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Abstract—Conventional generalized sidelobe canceller (GSC) is
sensitive to a mismatch between the estimated and actual direc-
tion of arrival (DOA) of the desired signal. Such a mismatch in-
duces signal cancellation in the GSC, and it severely degrades the
beamforming performance. In this paper, we propose a new de-
cision feedback (DF) technique to increase the robustness against
the DOA mismatch. Our new scheme introduces a blind equal-
izer and a feedback filter in the GSC structure. We first derive
Wiener solutions for the DF-GSC with perfectly matched and mis-
matched DOA and show that the problem of signal cancellation
can be avoided. Then, we consider the adaptive GSC implemen-
tation in which the least-mean-square (LMS) algorithm is used for
weight adaptation. In addition to the improved robustness, the pro-
posed scheme also remedies the slow convergence problem inherent
in the conventional adaptive GSC structure. The convergence be-
havior of the LMS-based DF-GSC is fully analyzed and the ana-
lytic signal-to-interference-plus-noise ratio (SINR) is also derived.
Finally, simulation results demonstrate that while the proposed
structure can considerably enhance the overall performance, it has
greatly improved robustness as compared to other existing robust
adaptive beamformers.

Index Terms—Decision feedback, generalized sidelobe canceller
(GSC), least-mean-square (LMS), robust adaptive beamforming.

1. INTRODUCTION

EAMFORMING technology [1]-[3] plays an important

role in radar, sonar, microphone array speech processing,
and, more recently, wireless communications [4], [5]. The lin-
early constrained minimum variance (LCMV) considered by
Frost [6] is a commonly used criterion for a beamformer to sup-
press interference and noise. The generalized sidelobe canceller
(GSC) proposed in [7] makes the implementation of the LCMV
much more efficient. It can effectively reduce the computational
cost, especially implemented with adaptive algorithms. How-
ever, the conventional GSC is known to be quite sensitive even
to a slight mismatch of the desired signal’s direction of arrival
(DOA), which can easily occur in practice as a consequence of
signal pointing errors. When a mismatch exists, the GSC tends
to misinterpret the desired signal component in input as interfer-
ence and to suppress this component by nulling instead of main-
taining distortionless response toward it. This phenomenon is
called signal cancellation and may cause severe degradation of
the beamforming performance [8]. The conventional approach
to the design of a beamformer assumes that the desired signal
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is absent in the training period. In such a case, the beamformer
is known to be sufficiently robust against mismatch errors in
the array response [9]. Unfortunately, in typical applications, in-
cluding wireless communications, the signal-free training snap-
shots are difficult to obtain or even not available. It makes the
instinctive robustness absent from these applications.

In [10], a spatial domain notch filter has been incorporated
into the conventional GSC to exclude the desired signal com-
ponent in the beamformer input. Robustness is then guaranteed
because of the signal-free operation. It also lessens the deviation
between the adaptive and optimum weights, and improves the
convergence rate. The main disadvantage of this approach is the
need of a sharp notch filter and a slave array for recovering the
desired signal. There are several ad hoc approaches to the design
of robust adaptive array, e.g., exploiting the eigenspace-based
structure [11], [12], main beam constraints [13]-[15], diagonal
loading [16], and matrix tapers [17] (see also [9] and [18] for a
good summary). Other well-defined methods for designing ro-
bust adaptive array include modifying the original optimization
problems [19], [20]. They employ additional constraints in op-
timization and, hence, the beamforming capabilities lessen. In
[21], the signal cyclostationarity was exploited for providing ro-
bustness for array processing; however, the implementation of
the algorithm needs a priori information on some auxiliary pa-
rameters, and suffers from high computational complexity. A
mathematically tractable method called the worst-case perfor-
mance optimization (WCPO) was proposed recently, and for-
mulated by the second-order cone (SOC) programming [22].
Later, a more general approach of the algorithm was analyzed
and the online implementation complexity was reduced to the
order of O(N?) [23], where N is the dimension of the beam-
former. Unfortunately, the WCPO approach cannot be applied
to the GSC scheme directly. Also, the computational complexity
is still rather high.

To reduce the implementation complexity, the weights in the
GSC can be estimated using adaptive methods and these re-
sult in adaptive beamforming structures. The least-mean-square
(LMS) algorithm is widely used in adaptive processing. It is
well known for its simplicity and robustness [24]. However, due
to the special structure inherent in the GSC, the error signal,
which is used in the LMS adaptation, consists of the output
desired signal and residual noise components (even in steady
state). This nonzero signal magnifies the mean-squared error
(MSE). In order to reduce the MSE, the step size, a parameter
controlling the LMS convergence, must be small and it essen-
tially makes the LMS converge slowly. Although we can use the
recursive least-squares (RLS) algorithm to improve the conver-
gence rate, the computational complexity will be substantially
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increased. In [25]-[27], a more sophisticated direct data-do-
main least-squares algorithm solved by the conjugate-gradient
method was proposed for adaptive beamforming. With reduced
computational complexity, this method can still provide fast re-
sponse to dynamic environments.

In this paper, we present a decision feedback (DF) GSC to
overcome the insufficient robustness and slow convergence
problems mentioned previously. In wireless communications,
the transmitted symbols have discrete values. We can then take
advantage of this characteristic and employ a DF scheme. We
introduce a blind equalizer and a feedback filter in the GSC
structure. This structure can eliminate the desired signal com-
ponent from the error signal. With this modified error signal, the
proposed DF-GSC can avoid the signal cancellation problem
and provide extra robustness against a DOA mismatch. The
computational complexity can be kept on the order of O(N).
Meanwhile, the modified error signal allows the use of a large
step size and the convergence rate of the LMS algorithm can be
greatly accelerated.

This paper is organized as follows. In Section II, the signal
model of a narrowband GSC beamformer and its classic solu-
tion are described. In Section III, we propose the DF-GSC struc-
ture and derive its optimum solution. In Section IV, we give the
mismatch model and analyze the behavior of both the GSC and
DF-GSC with a DOA mismatch. Section V analyzes the conver-
gence behavior of both the adaptive GSC and adaptive DF-GSC
(with the LMS algorithm). The weakness of the GSC structure
in this adaptive implementation and the amendment by the DF
technique is examined. Finally, simulation results and conclu-
sions are given in Sections VI and VII, respectively.

1I. BACKGROUND
A. Signal Model

Consider a uniform linear array (ULA) of N antenna ele-
ments. Let a desired signal from far field impinge on the array
from a known DOA 6y along with M uncorrelated interfering
signals from unknown DOAs {61,6s,... 605}, respectively.
With the first element as the reference point, the N x 1 desired
signal’s steering vector is given by

a(fo) = [1,e™0,e?m0, . !N D] T ()

where i = /=1 and 79, = (2mwd/Ly)sin 6y, in which d is
the element spacing and Ly is the signal wavelength. Similarly,
a(fm) = [1,em e2mm . WN-D7n T (1 < m < M)
corresponds to the interference arriving from direction 6,,,, with
7o, = (2md/L))sin 0,,. Then, the kth snapshot of the N x 1
received equivalent baseband signal vector at the ULA can be
written as
M
x(k) =a(bo)so(k) + Y a(6m)sm (k) +n(k)
m=1

£5(k) +i(k) + n(k) @

where so(k) denotes the desired signal, s,,(k) (1 < m < M)
the mth interfering signal, s(k) = a(fy)so(k), i(k) =
Zi\f:l a(b,,)sm(k), and n(k) the additive noise vector in the
array. Each noise component is assumed here to be spatially
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Fig. 1. Block diagram of adaptive DF-GSC.

white and Gaussian with a variance of 0121. As shown in (2), we
have decomposed the received signal into three components:
desired signal, interference, and noise. For communication
applications, so(k) corresponds to the channel output which
is a convolution of the channel response and the original
transmitted symbol sequence. For simplicity, we only con-
sider quadrature phase-shift keying (QPSK) modulation and
flat-fading channel environments in this paper. Thus, we can
have so(k) = h(k)bo(k), where h(k) is the channel response
and bg(k) is the desired transmitted symbol. The channel
response can be further expressed as h(k) = ((k)e’?*), where
B(k) is the amplitude response and ¢(k) is the phase response.

B. GSC Implementation

The narrowband beamformer output at time instant k, i.e.,
y(k), can be expressed as y(k) = w¥x(k), where w is the
weight vector, and the superscript (-)f denotes the Hermi-
tian operation. The LCMV beamformer determines w by
minimizing the interference and noise output power under

appropriate linear weight constraints, which is given as

II‘lin WHRi+nW7 subject to CHw=f (3)
where Riyn = E{(i(k) + n(k))(i(k) + n(k))7} is the input
correlation matrix of interference-plus-noise, C is an N x P
constraint matrix, and f is a P x 1 response vector, with P being
the number of constraints. Several different philosophies can be
employed for choosing the constraint matrix and the response
vector [18]. In many communication applications, the correla-
tion matrix R;y, is usually not available. Consequently, the
input correlation matrix Ry = E{x(k)xf (k)} in the receiver
is used instead. The optimization problem then becomes

min = wR,w, subject to CHw =f “4)

which is called the linearly constrained minimum power
(LCMP) criterion [18]. The following development will be
based on this workable criterion. It is not difficult to see that the
optimum weight vectors solved by (3) and (4) yield the same
gain and the same output spectrum when the signal is perfectly
matched and the distortionless constraint is imposed [18].

The GSC is an alternative formulation of the LCMV/LCMP
beamformer. It has been shown that the GSC can convert the
constrained optimization in (3) or (4) into an unconstrained one
[7]. The structure of the conventional GSC is illustrated in the
left part of Fig. 1. As shown in the figure, the upper path includes
the quiescent signal matched filter w,. The lower path includes
the blocking matrix B and the interference cancelling filter w,.
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Ideally, the span of B is in the null space of C¥ . From the left
part of Fig. 1, we can obtain the output of the GSC expressed as

y(k) = (wq — Bw,)7x(k) (5)

where w,, is of dimension N x 1, B of dimension N x (N — P),
and w, of dimension (N — P)Xx 1. Using the constraint in (4),
we can solve wq as

w, = C(CHC)™f. (6)

Let J = E{|y(k)|?} denote a cost function of MSE. The con-
strained optimization problem in (4) can then be rewritten as the
following unconstrained optimization problem

min J =min (wq, — BWa)HRx(Wq —Bw,). ()

Wa Wa

Then, we can find the optimum w, as
Wa,opt = (BHRxB)_lBHRqu. (8)

Let Wopy = Wq — BW, op¢. The minimum mean-squared
error (MMSE) for (7), denoted as J,;n, is calculated as
Jmin = W(I):;tRxWopt

= wfowopt
=fH(CHR_'C) If. )

It is simple to see that .Jp,;, is just the minimum GSC output
power, denoted as P, min. When the number of antennas is
larger than the number of interfering sources, i.e., the degrees
of freedom (DOFs) are high enough, and the distortionless
constraint is set to the desired signal’s DOA, all interference
tends to be cancelled in the GSC output [6]. The MMSE will
then be dominated by the output desired signal power.

Jmin = 02, [wha(B0)? 2 P, (10)

where 0?0 and P; denote the desired signal power (variance) in

the beamfomer input and output, respectively.

The output signal-to-interference-plus-noise ratio (SINR) is
a widely accepted performance measure for beamforming. The
optimum SINR can be written as
E{lwins(k)*}

E{jwilix(k) — wils(k)[?}

opt

SINRgpt = (11)

For the conventional GSC, the numerator of the SINR expres-
sion is just the power of the desired signal in the output, as shown
in (10), and the denominator of the SINR is the power of the in-
terference-plus-noise in the output, which can be found to be
E{|Wg)tx(k) _Wg)ts(k) |2} = Po,min - Ps

= Wfowopt —030 |wfa(€0) |2
=wlRiinWopt. (12)
The general expression for the optimum SINR can then be sum-
marized as

Py

SINRopt = 7P07min B

13)
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Since C and f are known a priori, w4 can be calculated of-
fline using (6). The optimum w,, however, depends on the input
correlation matrix which cannot be known in advance. A simple
alternative to find the optimum w, is to use an adaptive training
method. The LMS algorithm, being one of the stochastic gra-
dient methods, is known to be a simple yet effective adaptive al-
gorithm [24]. Using the cost function in (7), we can calculate the
stochastic gradient with respect to w. The LMS update equa-
tion for w, is written as

wa(k+ 1) = wu(k) + pav(k)e™ (k) (14)
where w, (k) is the estimate of w, at the kth snapshot, v(k) =
B#x(k) is the filter input vector (the output vector from the
blocking matrix), 1, is the step size controlling the convergence
rate, and e(k) is an error signal between the desired and actual
outputs. For GSC applications, we have e(k) = y(k).

As mentioned, the conventional GSC is sensitive to a DOA
mismatch which can easily occur in practical circumstances.
Also, as seen from (14), the update term of the LMS algorithm
involves y(k), which will approach the output desired signal
w/'s(k) ideally. This indicates that the stochastic gradient in
(14), i.e., v(k)y*(k), will not be close to zero even for optimum
weights. As a result, the excess MSE induced by the LMS al-
gorithm will be large. It has been shown that the excess MSE is
roughly proportional to i, Jmin [24], where Jyiy, is the MMSE
value in (9). To reduce the excess MSE, we then have to use a
small step size and this slows the convergence of the conven-
tional LMS-based adaptive GSC.

III. DEcisION FEEDBACK GSC (DF-GSC)

In this section, we propose a new DF scheme to improve the
robustness and performance of the conventional GSC. Fig. 1
shows the whole structure of the proposed DF-GSC. The idea is
to introduce a blind equalizer and a feedback filter to modify
the GSC output y(k), which is then used as the error signal
in the LMS adaptation. The purpose of the blind equalizer is
to equalize the channel and the DOA mismatch effect, and the
feedback filter is to cancel any desired signal component in the
LMS error signal. Due to the scenario we considered, we only
need one weight for the equalizer and one weight for the feed-
back filter. Note that the blind equalizer and the feedback filter
are trained by different error signals. The equalizer is trained
by the error signal between the output and input signals of the
decision device while the feedback filter is trained by the error
signal between the GSC and the feedback filter outputs. The ad-
vantage of this structure is that there will be no coupling effect
between these two filters. The blind equalizer can recover bg (k)
with a phase ambiguity and we will show that this is sufficient
for our use. Although any other blind equalization algorithms
can be applied, we found that they may not be more effective for
the scenario considered here. The optimum weight for the blind
equalizer is obtained by minimizing an MSE criterion shown
here

min J = min E{|6m(k)|2}

Wm Wm

15)
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where ey, (k) = bo(k) — w,y(k), with bo(k) being the detected
symbol and w,, being the equalizer tap weight. Taking the sto-
chastic gradient of .J in (15) and applying the LMS algorithm,
we can obtain the update equation for w,, as
wm(k + 1) = wm(k) + ltmy(k)ern(k) (16)
where 1, is the step size controlling the convergence behavior
of wy,. It can be easily shown that the tap weight in (16) can
equalize the channel effect up to a phase ambiguity of L /2,
where L = 1, 2, 3 for QPSK modulation. Since our purpose
is just to cancel the desired signal component in the GSC
output, knowledge of the exact transmitted symbol by (k) is not
required. We now state the reason: Let w}, denote the feedback
tap weight and wy, op¢ denote the optimum choice for it. We
assume that w} = wi‘;’opt and the decision is correct, i.e.,
bo(k) = bo(k). Then, let the decision have a phase ambiguity
of p, i.e., bo(k) = bo(k)eP. It is simple to see that if we make
wy = e P Wy ot the output of the feedback filter will remain
exactly the same.
With the proposed feedback structure, the cost function for
J =E{|e(k)|"}

the DF-GSC is changed to
2
=E { } .17

As aforementioned, Eo(k) may have a phase ambiguity with re-
spect to bg(k), but this will not affect the final result. For con-
venience, we simply assume that the decision is correct, i.e.,
bo(k) = bo(k) in the following analysis. Similarly, the channel
effect h(k) does not have any impact in our analysis and is as-
sumed to be (k) = 1. We may write the detected desired signal
as 80(k) = so(k) = bo(k) = bo(k). With the point distortion-
less constraint, the minimization of the cost function in (17) can
be written as

wilx(k) — [wi wy] [B;Z(k()kw

min .J = min wf;‘rRxwq — wf [RxB p|w.

Wa, Wh We

H
f [Bpf}x} Wy +W£{RCWC (18)

in which we let

we = 'jﬂﬂ , (19)
re - { [P0 e sym1)
and
b = B{x(13(k)) = o7, a(t) @

where 0 denotes a zero vector with dimension (N — 1)x 1. It
is simple to see that w is the same as that in the conventional
GSC. Taking the derivative of the cost function with respect to
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w and setting the result to zero, we can obtain the optimum w,

oJ H
= =2 [BPIE‘X} Wq+2Rewe =0.  (22)
Thus,
_, [BER,
Weopt = R ! [ pf } W (23)

Utilizing the special structure of R, we can decompose W opt
back into the two weights

Waopt = (BFRxB) ' B Ryw,, (24)
H
Wh,opt = O-_ZWq = aH(Qo)Wq. (25)

S0

With Wy, W, opt, Wh,opt, and the result in (9), the minimum J
of (17) (which is not the minimum output power P, i, in this
case) for the DF-GSC becomes

Jmin :W(Ifowopt - 0'30 |Wfa(90)|2
(26)

H
=wy RignWopt.

We can see that the desired signal component is totally excluded
from the MMSE expression for the DF-GSC and the resultant
MMSE can thus be small. From the equations given above, we
find three notable features of the DF-GSC.

* The expression of W, op¢ in (24) is the same as that in the
conventional GSC.

* The effect of the additional feedback tap weight is only to
reduce the minimum value of the cost function. Since w4
and W, ¢ Temain the same, the minimum output power
is not affected.

e From (25), the output of the optimum feedback filter
wy; ,pi80(k) can be shown to equal wl's(k), which is
exactly the desired signal component in the output upon
ideal error-free conditions.

Equation (13) is still valid for expressing the optimum output
SINR for the DF-GSC, where P, ,in used is the minimum
output power as given in (9). Therefore, the optimum GSC
performance is not enhanced by the DF operation. However,
when there is a DOA mismatch or the LMS is used to estimate
those optimum weights, the performance can be greatly im-
proved by the DF structure. This will be elaborated in the next
two sections. Similarly, the LMS update equations for the tap
weights of the DF-GSC can be written as

27)
(28)

Walk + 1) = Wa(k) + pav(k)e* (k)
wb(k + 1) :wh(k) + /1'b§0(k)e*(k)

where (1, is the step size for w, u, is the step size for wy,, v(k)
is the filter input vector, and e(k) = y(k) — w};(k)5o(k). Un-
like the conventional GSC, the steady-state e(k) will exclude
the desired signal component and hence can be quite small. It is
where the improvement of the DF-GSC stems from. The deriva-
tions given above are based on the assumption that the decision
is correct. Actually, decision errors occur sometimes. In gen-
eral, they can be seen as some sparse noise added to the error
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signal e(k). If the error rate is low, this will only increase the
MSE slightly. We will show by simulation that even when the
decision error rate is high [signal-to-noise ratio (SNR) is low],
the overall performance of the DF-GSC is still better than (or at
least the same as) that of the conventional GSC.

IV. DOA MISMATCH ANALYSIS
A. Mismatch Signal Model

From Section II, we have defined the expression of the signal
steering vector under perfectly matched conditions. If there is
a mismatch between the actual and presumed desired signal’s
DOA, ie., 0y = ég + A, where éo is the estimated DOA and A
is the mismatch value, we may rewrite the steering vector as

a(fo)
=a(fo + A)

_ [1, e’ia sin(éo—i-A) ei2a sin(éo—l—A) .....

(29)

with a = 2wd/ L. With modern DOA estimation methods [4],
[18], A is generally small (if existed). Thus, we can have

sin(fp + A) ~ sin(fy) + A cos(fp). (30)

We may approximate the mismatch steering vector as

i A cos 90 ei2(y sin 90 . ei?nA cos 90

a(fy) ~ [l,em sinfo ¢

, e'i(N—l)(y sin A . e'i(N—l)nA(‘,os éO]T (31)

in which each element in the mismatch steering vector is
composed of an ordinary steering term multiplied by another
mismatch steering term. Without loss of generality, we let the
system be presteered, i.e., fo is adjusted to 0°. The mismatch
steering vector can then be simplified to

a(fo) =a(A)

~ A 2aA N-1)aA1T
~[1,e'"*? e ). ) 1"

el (32)
We use (32) as the desired signal’s steering vector for the fol-
lowing analysis. Then, s(k), being equal to a(fy)so(k), be-
comes a(A)so(k).

B. Mismatch Analysis With GSC and DF-GSC

With an estimation error of the desired signal’s DOA, w, is
not matched to the desired signal’s steering vector, and B cannot
obstruct the desired signal entering the input of the interference
cancelling filter. If there are enough DOFs, the filter will cancel
the desired signal from the quiescent filter output. The so-called
signal cancellation occurs. In the case of the conventional GSC,
even with the optimum weight vector (under distortionless con-
straint), it does not provide the ability to maximize the SINR
anymore [8]. The expression of the optimum output SINR for
the conventional GSC is again the same as given in (13), but
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now P; changes. The output desired signal power in the con-
ventional GSC becomes

P, =d2

3 |(wq = Bwaop) Ma(A)? (33)

which is different from (10) because w B a(A) is not zero
now. The actual amount of signal attenuation depends upon the
power of the signal and the amount of error [28]. The minimum
output power P, min for calculating the optimum output SINR
of the conventional GSC in mismatch is the same as (9).

On the other hand, we can show that the signal cancellation
phenomenon is avoided in the DF-GSC. Since a correlation ex-
ists between the two signal paths in the GSC structure whenever
a mismatch exists, the optimum solutions for w, and wy, in the
DF-GSC are coupled together. From (23), we have

H
We,opt = |:Wa,opt:| = R;l |:Bp1:_l;{x:| Wq (34)

Wh,opt
with
p=05,a(4) (35)
and
where m = o B¥a(A), which is the correlation between

the blocking matrix output B¥x(k) and the decision 3¢ (k). By
using the inversion identity for subblock matrices [29], we can
find the inverse of R and so w op¢ in (34). For reference, we
give the inversion form used here as

A, A,17°

A; Ay

[ St TSpiAnAl g
CAT'ASS] AT+ ATIASSSIAAT

where Sp = A; — A2A4_1A3 is the Schur complement of A 4.
After some manipulation, we have

w, = (B"RinB) 'B”Riin w
©oP' = | af (A)[I - B(B¥RisnB) 'B¥Ripn] |

(33)

and thus the coupled W, ,; and wy, op¢ can be written as
Waopt = (BPRiynB) ' BYRiyawy (39)
Whopt =a (A)(Wq = BWaopt)- (40)

The MMSE of the DF-GSC with mismatch can then be solved
to be

Wq

H
Jmin =Wl Rxywy — wl/ [RyB p]R;! [B ,I}X}
=W/ RitnWq— W/Ri1nB(B"RiynB) 'BYRifaw,
(41)

H
= Wq Ri+nW0})t .
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It is equivalent to say that the error signal contains no desired
signal. This result can also be seen as the fact that from (40),
the output of the optimum feedback filter wy; . 80(k) is equal
to (Wq — Bw, opt)'s(k), which is again exactly the output de-
sired signal. It makes the interference cancelling filter have no
means to cancel the desired signal in the GSC output. Here, we
notice that the optimum weights are modified. From (24) and
(39), we observe that the only difference between the two solu-
tions of w, ¢ is that the correlation matrix involved is changed
from Rx to Rin. The expression in (39) can be explained as
the solution of the originally unreachable LCMV optimization
problem given in (3), or its GSC implementation as

min (wy — Bw,)?Riin(wq — Bw,).

Wa

(42)

As said previously, this criterion is generally not workable
in practical situations for wireless communications because
Riin is not available in the receiver. However, the proposed
method can equivalently minimize this criterion. This is where
the robustness comes from and why signal cancellation can be
avoided.

Although the optimum interference cancelling filter is
changed, the expression in (13) is still valid for calculating
the optimum output SINR for the DF-GSC. The power of the
desired signal in the output is the same as (33), but for the
DF-GSC in mismatch, the minimum output power should be
calculated as

—
Po,min — WoptRxWopt-

(43)

In Section VI, we will use simulation results to depict the output
SINR difference between the conventional GSC and DF-GSC.

C. A Blind Approach for DF-GSC With Mismatch

In the LMS-based adaptive implementation, a remaining
problem is how to acquire correct decisions initially whenever a
DOA mismatch occurs. In this situation, the desired signal may
be too weak to initiate the blind equalizer. A straightforward
method is to use training. From experiments, we find that the
number of training snapshots needed is usually small for both
the feedback filter and equalizer. An alternative method is
to add derivative constraints, which is a classic approach for
providing robustness against mismatch. With suitably chosen
derivative constraints, the DF-GSC can exclude the use of
training snapshots and acquire correct decisions chiefly. The
disadvantage of this approach is that the DOFs are reduced and
so the interference and noise suppression ability degrades.

We now develop a scheme which can let the DF-GSC skip
the use of training symbols in the initial phase and reach the
good SINR performance through adaptation. The idea is to use
enough number of derivative constraints for the DF-GSC ini-
tially and then release the constraints gradually. The initially
broadened main beam can tolerate a certain amount of DOA
mismatch value and ensure that there is enough desired signal
strength in the quiescent filter output. Then, the equalizer can
effectively converge without training. After convergence, the
DF-GSC may release the constraints one by one. This incre-
ment in the DOFs makes the beamformer have the opportunity
to strengthen the interference and noise suppression capability.

3827

The detailed operation of this blind approach is stated as fol-
lows. For illustration, we assume that the number of point-plus-
derivative constraints is changed from p to p — 1, and so the
DOFs increase from N — p to N — (p — 1). We denote the
blocking matrix, the quiescent signal matched filter, and the in-
terference cancelling filter when the DOFs are N —p as By_,
Wq N—p and w, n_,. With 0° presteering, w, can be calculated
beforehand with any DOFs and B can be arbitrarily chosen ac-
cording to the subspace constraints. To add the blocking matrix
only one column and increase the DOFs one at a time, we need
the following preliminaries.
Initialization:

1) Prepare the projection matrix for
By_(p-1) as

Py_(p—1) = BN—(p-1)BN_(p_1)- (44)
2) Calculate the projection of the ready
to throw away column of the derivative
constraint in C onto the subspace spanned

H
by columns of BN—@—Q as
bN—(p—l) = PN—(p—l)Cz;- (45)

3) Prepare a vector holding the difference
between the new and old guiescent weight
vector

dy—(p-1) = WqN—(p—1) ~ Wq,N—p (46)
add a zero tap weight to form the new in-
terference cancelling filter

Wa, N—(p—1) = [Wa,N—p 0] (47)

and define a sequence I' with elements
monotonically increasing from 0 to 1,
e.g., ' = {v,7,.-.,77-1}, where T is the
sequence length. We may use a simple se-
quence v, = 1 - (T - 1) — k)/(T — 1), with
0<k<T-1.

Note that the length T indicates the number of snapshots
during the transition. The longer the length is, the smoother the
transition becomes. As a rule of thumb, it may be proportional
to the average time constant of the LMS algorithm, which is ap-
proximated as [24]

1
2ll/a/\av

TMSE,av ~ (48)
where \,, is the average eigenvalue for the underlying corre-
lation matrix. Since the transient response settles in about four
times of this average time constant, the length of I" can be chosen
to be somewhat larger than 47\isg av, €.8., YTMSE,av. It guaran-
tees that there is enough smoothness and no waste of snapshots
during transition. After the initialization, the DF-GSC can adopt
the new adaptation settings as stated.
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Transition:

1) Estimate the new weight wvector
W.N—(p—1) lteratively according to the
new blocking matrix and quiescent weight
vector as

(49)
(50)

YebN_(p=1)]

Wq,N—(p—l) =WqN—p + ryde—(p—l)

By_(p-1) = [By—p

with 7, acting as the kth element in the
sequence I' used for the kth snapshot.
2) Repeat step 1) until v, =1.

Using the above procedure, the DF-GSC can skip the use of
training without degrading the SINR performance eventually.

V. CONVERGENCE ANALYSIS

In this section, we give the convergence analysis for both the
adaptive GSC and adaptive DF-GSC.

A. MSE in Steady State
Let the MSE in steady state of the LMS algorithm be denoted
as J(o0). Then

J<OO) = Jmin + Jex(oc) (51)

where J,;, is the MMSE solved by Wiener equations and
Jex(00) is the excess MSE caused by the LMS adaptation. Also
define the weight-error vector as

€(k) = wa(k) — Wa,opt- (52)

Using the the direct averaging method [24], we have
€(k+1) = (I— pBYR.B)e(k) + paB7x (ke (k) (53)

where e,pt (k) denotes the error signal produced with the op-
timum weights. Define the correlation matrix of the weight-error
vector as

K(k) = E{e(k)e" (k)}. (54)

Invoking the independence assumption [24], we can obtain the
recursive relation of K(k) as
K(k+1)=(I- u.BYRB)K(k)(I - 11, BYRyB)

+12 JminBEIRLB.  (55)

Under this premise, the excess MSE is written as

Jex(k) = tr[BER,BK(k)] (56)

where tr[-] is the trace of the matrix in brackets. As k — oo, the
excess MSE is given by

N—-P

Jex<oo) = Jmin Z

=1

pa N (BER,B)
2 — N\ (BERLB)

(57)
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where \;(B¥R,B) indicates the [th eigenvalue of BER,B.
Hence, the excess MSE is roughly proportional to the resultant
MMSE and the step size used.

B. SINR in Steady State

The output SINR in steady state is used as the performance
measure for the adaptive GSC and adaptive DF-GSC. The tran-
sient SINR of both schemes can be written as

- E{|w# (k)s(k)|?}
SINR(k) = E{|WH(k)X(k> — WH(/(J)S(]?)P}'

(58)

Without mismatch, as k¥ — oo, the numerator of the SINR ex-
pression is the same as Ps given previously in (10); however,
the denominator of the SINR is changed to

E{lw (00)x(c0) — wH (c0)s(00) ?
=W R Wopt + tr[BY Ry BK(00)] — Ps

= Po,min + ch(oo) - Ps (59)

where P, nin specifically denotes the minimum output power
as given in (9). Thus, the steady-state SINR with the LMS algo-
rithm can be summarized as

Py

SINRpys = 55— SRR

(60)

Equation (60) shows how J.y (00) affects the steady-state SINR.
The smaller the excess MSE value is, the larger the steady-state
SINR becomes. From (57), we can see that Jex(00) is propor-
tional to Jp,;n. For the conventional GSC and DF-GSC, their
MMSEs are shown in (9) and (26), respectively. It is apparent
that the MMSE of the DF-GSC is much smaller. As a result, with
the same step size, the output SINR of the adaptive DF-GSC is
higher than that of the conventional adaptive GSC.

In the DOA mismatch case, we define J3_(00) as the excess
MSE of the leaky desired signal component present in the lower
path. The corresponding correlation matrix of this component is
BHR.B where Rs = E{s(k)s (k)}. Using (57), we can have

par1(BERsB)
2 — a1 (BAR,B)

Jesx(oo) = Jmin (61)

since only one eigenvalue of BYR¢B is nonzero. The expres-
sion of the steady-state output SINR with mismatch is then
slightly modified as

PS + J:x(OC))

SINR = .
LMS Po,min + Jex(oo) - (PS + Jesx(oo))

(62)

In (62), P for both the conventional GSC and DF-GSC and
P, 1min for the DF-GSC should be changed to (33) and (43), re-
spectively. Another well-known adaptive algorithm is the nor-
malized LMS (NLMS) algorithm. It has the advantages of better
step size control and faster convergence. However, its computa-
tional complexity is also higher. Though the convergence be-
havior of the NLMS algorithm is similar to that of the LMS al-
gorithm, the theoretical analysis is more involved.
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Fig. 2. Learning curves for GSC and DF-GSC with same step size.

VI. SIMULATIONS

Computer simulations are conducted to verify our an-
alytic results and demonstrate the effectiveness of the
proposed algorithm. In all cases, we assume a ULA with
N = 16 omnidirectional antennas spaced half a wavelength
apart. The transmitted symbols are randomly generated from
(£1 + 7). We consider one desired source and three uncorre-
lated interfering sources coming from 0°, 20°, 50° and —35°,
respectively. The total interference-to-noise ratio (INR) is 60
dB, with 20 dB per interference. The SNR is 0 dB and the step
size for w, is 1 x 1073, unless specified otherwise. The step
size for wy, is fixed at 0.01. In all figures, 200 simulation runs
are averaged to obtain each simulated result.

A. Exactly Known Desired Signal’s DOA

In this set of simulations, only the point distortionless con-
straint is considered. The flat-fading channel coefficients for
those signal vectors are independently and randomly generated,
and remain unchanged in each simulation run. For comparison
purpose, all these coefficients are scaled to let the average INR
and SNR stick to the requirements. Since the desired signal’s
DOA is exactly known (no mismatch), no training is needed for
the DF-GSC. First, we use the same step size for both the con-
ventional adaptive GSC and adaptive DF-GSC and observe their
convergence and steady-state SINR. Fig. 2 shows the learning
curves of both algorithms. Also shown is the optimum SINR
value calculated with the Wiener solution. From Fig. 2, we see
that the adaptive DF-GSC can achieve higher SINR than the
conventional adaptive GSC, and both algorithms are compa-
rable in convergence rate. As expected, the DF-GSC can ap-
proach the optimum SINR much closely, which means that the
effect of the excess MSE induced by the LMS algorithm is
small. Fig. 3 reveals the beam patterns of both adaptive schemes
after 200 snapshots. It is clear that the adaptive DF-GSC per-
forms better than the adaptive GSC in nulling the interference.
The difference between the two schemes is almost 10 dB for
each interfering source.

We then fix a target SINR, i.e., 11 dB, and choose suitable
step sizes for both schemes (1, = 3 x 10~ % and p, = 4 x 107
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Fig. 3. Beam patterns of GSC and DF-GSC in Fig. 2 after 200 snapshots.
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Fig. 4. Learning curves for GSC and DF-GSC with same SINR target.

for the conventional adaptive GSC and the adaptive DF-GSC,
respectively). It is to compare the convergence rate of both al-
gorithms. Fig. 4 demonstrates the results. As we can see, the
DF-GSC converges around 150 snapshots while the GSC con-
verges around 350 snapshots. The DF-GSC converges much
faster.

Next, we present the steady-state SINR achievable by the con-
ventional adaptive GSC and the adaptive DF-GSC under dif-
ferent SNR environments. Fig. 5 shows the results. We see that
the achievable SINR for the DF-GSC is proportional to the SNR
and that for the GSC is saturated when the SNR is high. The per-
formance gap becomes significant in high SNR regions.

Afterward, we show the SINR performance with different
step sizes used for w, in the LMS algorithm. Fig. 6 gives the
simulation results. It is clear that the larger the step size, the
lower the SINR performance. However, we notice that the SINR
degradation due to large step sizes in the adaptive DF-GSC is
much smaller than that in the conventional adaptive GSC. For
this reason, the DF-GSC can work with a large step size to
achieve fast convergence, which is very useful in time-varying
environments. From all these figures described earlier, we can
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conclude that when the LMS algorithm is used for adaptation,
the DF-GSC can achieve higher SINR for the same convergence
rate or faster convergence rate for the same SINR. We also see
that our theoretical SINR analysis is quite accurate.

B. Desired Signal’s DOA Mismatch

Here, a scenario with a DOA mismatch is considered. We as-
sume that there is a 2° difference between the estimated and ac-
tual desired signal’s DOA. Here, the step size for w, is chosen
to be 5 x 107> for fast convergence. Fig. 7 shows the learning
curves for the conventional adaptive GSC with different con-
straint settings. From the figure, with the point constraint only,
the SINR will eventually degrade to around —8 dB. It means
that the desired signal is almost entirely cancelled out by the
interference cancelling filter. Again, in the same figure, we see
that with the additional first-order derivative constraint, the con-
ventional GSC exhibits some robustness against the mismatch,
but the signal cancellation still occurs. The steady-state SINR
for this case is about 2 dB.
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We repeat the same experiment described previously with the
adaptive DF-GSC and show the results in Fig. 8. Here, the first
50 snapshots are used as training for the scenario with the point
constraint only and no training is required for the scenario with
the point and first-order derivative constraints. We see that these
schemes with the two different constraint settings achieve SINR
about 9 and 7.5 dB, respectively. No signal cancellation seems
to occur. Adding the additional constraint lowers the SINR for
the DF-GSC because DOFs are reduced. We conclude that the
proposed algorithm can provide notable robustness for the GSC
structure. From Figs. 7 and 8, we also notice that the simulated
curves match the analytic ones well.

From the experiment in Fig. 8, we observe that for the 2°
DOA mismatch, the point and first-order derivative constraints
are enough for the adaptive DF-GSC to bypass the training pe-
riod. However, the output SINR lessens. To keep the blind na-
ture for the DF-GSC structure and achieve higher SINR, we may
adopt the approach described in Section IV-C. Fig. 9 shows the
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learning curve of the blind approach for our mismatch example.
The DF-GSC works with the point and first-order derivative
constraints at the beginning. After 100 snapshots, it smoothly
switches to use the point constraint only. The duration of tran-
sition is set to 80 snapshots (about 5T\isEg av). We see that the
DF-GSC converges after about 200 snapshots without using any
training snapshots.

Finally, we compare the performance for the DF-GSC
with some well-known robust adaptive beamforming schemes
against the DOA mismatch. The step size for w, is chosen to be
1 x 1073 here. The loaded sample matrix inversion (LSMI) al-
gorithm, WCPO algorithm, and eigenspace-based beamformer
are chosen for comparison. The number of training snapshots
required by these robust methods is set to 100, which is large
enough for providing good performance [22]. The diagonal
loading factor for the LSMI is taken to be 1002, where o2 is
the noise power in a single antenna element. The parameter ¢ in
the WCPO algorithm is selected to provide nearly the optimum
performance [22]. Fig. 10 shows the simulation results. From
the figure, we observe that the performance of the DF-GSC is
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almost the same as the WCPO and LSMI algorithms in low
SNR regions, but the DF-GSC outperforms all other algorithms
in middle to high SNR regions. Based on the results, we
conclude that the DF-GSC is the only robust algorithm whose
performance is consistently close to the optimum from low to
high SNR regions.

VII. CONCLUSION

In this paper, a new LMS-based adaptive DF-GSC has been
proposed. The DF-GSC introduces a blind equalizer and a feed-
back filter in the GSC structure. We theoretically show that the
optimum interference cancelling filters for both the DF-GSC
and conventional GSC are the same with perfectly known DOA.
Robustness analysis for the two schemes with a DOA mismatch
is also given. We derive the Wiener solution for the interfer-
ence cancelling filter when the DF-GSC is in mismatch and
show that the signal cancellation phenomenon can be avoided.
On the other hand, when the optimum weights are estimated
by the LMS algorithm, the DF-GSC gives significantly better
results than that of the conventional GSC. We have examined
the convergence behavior of the conventional adaptive GSC and
the proposed adaptive DF-GSC under perfectly matched and
mismatched DOA scenarios. Simulation results verify that the
DF-GSC can achieve higher SINR value for the same conver-
gence rate or faster convergence for the same SINR, and the
DF-GSC can keep the high SINR performance even in mis-
match. In this paper, we confine ourselves in the flat-fading
channel and QPSK modulation environments. For general mul-
tipath fading channels, the equalizer and the feedback filter must
be extended to tap-delay-line structures. Also, for high-order
signal constellation modulation such as quadrature amplitude
modulation (QAM), other sophisticated blind equalization al-
gorithms may be required. Research in these topics is now un-
derway.
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