
We also consider the limit of pointlike string which corre-
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sponds actually to the BMN limit. In the concluding sec-
tion, we comment on the results found in the paper.
II. LUNIN-MALDACENA BACKGROUND

In this section we give a very brief review of the proce-
dure of Lunin and Maldacena for obtaining the gravity dual
of the �-deformed SYM theory considered in [45].

Let us consider the N � 4 SYM gauge theory in terms
of N � 1 supersymmetry. The theory contains a vector
multiplet V and three chiral multiplets �i. The superpo-
tential is given by the expression

W � g0 Tr���1;�2��3�: (2.1)

The action then can be written as

S � Tr
�Z

d4xd4�e�gV ��ie
gV�i

	
1

2g2

�Z
d4xd2�W�W� 	 c:c:

�
g0

3!

�

�Z
d4d2�"ijk�

i��j;�k� 	 c:c:
��
: (2.2)

We note that the N � 4 theory is conformal at any value
of the complex coupling

� �
�

2�
	

4�i

g2
YM

(2.3)

and the deformations that change this value are exactly
marginal.

In [45] Leigh and Strassler considered deformations of
the superpotential of the form

W � hTr�ei���1�2�3 � e
�i���1�3�2�

	 h0 Tr��3
1 	�3

2 	�3
3�: (2.4)

Let us focus on the h0 � 0 case. The symmetries are: one
U(1) R-symmetry group and two global U�1� � U�1�
groups acting as follows:

U �1�1: ��1;�2�3� ! ��1; ei’1�2; e�i’1 �3�

U�1�2: ��1;�2�3� ! �e
�i’2 �1; e

i’2�2;�3�:
(2.5)

Since the theory is periodic in �, one can think of � as
living on a torus with complex structure �s and the SL�2; Z�
duality group acts on it and � as follows:

�s !
a�s 	 b
c�s 	 d

; �!
�

c�s 	 d

�
 �	 1
 �	 �s:

(2.6)

As a result of all of this, we end up with a N � 1 super-
symmetric conformal field theory.

The gravity dual for real � can be obtained in three steps
[2]. Consider the S5 part of the AdS5 � S5 background. In
the first step, we perform a T-duality with respect to one of
-2
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the U(1) isometries parametrized by the angle ’1.2 The
second step consists in performing a shift ’2 ! ’2 	 �’1

where ’2 parametrizes another U(1) isometry of the back-
ground and � is a real parameter. In the last step we
T-dualize back on ’1. The resulting geometry is described
by

ds2
str � R2

"
ds2

AdS5
	
X
�dr2

i 	Gr
2
i d�

2
i �

	 ~�2r2
1r

2
2r

2
3

 X
d�i

!
2
#
; (2.7)

where

G�1 � 1	 �2�r2
1r

2
2 	 r

2
2r

2
3 	 r

2
1r

2
3�; ~� � R2�:

(2.8)

The other fields are correspondingly3

e2� � e2�0G; (2.9)

BNS � ~�2R2G�r2
1r

2
2d�1d�2 	 r

2
2r

2
3d�2d�3

	 r2
3r

2
1d�3d�1�; (2.10)

C2 � �3��16�N�w1d ; (2.11)

C4 � �16�N�w4 	Gw1d�1d�2d�3�; (2.12)

F5 � �16�N��wAdS5
	GwS5�: (2.13)

Using the fact that the currents J� before the TsT trans-
formations are equal to the currents ~J� after the trans-
formations, Frolov obtained the Lax operator for the
deformed geometry, thus proving the integrability at the
classical level. The properties of string theory in this
background were further studied in [47,48]. The Penrose
limit of the Lunin-Maldacena background was investigated
in [49,50].
III. U(1) CURRENTS AND TST TRANSFORMATION

As mentioned in the previous section, based on the
observation that the string U(1) currents before and after
TsT transformation are equal, Frolov was able to obtain the
Lax operator of the theory in the deformed background. He
also conjectured that the equality of the currents holds for
any two backgrounds related by TsT transformation.
Below we prove the following.

Proposition.—The U(1) currents of strings in any two
backgrounds related by TsT transformation are equal.
2See the appendix for general U(1) T-duality.
3See [1,2] for details.
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We start with the general action

S � �

����
�
p

2

Z
d�
d	
2�
����@�X
@�X�G
�

� ���@�X
@�X�B
��: (3.1)

We will assume that G
� and B
� do not depend on X1 and
X2 allowing to perform TsT transformation.

In what follows we use the notations 
 � 1; . . . ; d, i �
2; . . . ; d, a � 3; . . . ; d. We will prove the statement in
several steps.

Step 1: T-duality on X1.
For completeness we write again the T-duality rules and

relations4

~G 11 �
1

G11
; ~Gij � Gij �

G1iG1j � B1iB1j

G11
;

~G1i �
B1i

G11
; ~Bij � Bij �

G1iB1j � B1iG1j

G11
;

~B1i �
G1i

G11
;

(3.2)

���@� ~X1 � ���@�X
MG1M � �

��@�X
MB1M; (3.3)

@� ~X1 � ��	�	@X
G1
 � @�X
B1
; (3.4)

@�X1 � ��	�	@ ~X
 ~G1
 � @� ~X
 ~B1
; (3.5)

~X i � Xi: (3.6)

The T-dual action has the same form but with transformed
background fields:

~S � �

����
�
p

2

Z
d�
d	
2�
����@� ~X
@� ~X� ~G
�

� ���@� ~X
@� ~X� ~B
��: (3.7)

Step 2 consists in shift of ~X2

~X 2 � ~x2 	 �̂~x1; ~X1 � ~x1; ~Xa � ~xa: (3.8)

Note that the background remains independent of ~X1 and
~X2.

The shift described above produces the following trans-
formations of the metric

~g11 � ~G11 	 2�̂ ~G12 	 �̂
2 ~G22;

~g1i � ~G1i 	 �̂ ~G2i; ~gij � ~Gij; (3.9)

and for the ~B
� we get

~b ij � ~Bij; ~b1i ! ~B1i 	 �̂ ~B2i: (3.10)

The relations (3.3), (3.4), and (3.5) are also changed; for
4See also the appendix.
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instance, (3.5) becomes

@�X
1 � ��	�

	@~x
 ~G1
 � @�~x
 ~B1


	 �̂��	�
	@~x1 ~G12 � �̂@�~x1 ~B12: (3.11)

Note that it is crucial that the background is independent of
X1 and X2, otherwise we cannot perform a T-duality back
on ~x1.

In the new variables the action is given by

�~S � �

����
�
p

2

Z
d�
d	
2�
����@�~x
@�~x�~g
�

� ���@�~x
@�~x� ~b
��: (3.12)

In step 3 we T-dualize back on ~x1.
The action again has the standard form

~�~S � �

����
�
p

2

Z
d�
d	
2�
����@�x


@�x
�g
�

� ���@�x

@�x

�b
��; (3.13)

where g
� and b
� are obtained from ~g
� and ~b
� by
making use of the standard rule equations (3.2), (3.3), (3.4),
and (3.5).

Now we will prove that the currents J�
 and j�
 obtained
from (3.1) and (3.13) respectively are equal, i.e.,

J�
 � j�
; (3.14)

where

j�
 � �
����
�
p
���@�x

�g
� 	
����
�
p
���@�x

�b
�; (3.15)

J�
 � �
����
�
p
���@�x�G
� 	

����
�
p
���@�x�B
�: (3.16)

We will prove the statement directly, but in two steps.

(a) F
irst we will prove the equality (3.14) for J�1 and j�1

and then for J�i and j�i
j�1
�

����
�
p � ���@�x1g11 	 ���@�xig1i � ���@�xib1i

� ���@�x
1g11 	 �

��@�~xig1i � �
��@�~xib1i

�
���

~g11
���	�

	@~x
~g1
 � @�~x
 ~b1
�

	 ���@�~xi
~b1i

~g11
� ���@�~xi

~g1i

~g11

� �����	�
	@~x


~g1


~g11
� ���@�~xi

~g1i

~g11

� ���@�~x1: (3.17)

Now we use (3.3) and find
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j�1
�

����
�
p � ���@�X
G1
 � ���@�X
B1
 �

J�1
�

����
�
p :

(3.18)
(b) W
e turn now to the case of J�i and j�i �i � 2; . . . ; d�.
In this case there are more transformations to be
performed but all of them are based on (3.2), (3.3),
(3.4), and (3.5)

j�i
�

����
�
p � ���@�x


gi
 � �
��@�x


bi


� ���@�x
1gi1 	 �

��@�~xjgij � �
��@�x

1b1i

� ���@�~xjbij

� ���@�~x1 ~gi1 	 ���@�~xj~gij 	 ���@�~x1 ~b1i

� ���@�~xj ~bij: (3.19)

Now we go to the ~X
 variables by making the
inverse shift

j�i
�

����
�
p � ���@� ~X
 ~Gi
 � �

��@� ~X
 ~Bi
: (3.20)

Since ~Xi � Xi, we separate ~X1 and ~Xi dependent
parts and find

j�i
�

����
�
p � ���@� ~X1 ~Gi1 � �

��@� ~X1 ~Bi1

	 ���@� ~Xj ~Gij � �
��@� ~Xj ~Bij (3.21)

� ���@�X1Gi1 � ���@�X1Bi1 	 ���@�XjGij

� ���@�X
jBij: (3.22)

Therefore

j�i
�

����
�
p � ���@�X
Gi
 � ���@�X
Bi
 �

J�i
�

����
�
p ;

(3.23)

which proves the statement (3.14).
IV. Ts1 � � � sdT TRANSFORMATIONS

In this section we make a simple generalization of the
TsT transformation. We proceed as follows. First we make
a T-duality on X1 after which the original action

S � �

����
�
p

2

Z
d�
d	
2�
����@�X
@�X�G
�

� ���@�X
@�X�B
�� (4.1)

becomes

S � �

����
�
p

2

Z
d�
d	
2�
����@� ~X
@� ~X� ~G
�

� ���@� ~X
@� ~X� ~B
��; (4.2)
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where the tilde variables are defined in (3.2), with the
relations (3.4) and (3.6) satisfied.

The second step consists in applying multishifts along
the U(1) isometries unaffected by the T-duality in the
previous step. This slightly generalizes the Maldacena-
Lunin procedure described in the previous section,

~X i � ~xi 	 �i~x1; ~X1 � ~x1; (4.3)

or ~X � A~x where

~X �

~X1

..

.

~XN

0
B@

1
CA; A �

1 0 � � � 0

�2 1 ..
.

..

. . .
.

0
�N 0 � � � 0 1

0BBBBB@

1CCCCCA: (4.4)

Under these multishifts the background fields take the form

~g 11 � ~G11 	 2�i ~G1i 	 �i�j ~Gij; ~g1i � ~G1i 	 �j ~Gij;

~gij � ~Gij; ~b1i � ~B1i 	 �
j ~Bij; ~bij � ~Bij:

(4.5)

The last step consists in T-dualization back on ~x1. The
resulting action is

S � �

����
�
p

2

Z
d�
d	
2�
����@�x
@�x�g
�

� ���@�x

@�x

�b
��: (4.6)

As in the case of TsT transformation, for the general-
ization described above we prove below.

Proposition.—The U(1) currents of strings in any two
backgrounds related by Ts1 � � � SnT transformation are
equal.

Proof.—One can first consider j�1 and using the relations
between the variables write them in terms of the original
coordinates

j�1
�

����
�
p � ���@�x

�g1� � �
��@�x

ib1i

� ���@�x
1g11 	 �

��@�~xig1i � �
��@�~xib1i

�
���

~g11
���	�	@~x
~g1
 � @�~x
 ~b1
�

	 ���@�~xi
~b1i

~g11
� ���@�~xi

~g1i

~g11

� �����	�
	@~x


~g1


~g11
� ���@�~xi

~g1i

~g11
� ���@�~x1:

(4.7)

But

J�1
�

����
�
p � ���@�X


G1
 � �
��@�X


B1
 � ���@�~x1;

(4.8)
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and therefore

j�1 � J�1 : (4.9)

Let us show that this equality is satisfied for the other
currents. One can easily show that

j�i � ~j�i : (4.10)

Let us see how ~j�i is related to ~J�i
j�i
�

����
�
p � ���@�~x
~gi
� �

��@�~x
 ~bi


� ���@�~x1� ~G1i	�j ~Gij������@�~xj��j@�~x1� ~Gij

(4.11)

	���@�~x1� ~B1i 	 �j ~Bij� � ����@�~xj � �j@�~x1� ~Bij
(4.12)

� ���@�~x
 ~G1
 � �
��@�~x
 ~B1
 �

~J�i
�

����
�
p : (4.13)

Simple calculations now lead to J�i � ~J�i . This proves that

j�i � J�i : (4.14)

Although the proof is straightforward, it may have impor-
tant consequences. For instance, if the theory in the initial
background is integrable, one can study integrability of the
second theory by making use of the above relation. We will
comment on this issue in the next section.

The equality between the currents in the AdS5 � S
5

background and its deformation relate the boundary con-
ditions imposed on the fields in the initial and the trans-
formed backgrounds. It remains to examine how the
boundary conditions for x
 and X
 in our case are related.
First we notice that the time component of J�
, i.e. J0


, is
just the momentum conjugated to X
. The equality of j0




and J0

 means that the two momenta are equal and constant

(due to the isometry). Therefore this property, observed
first in [2], continues to hold in the general case of TsT and
multishift transformations. To examine the boundary con-
ditions, we will use the relation

@�x1 � ������@�~x
~g1
 � @�~x
 ~b1
: (4.15)

To simplify the calculation, we choose the conformal
gauge for the 2D metric ��� � diag��1; 1� and �01 � 1.
Let us compute the boundary conditions for x1. To do this
we need expressions for the metric components ~g
� in
terms of the original metric G
�. Using the transformation
properties, we find

~g 11 �
G
G11

; (4.16)

~g 1i �
B1i 	 �j�GijG11 �G1iG1j 	 B1iB1j�

G11
; (4.17)
-5
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and

~b 1i �
G1i 	 �

j�BijG11 �G1iB1j 	 B1iG1j�

G11
; (4.18)

where

G � 1	 2�iB1i 	 �
i�j�GijG11 �G1iG1j 	 B1iB1j�

(4.19)

(all others are not changed by the shifts and are given in the
appendix).

Substituting the above expressions for ~g
� and ~b
� in
(4.15) and using the inverse transformations relating ~x


withX
, we find

@1x
1 � @1X

1 � �iJ0
i ; i � 2; . . . ; N: (4.20)

The boundary conditions for the other coordinates are
easily obtained from

@�x
i � @�~xi � �i@�~x1: (4.21)

Using the relation (3.11) and (4.3), we get

@1x
i � @1X

i 	 �i�@0x

G1
 	 @1x

jB1j� � @1x
i 	 �iJ0

1 :

(4.22)

Therefore, the boundary conditions for the fields in the
deformed background are twisted as follows:

@1x1 � @1X1 � �iJ0
i ; (4.23)

@1x
i � @1X

i 	 �iJ0
1 : (4.24)

Integrating over 	 we find

x1�2�� � x1�0� � 2��n1 � �iJi�; (4.25)

xi�2�� � xi�0� � 2��ni 	 �
iJ1�; (4.26)

where

X
�2�� � X
�0� � 2�n
; (4.27)

and the current

J
 �
Z d	

2�
J0

: (4.28)

In the next section we will apply these results to the
AdS5 � S

5 background and analyze the implications of
these transformations to string theory.
V. ��̂2; �̂3�-DEFORMATION

A. Supergravity solution

We start with the S5 part of string action as in [2] with
i � 1; 2; 3:
106008
S � �

����
�
p

2

Z
d�
d	
2�
�����@�ri@�ri 	 gij@� ~~’i@�~~’j�

	��r2
i � 1��; (5.1)

where the metric gij and the antisymmetric 2-form field bij
are

g11 � r2
2 	 r

2
3; g22 � r2

1 	 r
2
2; g33 � 1;

g12 � r2
2; g13 � r2

2 � r
2
3; g23 � r2

2 � r
2
1;

bij � 0:

(5.2)

and � is a Lagrangian multiplier which ensures the con-
straint X

r2
i � 1: (5.3)

This action is related to the one used in [1] by the following
change of the variables:

~~’1 �
1
3�’̂1 	 ’̂2 � 2’̂3�;

~~’2 �
1
3��2’̂1 	 ’̂2 	 ’̂3�; ~~’3 �

1
3�’̂1 	 ’̂2 	 ’̂3�;

(5.4)

which leads to the following relations between the old and
new angular momenta:

~~J 1 � Ĵ2 � Ĵ3; (5.5)

~~J 2 � Ĵ2 � Ĵ1; (5.6)

~~J 3 � Ĵ1 	 Ĵ2 	 Ĵ3: (5.7)

We next make the T-duality transformation on the circle
parametrized by ’1; the action becomes

S � �

����
�
p

2

Z
d�
d	
2�
�����@�ri@�ri 	 ~gij@� ~’i@� ~’j�

� ��� ~bij@� ~’i@� ~’j 	��r2
i � 1��; (5.8)

where

~g11 �
1

r2
2 	 r

2
3

; ~g22 �
r2

1r
2
2 	 r

2
1r

2
3 	 r

2
2r

2
3

r2
2 	 r

2
3

;

~g33 � �
r2

2 	 r
2
3 � �r

2
2 � r

2
3�

2

r2
2 	 r

2
3

; ~g12 � ~g13 � 0;

~g23 �
2r2

2r
2
3 � r

2
1r

2
2 � r

2
1r

2
3

r2
2 	 r

2
3

; ~b12 �
r2

2

r2
2 	 r

2
3

;

~b13 �
r2

2 � r
2
3

r2
2 	 r

2
3

; ~b23 � 0: (5.9)

The T-dual variables ~’i are related to ~~’i as follows:
-6
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@� ~~’1 � ������@� ~’1 ~g11 � @� ~’i ~b1i;

~~’2 � ~’2; ~~’3 � ~’3:
(5.10)

Next, we make the following shift of the angle variables ~’2

and ~’3 simultaneously:

~’ 2 ! ~’2 	 �̂2 ~’1; ~’3 ! ~’3 	 �̂3 ~’1; (5.11)

where �̂2 and �̂3 are two arbitrary constants. The metric
transforms in the following way under the above shift:

~g11 ! ~g11 	 �̂2
2 ~g22 	 �̂2

3 ~g33 	 2�̂2 ~g12 	 2�̂3 ~g13

	 2�̂2�̂3 ~g23;

~g12 ! ~g12 	 �̂2 ~g22 	 �̂3 ~g23;

~g13 ! ~g13 	 �̂2 ~g23 	 �̂3 ~g33;

~b12 ! ~b12 � �̂3
~b23;

~b13 ! ~b13 	 �̂2
~b23;

(5.12)

and the variables ~’i transform into

@� ~~’1 � ����
��@� ~’1 ~g11 � @� ~’i ~b1i � �̂2@� ~’1

~b12

� �̂3@� ~’1
~b13;

~~’2 � ~’2; ~~’3 � ~’3:
(5.13)

Finally, we make the T-duality transformation on the circle
parametrized by ~’1 again. After the TsT transformation,
the ��̂2; �̂3�-deformed background becomes

S � �

����
�
p

2

Z
d�
d	
2�
�����@�ri@�ri 	Gij@�’i@�’i�

� ���Bij@�’i@�’i 	��r2
i � 1��; (5.14)

where

G1i � Gg1i;

G22 � G�g22 	 9�̂2
3r

2
1r

2
2r

2
3�;

G33 � G�g33 	 9�̂2
2r

2
1r

2
2r

2
3�;

G23 � G�g23 � 9�̂2�̂3r
2
1r

2
2r

2
3�;

B12 � G��̂2�r
2
1r

2
2 	 r

2
1r

2
3 	 r

2
2r

2
3�

	 �̂3�2r
2
2r

2
3 � r

2
1r

2
2 � r

2
1r

2
3��;

B13 � G��̂2�2r
2
2r

2
3 � r

2
1r

2
2 � r

2
1r

2
3�

	 �̂3�r
2
2 	 r

2
3 � �r

2
2 � r

2
3�

2��;

B23 � �G��̂2�2r
2
1r

2
2 � r

2
1r

2
3 � r

2
2r

2
3� 	 �̂3�g13g23 � g12��;

(5.15)

where
106008
G�1 � 1	 �̂2
2�r

2
1r

2
2 	 r

2
1r

2
3 	 r

2
2r

2
3�

	 �̂2
3�r

2
2 	 r

2
3 � �r

2
2 � r

2
3�

2�

	 2�̂2�̂3�2r2
2r

2
3 � r

2
1r

2
2 � r

2
1r

2
3�; (5.16)

and we have used the constraint (5.3).
The variables ~’i are related to the T-dual variables ’i as

follows:

@� ~’1 � ������@� ~’iG1i � @� ~’iB1i;

~’2 � ’2; ~’3 � ’3:
(5.17)

Equations (5.10), (5.13), and (5.17) allow us to determine
the following relations between the angle variables ~~’i and
the TsT-transformed variables ’i:

@� ~~’1 � �~g11G1i 	 ��̂2
~b12 	 �̂3

~b13�B1i � ~b1i�@�’i

� ���̂2
~b12 	 �̂3

~b13�G1i 	 ~g11B1i�������@�’i;

(5.18)

@� ~~’2 � @�’2 � �̂2B1i@�’i 	 �̂2G1i������@�’i;

(5.19)

@� ~~’3 � @�’3 � �̂3B1i@�’i 	 �̂3G1i����
��@�’i;

(5.20)

which gives the boundary conditions

~~’ 01 � ’01 	 �̂2J
0
2 	 �̂3J

0
3 ; ~~’02 � ’02 � �̂2J

0
1 ;

~~’03 � ’03 � �̂3J
0
1 ;

(5.21)

which are consistent with the boundary conditions (4.23)
and (4.24). It is easy to see that, when �̂3 � 0, the above
background reduces to the Lunin-Maldacena background
[1,2].

We can check that the Virasoro constraint,

gij�
_~~’i

_~~’j 	 ~~’0i~~’
0
j� � Gij� _’i _’j 	 ’

0
i’
0
j�; (5.22)

is satisfied as expected.

B. The dual field theory

According to the AdS/CFT duality, string theory in the
background (5.15) is dual to a field theory on the boundary
of the AdS space. This field theory is a deformed theory
from N � 4 SYM theory by the deformation ��̂2; �̂3�, so
we will call it ��̂2; �̂3�-deformed N � 4 SYM theory.
Now the question is: what is this dual field theory? To
answer this question, let us look at the symmetries of the
deformed background (5.15).

We try first to find how many supersymmetries are
preserved in the dual field theory. To derive the background
(5.15), we wrote the S5 part of AdS� S5 as (5.1). The
metric has manifestly a U�1� � U�1� � U�1� isometry, of
which a U�1� � U�1� preserves the Killing spinors. In the
case of the Lunin-Maldacena background, a very special
-7
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torus was chosen to compactify the 10D string theory. The
TsT transformation only breaks the supersymmetry corre-
sponding to the Killing spinor associated to U�1� � U�1� so
that the deformed background preserves 1=4 supersymme-
tries. The left U(1) remains an R-symmetry in the dual
N � 1 SYM theory. In our case, TssT transformation
breaks all U�1� � U�1� � U�1� isometry so that no
Killing spinor is preserved. Therefore the dual field theory
has no supersymmetry.

Next we try to learn more about the dual field theory
from the gravity side. Let us recall the relation between the
TsT transformation of the supergravity background and
the star product of the dual field theory in the case of the
Lunin-Maldacena background [1]. SL�2; R� acts on the
parameter

� � B12 	 i
���
g
p
; (5.23)

as

�! �0 �
�

1	 ��
or

1

�
!

1

�0
�

1

�
	 �: (5.24)

Schematically, 1=� can be written as [53]

1

�



�
1

g	 B

�
ij
� Gij

open 	 �ij; (5.25)

where Gij
open is the open string metric and �ij is the non-

commutative parameter. Then the result of the SL�2; R�
transformation (5.24) is just to introduce a noncommuta-
tivity parameter �12 
 �. This analogy can be seen more
precisely if we define a 2� 2 matrix � as

� �
�

1

g0 	 B0

�
�

�
1

g	 B

�
� �G0open �Gopen� 	 ��0 � ��: (5.26)

It is easy to get the matrix

� �
0 ��
� 0

� �
: (5.27)

Thus the TsT transformation of the supergravity back-
ground is equivalent to a shift of the noncommutative
parameter by �12 � �� in the dual field theory.

Now let us look at the ��̂2; �̂3�-deformed background
which we found in the previous section. We can similarly
define a 3� 3 matrix � as in (5.26). Straightforward
calculation leads to the following5 �:

� �
0 ��12 ��13

�12 0 0
�13 0 0

0B@
1CA: (5.28)

Thus in our case the TsT transformation of the supergravity
5Here we define new symbols ��12; �13� which are related to
the symbols we used in the previous section as �12 � �̂2=R2 and
�13 � �̂3=R2, where R is the radius of S5.

106008
background is equivalent to a shift of the noncommutative
parameters by �12 � ��12 and �13 � ��13 in the dual
field theory. Since the modification only affects the direc-
tions ��1; �2; �3�, the action of the dual field theory will
be the same as the one of the N � 4 SYM theory except
the superpotential term, which can be obtained from the
undeformed one by replacing the usual product �i�j by
the associative star product�i ��j. Obviously, we will not
be able to write down the action by using the N � 1
superfields since all supersymmetries are broken in the
process.

C. Semiclassical analysis

A classical solution of the sigma model associated with
the background (5.15) is obtained as

t � �;  � 0; ’1 � �1�; ’2 � �2�;

’3 � �3�; � � arccos
� ��������������������
�̂2 	 2�̂3

4�̂3 � �̂2

s �
; � �

�
4
;

(5.29)

where

�1 � �
2
3; �2 �

4
3; �3 �

1
3: (5.30)

The angular momenta and the energy corresponding to this
state are

J1 � 0; (5.31)

J2 � �
3�̂3

�̂2 � 4�̂3
C; (5.32)

J3 �
3�̂2

�̂2 � 4�̂3
C; (5.33)

and

E � �1J1 	 �2J2 	 �3J3 � 3C; (5.34)

where C�/ N� is a constant. From the relations of angular
momenta (5.5), (5.6), and (5.7), we can see that this solu-
tion is associated to the state with

�Ĵ1; Ĵ2; Ĵ3� �

�
�̂2 	 2�̂3

�̂2 � 4�̂3
C;

�̂2 � �̂3

�̂2 � 4�̂3
C;

�̂2 � �̂3

�̂2 � 4�̂3
C
�
:

(5.35)

It is easy to see that the above state reduces to the �J; J; J�
state when �̂3 � 0 and to the ��J; 0; 0� state when �̂2 � �̂3

with J � E=3.
Next, let us consider the fluctuations around the above

classical solution (5.29) with large ’t Hooft coupling � �
gYMN � R4=�02 as
-8
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t � �	
1

�1=4
~t;

 �
1

�1=4
~;

’1 � �1�	
1

�1=4
~’1;

’2 � �2�	
1

�1=4
~’2;

’3 � �3�	
1

�1=4
~’3;

� � arccos
� ��������������������
�̂2 	 2�̂3

4�̂3 � �̂2

s �
	

1

�1=4
~�;

� �
�
4
	

1

�1=4

�����������������������
�̂2 � 4�̂3

2��̂2 � �̂3�

s
~�:

(5.36)

where we have defined

r1 � cos�; r2 � sin� cos�; r3 � sin� sin�:
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The difference between energy and angular momenta is

E� ��1J1 	 �2J2 	 �3J3� �
1

2

Z 2�

0

d	
2�

H (5.37)

where the energy and angular momenta are defined as

E � Pt � �
�S
� _t
; (5.38)

Ji � P’i �
�S
� _’i

; i � 1; 2; 3; (5.39)

and H is the corresponding Hamiltonian. By using the
Virasoro constraints

Taa � Gmn@aX
m@aX

n � 0; (5.40)

and keeping the terms up to quadratic order, the transverse
Hamiltonian can be obtained as
H � �@a~t@a~t	 �
2

 	 @a�
@a�
 	 4G��̂2 	 2�̂3���̂2 � �̂3�

2 ~�2 	 @a ~�@a ~�	 4G��̂2 	 2�̂3���̂2 � �̂3�
2 ~�2 	 @a ~�@a ~�

	 2G��̂3 � �̂2�@a ~’1@a ~’1 	
3G�̂3

�4�̂3 � �̂2�
2 �3�̂

3
2�̂3 	 �̂2

2 � 9�̂2�̂
3
3 	 6�̂4

3 � 8�̂2�̂3 	 16�̂2
3�@a ~’2@a ~’2

	
G

�4�̂3 � �̂2�
2 �9�̂

5
2 	 64�̂3

3 	 18�̂2
2�̂

3
3 	 12�̂2

2�̂3 � �̂
3
2 � 27�̂3

2�̂
2
3 � 48�̂2�̂

2
3�@a ~’3@a ~’3 	 2G��̂3 � �̂2�@a ~’1@a ~’2

	
2G

�4�̂3 � �̂2�
2�15�̂2

2�̂3 � 18�̂2�̂
4
3 � 16�̂3

3 	 27�̂2
2�̂

3
3 � 2�̂3

2 � 9�̂4
2�̂3 � 24�̂2�̂

2
3�@a ~’2@a ~’3

	 2G��̂3 � �̂2�
����������������������������������������������
2��̂3 � �̂2���̂2 	 2�̂3�

q
~��~’02 	 2 ~’01� 	 2G��̂3 � �̂2���̂2 	 2�̂3�

�����������������������
2��̂3 � �̂2�

4�̂3 � �̂2

s
~��~’02 � 4 ~’03�: (5.41)

where we have made a change of coordinates �~;�3� ! �
, 
 � 1; 2; 3; 4, and

G�1 � �̂3
2 � �̂2 � 3�̂2�̂2

3 	 2�̂2
3 	 4�̂3: (5.42)

We diagonalize the Hamiltonian by making the following coordinate transformations:

~’ 1 � �1 �
1

2
�2; ~’2 � �2; �3 �

15�̂2
2�̂3 � 18�̂2�̂

4
3 � 16�̂3

3 	 27�̂2
2�̂

3
3 � 2�̂3

2 � 9�̂4
2�̂3 � 24�̂2�̂

2
3

9�̂5
2 	 64�̂3

3 	 18�̂2
2�̂

3
3 	 12�̂2

2�̂3 � �̂
3
2 � 27�̂3

2�̂
2
3 � 48�̂2�̂

2
3

�2:

Then

H � �@a~t@a~t	 �2

 	 @a�
@a�
 	 4G��̂2 	 2�̂3���̂2 � �̂3�

2 ~�2 	 @a ~�@a ~�	 4G��̂2 	 2�̂3���̂2 � �̂3�
2 ~�2 	 @a ~�@a ~�

	 2G��̂3 � �̂2�@a�1@a�1 	
9G2��̂3 � �̂2��4�̂3 � �̂2�

9�̂5
2 	 64�̂3

3 	 18�̂2
2�̂

3
3 	 12�̂2

2�̂3 � �̂
3
2 � 27�̂3

2�̂
2
3 � 48�̂2�̂

2
3

@a�2@a�2

	
2G

�4�̂3 � �̂2�
�9�̂5

2 	 64�̂3
3 	 18�̂2

2�̂
3
3 	 12�̂2

2�̂3 � �̂
3
2 � 27�̂3

2�̂
2
3 � 48�̂2�̂

2
3�@a�3@a�3

	 4G��̂2 � �̂3���̂2 � 4�̂3�
����������������������������������������������
2��̂2 � �̂3���̂2 	 2�̂3�

q
~��01 � 2G��̂2 � �̂3���̂2 	 2�̂3�

����������������������������������������������
2��̂2 � �̂3���̂2 � 4�̂3�

q
� ~�

�
9�̂2�4�̂3 � �̂2�

9�̂5
2 	 64�̂3

3 	 18�̂2
2�̂

3
3 	 12�̂2

2�̂3 � �̂
3
2 � 27�̂3

2�̂
2
3 � 48�̂2�̂

2
3

�02 	 4�03

�
: (5.43)
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Since the coefficients are constants, the Hamiltonian
can be quantized to get the string spectrum as discussed
in [52,54]
VI. CONCLUSIONS

In this paper, we consider a deformation of the AdS5 �
S5 background of string theory. We propose a simple
generalization of the Lunin-Maldacena procedure for ob-
taining a so-called beta deformed theory which, from the
gauge theory side, corresponds to a deformation of Yang-
Mills theory studied by Leigh and Strassler. For real de-
formation parameter � � �, the Lunin-Maldacena back-
ground can be thought of as a T-duality on one of the angles
�1 corresponding to one of the three U(1) isometries of the
AdS5 � S

5 background , a shift on another isometry
variable, followed by T-duality again of �1. It was proven
in the original paper by Lunin and Maldacena that this
procedure does not produce additional singularities except
for only those in the original background. Our general-
ization consists in additional shifts on the other U(1)
variables in the intermediate step. In this way, one can
obtain a new deformed background which depends on
more parameters �1 � � ��n. Since this procedure consists
only in additional shifts, the resulting background again
contains only the singularities descended from the original
one.

In Sec. II, we reviewed the Lunin-Maldacena back-
ground and the TsT transformation procedure. In the next
section we have proved that the currents for any two back-
grounds related by TsT transformations are equal (which
was conjectured in [2]).

In the next section, we consider Ts � � � sT transforma-
tions. We find that due to these transformations the bound-
ary conditions for the U(1) variables are twisted. We prove
also that the U(1) currents in any two backgrounds related
by Ts � � � sT transformations are equal. This property is
important since, as it is discussed in [2], it means that the
theory preserves the nice property of integrability. The
integrability can be proved along the lines of the paper
by Frolov [2].

In Sec. V, we apply the TssT transformation to AdS5 �
S5 background. The obtained background is new and the
string theory on it is integrable. We argue that the super-
symmetry is broken and the background is less supersym-
metric than that of Lunin and Maldacena.

After short comments on the gauge theory side,
we perform a semiclassical analysis of string theory in
�2 � �3 deformed AdS5 � S

5 background. We study the
theory in the BMN limit and obtain the corresponding
conserved quantities important for AdS/CFT correspon-
dence. It is important to note that for �3 � 0 the back-
ground and therefore string theory reduce to that studied
by Lunin and Maldacena. In the appendix we give for
106008
completeness a detailed derivation of the T-duality
transformations.

There are several ways to develop the results obtained in
this paper. First of all, one can study multispin solutions in
our background along the lines of [47]. To clarify the AdS/
CFT correspondence, one must consider the gauge theory
side in more detail. It would be interesting to see what kind
of spin chain should describe the string and gauge theory
in this case. One can use then the powerful Bethe ansatz
technique to study the correspondence on both sides. We
leave these questions for further study.
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APPENDIX: T-DUALITY TRANSFORMATIONS

In this appendix we give a detailed derivation of the
T-duality transformation.

We start with the general string theory action:

S � �

����
�
p

2

Z
d�
d	
2�
����@�XM@�XNGMN�Xi�

� ���@�X
M@�X

NBMN�X
i��; (A1)

where (a) M;N � 1; . . . ; d� 1, i � 2; . . . ; d� 1, and (b)
the background fields GMN and BMN do not depend on X1.

The equation of motion for X1 tells us that there exists
conserved current J�:

@�J
� � 0, J� � �

����
�
p

2�
@L

@�@�X
1�
: (A2)

Let us define p� as

p� � ���@�XNG1N � ���@�XNB1N: (A3)

The action (5.3) can be rewritten in terms of p� as follows:
-10
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S � �
����
�
p Z

d�
d	
2�

�
1

2
���@�X

1@�X
1G11 	 �

��@�X
1@�X

iG1i � �
��@�X

1@�X
NB1N

	
1

2
����@�X

i@�X
jGij � �

��@�X
i@�X

jBij�
�

� �
����
�
p Z

d�
d	
2�

�
@�X

1����@�X
NG1N � �

��@�X
NB1N� �

1

2
���@�X

1@�X
1G11

	
1

2
����@�X

i@�X
jGij � �

��@�X
i@�X

jBij�
�

� �
����
�
p Z

d�
d	
2�

�
p�@�X

1 �
1

2
���@�X

1@�X
1G11 	

1

2
����@�X

i@�X
jGij � �

��@�X
i@�X

jBij�
�
: (A4)

Let us consider the second term in the above expression:

1

2
���@�X1@�X1G11 � @�X1G11

���

2G11
@�X1G11: (A5)

In order to perform T-duality, we have to eliminate X1 which enters the action only through @�X1G11. From the definition
of p�,

p� � ���@�X1G11 	 ���@�XiG1i � ���@�XiB1i; (A6)

we find

���@�X
1G11 � p� � ���@�X

iG1i 	 �
��@�X

iB1i: (A7)

Substituting for @�X1G11 in (A5) we find

@�X1G11
���

2G11
@�X1G11 � ��	@	X1G11

���
2G11

��@X1G11

� �p� � ��	@	XiG1i 	 ��	@	XiB1i�
���
2G11

�p� � ��@XiG1i 	 ��@XiB1i�

�
p����p

�

2G11
� p�

�
@�Xi

G1i

G11
� �����@Xi

B1i

G11

�
	

1

2
���@�Xi@�Xj

G1iG1j

G11

	
1

2
��	����

�@	X
i@X

j B1iB1j

G11
	
��	

2
����

�@X
j@	X

i B1iG1j

G11

	
��

2
����

�	@	X
i@X

j G1iB1j

G11

�
p����p�

2G11
� p�

�
@�X

i G1i

G11
� ����

�@X
i B1i

G11

�
	

1

2

�
���@�X

i@�X
j G1iG1j � B1iB1j

G11

� ���@�X
i@�X

j G1iB1j �G1jB1i

G11

�
: (A8)

Substitution of (A8) into (A4) gives

S � �
����
�
p Z

d�
d	
2�

�
p�
�
@�X

N G1N

G11
� ����

�@X
N B1N

G11

�
�
���p�p�

2G11
	

1

2
���@�X

i@�X
j
�
Gij �

G1iG1j � B1iB1j

G11

�

�
1

2
���@�X

M@�X
N
�
BMN �

G1MB1N �G1NB1M

G11

��
: (A9)
We will use now the conservation of p�:

@�p� � 0; (A10)

to write down the general solution to (A10) as
106008
p� � ���@� ~X1; (A11)

where ~X1 is a scalar field which is the T-dual of X1.
If we substitute for p� from (A11) into its definition

(A3), we find the relation
-11
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���@� ~X1 � ���@�XMG1M � ���@�XMB1M: (A12)

R. C. RASHKOV, K. S. VISWANATHAN, AND YI YANG
Now we can derive the T-dual action by substituting for p�

the expression (A11).
Let us consider the different terms separately.
Obviously �ij� components remain the same since ~Xi �

Xi.

(a) T
he first term in (A9) becomes

p�@�XNG1N

G11

� p�@�X
1 	 p�@� ~Xi

G1i

G11

� p�@�X
1 � ���@� ~X1@� ~Xi

G1i

G11
;

(A13)

where we substitute p� in the second term with
���@� ~X1.
We need also expression for @�X1 in terms of ~XM.
From (A12) we have

���@� ~X1 � ���@�X1G11 	 ���@� ~XiG1i

� ���@� ~XiB1i; (A14)

and therefore

@�X
1 � ���

�@� ~X1 1

G11
	 ���

�@� ~Xi
B1i

G11

� @� ~Xi
G1i

G11
: (A15)

Substituting (A15) into (A13) we get

p�@�X
1 � �	�@	 ~X1@� ~X1 1

G11

	 �	�@	 ~X1@� ~Xi1
B1i

G11

� �	�@� ~X1@� ~Xi
G1i

G11
: (A16)
(b) T
he second term in (A9) becomes

�p�����
�@ ~Xi

B1i

G11
� ���	����

�@ ~Xi
B1i

G11

� @	 ~X1

� �	@	 ~X1@ ~Xi
B1i

G11
:

(A17)
106008
(c) T
-12
he third term in (A9) can be written as

�
1

2

p����p�

G11
� �

1

2
��	

���
G11

��@	 ~X1@ ~X

�
1

2
�	@	 ~X1@ ~Xi

1

G11
:

(A18)
Summing up all the terms we derived above, we find

1

2
���@� ~X1@� ~X1 1

G11
�
���

2
@� ~X1@� ~Xi

G1i

G11

	
1

2
���@� ~X1@� ~Xi

B1i

G11
: (A19)

All the other terms in the action remain unchanged. The
final action has the same form as (A1) but with new
background fields

S � �

����
�
p

2

Z
d�
d	
2�
����@� ~XM@� ~XN ~GMN

� ���@� ~XM@� ~XN ~BMN�; (A20)

with the following transformation laws for the background
fields:

~G 11 �
1

G11
; ~Gij � Gij �

G1iG1j � B1iB1j

G11
;

~G1i �
B1i

G11
; ~Bij � Bij �

G1iB1j � B1iG1j

G11
;

~B1i �
G1i

G11
;

(A21)

and the following relations between the variables:

~Xi � Xi;

���@� ~X1 � ���@�XMG1M � ���@�XMB1M; (A22)

or, equivalently,

@�X1 � ����@� ~X1 1

G11
	 ����@� ~Xi

B1i

G11

� @� ~Xi
G1i

G11

� ����@� ~XM ~G1M � @� ~XM ~B1M: (A23)

This completes the derivation of the T-duality
transformations.



GENERALIZATION OF THE LUNIN-MALDACENA . . . PHYSICAL REVIEW D 72, 106008 (2005)
[1] O. Lunin and J. Maldacena, J. High Energy Phys. 05
(2005) 033.

[2] S. Frolov, J. High Energy Phys. 05 (2005) 069.
[3] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);

Int. J. Theor. Phys. 38, 1113 (1999).
[4] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[5] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys.

Lett. B 428, 105 (1998).
[6] D. Berenstein, J. M. Maldacena, and H. Nastase, J. High

Energy Phys. 04 (2002) 013.
[7] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Nucl.

Phys. B636, 99 (2002).
[8] Eric D’Hoker and Daniel Z. Freedman, hep-th/0201253.
[9] J. A. Minahan and K. Zarembo, J. High Energy Phys. 03

(2003) 013.
[10] N. Beisert, Phys. Rep. 405, 1 (2004).
[11] G. Arutyunov, J. Russo, and A. A. Tseytlin, Phys. Rev. D

69, 086009 (2004).
[12] G. Arutyunov and S. Frolov, J. High Energy Phys. 02

(2005) 059.
[13] M. Kruczenski, Phys. Rev. Lett. 93, 161602 (2004).
[14] H. Dimov and R. C. Rashkov, Int. J. Mod. Phys. A 20,

4337 (2005).
[15] I. Bena, J. Polchinski, and R. Roiban, Phys. Rev. D 69,

046002 (2004).
[16] N. Beisert, S. Frolov, M. Staudacher, and A. A. Tseytlin,

J. High Energy Phys. 10 (2003) 037.
[17] M. Kruczenski, A. V. Ryzhov, and A. A. Tseytlin, Nucl.

Phys. B692, 3 (2004).
[18] L. Freyhult, J. High Energy Phys. 06 (2004) 010.
[19] R. Hernandez and E. Lopez, J. High Energy Phys. 04

(2004) 052.
[20] R. Hernandez, E. Lopez, A. Perianez, and G. Sierra,

J. High Energy Phys. 06 (2005) 011.
[21] L. Dolan, C. R. Nappi, and E. Witten, hep-th/0401243.
[22] A. Agarwal and S. G. Rajeev, Int. J. Mod. Phys. A 20,

5453 (2005).
[23] H. Dimov, V. Filev, R. C. Rashkov, and K. S. Viswanathan,

Phys. Rev. D 68, 066010 (2003).
[24] N. P. Bobev, H. Dimov, and R. C. Rashkov, hep-th/

0410262.
[25] R. C. Rashkov and K. S. Viswanathan, hep-th/0211197.
[26] R. C. Rashkov, K. S. Viswanathan, and Y. Yang, Phys. Rev.

D 70, 086008 (2004).
[27] D. Mateos, T. Mateos, and P. K. Townsend, J. High Energy

Phys. 12 (2003) 017.
[28] D. Mateos, T. Mateos, and P. K. Townsend, hep-th/

0401058.
106008
[29] S. A. Hartnoll and C. Nunez, J. High Energy Phys. 02
(2003) 049.

[30] M. Alishahiha and A. E. Mosaffa, J. High Energy Phys. 10
(2002) 060.

[31] M. Alishahiha, A. E. Mosaffa, and H. Yavartanoo, Nucl.
Phys. B686, 53 (2004).

[32] M. Alishahiha and A. E. Mosaffa, Int. J. Mod. Phys. A 19,
2755 (2004).

[33] H. Ebrahim and A. E. Mosaffa, J. High Energy Phys. 01
(2005) 050.

[34] K. Ideguchi, J. High Energy Phys. 09 (2004) 008.
[35] F. Bigazzi, A. L. Cotrone, and L. Martucci, Nucl. Phys.

B694, 3 (2004).
[36] F. Bigazzi, A. L. Cotrone, L. Martucci, and L. A. Pando

Zayas, Phys. Rev. D 71, 066002 (2005).
[37] J. M. Pons and P. Talavera, Nucl. Phys. B665, 129

(2003).
[38] D. Aleksandrova and P. Bozhilov, J. High Energy Phys. 08

(2003) 018.
[39] D. Aleksandrova and P. Bozhilov, Int. J. Mod. Phys. A 19,

4475 (2004).
[40] M. Schvellinger, J. High Energy Phys. 02 (2004) 066.
[41] V. Filev and C. V. Johnson, Phys. Rev. D 71, 106007

(2005).
[42] E. G. Gimon, L. A. Pando Zayas, J. Sonnenschein, and

M. J. Strassler, J. High Energy Phys. 05 (2003) 039.
[43] A. Armoni, J. L. F. Barbon, and A. C. Petkou, J. High

Energy Phys. 10 (2002) 069.
[44] Z. W. Chong, H. Lu, and C. N. Pope, hep-th/0402202.
[45] R. G. Leigh and M. J. Strassler, Nucl. Phys. B447, 95

(1995).
[46] David Berenstein and Sergey A. Cherkis, Nucl. Phys.

B702, 49 (2004).
[47] S. A. Frolov, R. Roiban, and A. A. Tseytlin, hep-th/

0503192.
[48] N. P. Bobev, H. Dimov, and R. C. Rashkov, hep-th/

0506063.
[49] R. de Mello Koch, J. Murugan, J. Smolic, and M. Smolic,

J. High Energy Phys. 08 (2005) 072.
[50] T. Mateos, J. High Energy Phys. 08 (2005) 026.
[51] U. Gursoy and C. Nunez, Nucl. Phys. B725, 45 (2005).
[52] S. A. Frolov, R. Roiban, and A. A. Tseytlin, J. High

Energy Phys. 07 (2005) 045.
[53] N. Seiberg and E. Witten, J. High Energy Phys. 09 (1999)

032.
[54] M. Blau, M. O’Loughlin, G. Papadopoulos, and A. A.

Tseytlin, Nucl. Phys. B673, 57 (2003).
-13


