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Abstract
We present a novel hybrid algorithm, integrating a genetic algorithm (GA) and constrained differential

dynamic programming (CDDP), to achieve remediation planning for an unconfined aquifer. The objective func-
tion includes both fixed and dynamic operation costs. GA determines the primary structure of the proposed algo-
rithm, and a chromosome therein implemented by a series of binary digits represents a potential network design.
The time-varying optimal operation cost associated with the network design is computed by the CDDP, in which
is embedded a numerical transport model. Several computational approaches, including a chromosome bookkeep-
ing procedure, are implemented to alleviate computational loading. Additionally, case studies that involve fixed
and time-varying operating costs for confined and unconfined aquifers, respectively, are discussed to elucidate the
effectiveness of the proposed algorithm. Simulation results indicate that the fixed costs markedly affect the opti-
mal design, including the number and locations of the wells. Furthermore, the solution obtained using the con-
fined approximation for an unconfined aquifer may be infeasible, as determined by an unconfined simulation.

Introduction
Unconfined aquifers lack an upper confining layer

and are near the ground surface. Thus, contamination
from surface sources is more likely to occur in an uncon-
fined aquifer than in a confined one. However, most ear-
lier studies of ground water remediation dealt with
confined aquifers (Chang et al. 1992; Ritzel et al. 1994;
McKinney and Lin 1995; Bear and Sun 1998; Hilton and
Culver 2000). This limitation probably follows from the
fact that the flow equation for an unconfined aquifer is
nonlinear and is more complex than that for a confined
aquifer. Recently, Mansfield and Shoemaker (1999) im-
plemented a successive approximation linear quadratic
regulator algorithm (SALQR, Chang et al. 1992) to obtain
least-cost pump-and-treat remediation policies for clean-
ing up unconfined aquifers. Their study derived and com-
puted the analytic derivatives of the nonlinear unconfined

aquifer flow and transport equations. However, Mansfield
and Shoemaker (1999) did not consider the fixed costs of
well installation.

Pump-and-treat systems are the most common re-
medial systems for restoring contaminated aquifers
(Gorelick et al. 1984; Ahlfeld et al. 1988; Andricevic and
Kitanidis 1990; Yeh 1992). Evaluating the decision varia-
bles typically requires determining pumping rates from
extraction wells and selecting the locations of the wells.
Mathematical programming is commonly simplified by
ignoring the fixed costs of well installation due to dis-
continuities in selecting well locations. The optimal net-
work commonly includes wells whose final, optimized
pumping rates are nonzero. However, this simplification
can result in designs that depend on pumping numerous
wells at low rates over long periods (McKinney and Lin
1995). Various methodologies for incorporating these
fixed costs have recently attracted increasing interest.
McKinney and Lin (1994, 1995) considered both fixed
and operating costs in the objective function and applied
genetic algorithms (GAs) and mixed-integer nonlinear
programming (MINLP) to solve the problem; they con-
sidered only constant pumping rates and a steady-state
ground water system. Watkins and McKinney (1998) em-
ployed generalized Benders decomposition and outer
approximation to water resource problems that involve
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cost functions with both discrete and nonlinear terms.
Their algorithms suffer from a computational bottleneck
for large MINLP problems, such as ground water remedi-
ation planning with time-varying pumping rates. Zheng
and Wang (1999) integrated tabu search and linear pro-
gramming to design remediation strategies, accounting
for both fixed and operating costs. They take advantage of
the fact that the global optimization approach is most
effective for optimizing discrete well location variables,
while linear programming is much more efficient for opti-
mizing continuous pumping rate variables.

Unlike the static algorithms of linear or nonlinear
programming, optimal-control algorithms efficiently solve
dynamic control problems such as remediation planning
with time-varying pumping rates. By applying the
SALQR, Chang et al. (1992) demonstrated that dynamic
pumping policies are more cost effective than the best
static pumping policies because pumping rates are allowed
to vary as the contaminant plume moves (Chang et al.
1992; Culver and Shoemaker 1992). Culver and
Shoemaker (1993) extended the SALQR method by add-
ing second derivatives as governed by a quasi-Newtonian
approach (QNDDP), accelerating the convergence of the
algorithm. Culver and Shoemaker (1997) employed the
QNDDP algorithm to solve a ground water reclamation
problem by assuming that the capital cost of treatment was
linearly related to the extraction rate. However, none of
the aforementioned studies considered the fixed cost of
installing wells. One difficulty associated with applying
the optimal control–based algorithms to a problem while
considering the fixed cost is that the optimal-control
theory requires the problem to be separable in each time
step. Yet, the problem is nonseparable when the objective
function includes the fixed cost. Another difficulty related
to the fixed cost is that this cost depends on the number
and locations of wells. Consequently, the objective func-
tion is nondifferentiable when the fixed cost is included.
However, differential dynamic programming requires that
objective and transfer functions are differentiable.

Combinatory algorithms such as GA, simulated
annealing, and tabu search have been extensively applied
to problems of ground water management (Dougherty
and Marryott 1991; McKinney and Lin 1994; Ritzel et al.
1994; Rizzo and Dougherty 1996; Huang and Mayer
1997; Wang and Zheng 1998; Aly and Peralta 1999;
Zheng and Wang 1999). Huang and Mayer (1997) em-
ployed GA to search for the optimal pumping rates and
the discrete spaces of well locations in dynamic ground
water remediation management. Their findings reveal that
solutions obtained using the moving-well model are less
expensive than those obtained using a comparable fixed-
well model. Their model requires considerable computa-
tional effort to yield the optimal solution because of the
characteristics of the GA. Wang and Zheng (1998) used a
GA and simulated annealing, coupled with MODFLOW,
to solve the ground water remediation design prob-
lem with multiple management periods and an objective
function that involved both fixed and operating costs.
However, their study limited the maximum number of
planning periods to four, probably because the compu-
tational expense of GAs and simulated annealing

increases rapidly with the number of planning periods and
corresponding decision variables. Aly and Peralta (1999)
used the LN norm as a global measure of aquifer contam-
ination, instead of considering contaminant concen-
trations at traditional control locations, and compared the
performance of a GA to that of MINLP. Rizzo and
Dougherty (1996) solved a large-scale, six-management-
period problem, using simulated annealing. Although
their model can be applied to a dynamic system and in-
corporates fixed and operating costs, the multiperiod
planning problem must be approximated by a series of
single-period problems. Accordingly, their approach is
not a fully dynamic optimization method. Despite the fact
that the combinatory algorithms can solve the problem of
discontinuity associated with the fixed cost, the algorithm
cannot be efficiently applied to a dynamic system since
the computational effort increases significantly with
the number of decision variables because the time step
increases.

The GA is appealing since it does not require the
objective function to be differentiable. It can thus easily
incorporate the fixed costs associated with ground water
remediation. However, applying only this method to
solve time-varying policies would drastically increase
the computational resources required. This investigation,
therefore, proposes a novel approach to solving such
an optimization problem by effectively combining a
GA with constrained differential dynamic programming
(CDDP) in which a ground water simulator is embedded.

Transition Equation
Based on the Dupuit assumption, the vertically inte-

grated two-dimensional equation for ground water flow
and transport of a conservative solute with adsorption in
an unconfined aquifer is expressed as follows.

rKhrh ±
X
i2I

uidðxi; yiÞ ¼ Sy
@h

@t
ð1Þ

rðhhDrcÞ2rðhhvcÞ2
X
i2I
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¼ @
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where h is the hydraulic head; K, the hydraulic conductiv-
ity; I, an index set that defines the feasible well locations
in the aquifer; ui, the flow rate of a pumping well at point
(xi,yi); d(�), a Dirac delta function; Sy, the specific yield;
c, the concentration; v, Darcy’s velocity; h, the porosity;
R, the retardation coefficient; and D, the hydrodynamic
dispersion tensor. Equations 1 and 2 are nonlinear and are
subject to appropriate initial and boundary conditions.
The equations are solved using Galerkin’s finite-element
method and the implicit finite-difference scheme. The
resulting matrix equations can be expressed as follows
(Mansfield and Shoemaker 1999).
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Mansfield and Shoemaker (1999, p. 1457) completely
detailed the matrix terms in Equations 3 and 4, which
contain information on the spatial distribution of the
physical parameters that relate to flow and transport in
the aquifer. Here, the unconfined aquifer simulator
is modified from the ISOQUA (Pinder 1978), a two-
dimensional confined aquifer simulator, using the Picard
method. Given that nh and nc are non-Dirichlet nodes
associated with head (ht) and concentration (ct,), respec-
tively, the hydraulic head and concentration in an aquifer
model are real vectors with dimensions nh and nc, respec-
tively. The state vector xt combines ht and ct, as expressed
in xt ¼ Æht : ctæT 2 Rðnh1ncÞ31. Using this notation, Equa-
tions 3 and 4 can be combined to yield the change of
the state between time steps as the transition equation
{xt+1} ¼ T(xtut).

Model Formulation
Typically, a ground water remediation design problem

involves three types of decision variables (Zheng and
Wang 1999): the number of required extraction wells, the
locations where the wells should be installed, and the rates
at which the water should be pumped after the well loca-
tions have been determined. The proposed remediation
planning model involves all three types of decision varia-
bles. The proposed model seeks to minimize the total
remediation cost using pump and treat for an unconfined
aquifer. The remediation cost includes the fixed costs of
installing the wells and the operating costs associated with
the time-varying pumping rates. The planning model of
the unconfined aquifer remediation can be formulated as

min
I3V

uit;i2 I;t¼1;.;N

J¼
X
i2I
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1
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subject to

fxt11g ¼ Tðxt; utðIÞÞ; t ¼ 1; 2;.;N; I3V ð6Þ

cN; j � cmax; j 2 F ð7Þ
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where V is a set of indexes that defines all the candidate
locations of wells within the aquifer, and I is a subset of

V, a possible network alternative, and is represented by
a chromosome in the GA. The upper index, i, denotes
a single well in the network alternative, I. F represents
the set of observation wells. Equation 5 gives the total
cost, which depends on the network alternatives, I and the
associated pumping policy (ut(I ), t ¼ 1, ., T ). xt+1 is the
state vector at time t + 1. a1, a2, and a3 are coefficients
used to convert the well installation cost, the treatment
cost, and the operating cost, respectively, into monetary
values ($). yi(I) equals the depth of each well in a network
design. Li�ðIÞ is the distance between the ground surface
and the lower datum of the aquifer for each well. uitðIÞ is
the variable pumping rate at time t, and hit11ðIÞ denotes
the hydraulic head for each node at time t 1 1. The
expression Li�ðIÞ2hit11ðIÞ represents drawdown at pump-
ing well i. Equation 7 specifies the water quality standard
at the end of the planning period. cmax is the maximum
allowable concentration of contaminants. dmax represents
the maximum allowable total pumping rate from all
extraction wells. Equation 9 specifies the capacity con-
straints on each well.

The objective function of the total cost given by
Equation 5 is mixed integer and nonlinear. Thus, the
ground water remediation model defined by Equations 5
to 9 represents a mixed-integer, time-varying optimiza-
tion problem. The first term in Equation 5 is the cost of
installing a well for pumping. The installations of wells
are discrete operations that depend on binary variables in
the optimization model. The second term in Equation 5 is
the operating cost, which includes the pumping and treat-
ment costs (Chang et al. 1992; Culver and Shoemaker
1992). These costs are continuous functions of the state
and control variables and are separable functions in
each time stage, t. In contrast, the fixed cost indicated
by the first component is nonseparable. The problem,
defined by Equations 5 to 9, cannot be easily solved using
only CDDP because the installation cost is discrete
and nonseparable. However, using only GA to determine
time-varying policies would dramatically increase the
computational resources required (Culver and Shoemaker
1997; Zheng and Wang 1999).

Computational Algorithm
No optimization method exists for solving the prob-

lem defined by Equations 5 to 9, so a hybrid algorithm,
integrating GA and CDDP (GCDDP), is proposed herein.
In this integrated approach, GA is used to find the optimal
network design, including the number and locations of
wells, while CDDP is used to calculate the optimal pump-
ing policy associated with each network design. GA is
a heuristic, probabilistic, search-based optimization tech-
nique for searching a solution space to identify the best
solution. A solution determined using a GA is not neces-
sarily optimal but is merely the best identified solution.
GA sets an initial population using a uniform random
number generator and propagates this initial population
through K generations. Propagating from (k 2 1) to
k (k ¼ generation index), GA performs three operations—
selection, crossover, and mutation. GA generates a new
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population of equal size by selecting strings with higher
fitness values with higher probabilities. GA perturbs the
resulting population by applying a crossover with a proba-
bility of pc and then perturbs it further by performing
mutation with probability pm. Tournament selection and
one-point crossover are employed here. Hsiao and Chang
(2002) present the method of integrating GA and CDDP.
In this study, we follow the procedures of their work and
discuss some issues as follows.

Encoding and Decoding Chromosomes
GA uses a binary string (also referred to as a chromo-

some) to encode a trial solution; the string comprises
numerous binary bits. In this investigation, a binary repre-
sentation is mapped to real-world locations of wells; each
bit in a chromosome is associated with a candidate site,
and the length of the chromosome equals the total number
of candidate sites available for installing wells. If the value
of a bit is 1, then a well will be installed at the associated
candidate site; otherwise, the value of a bit is 0, and no
well is installed. A hypothetical, homogeneous, isotropic,
unconfined 600- 3 1200-m aquifer is considered to dem-
onstrate the encoding of chromosomes. Ninety-one nodes,
24 candidate well sites, and 17 observation wells are
included in the finite-element mesh (Figure 1). This inves-
tigation assumes that the optimal network is symmetrical,
just as the hydraulic head, the initial concentration, the lo-
cations of the observation wells, and candidate sites for the
pumping wells are symmetrical. This assumption reduces
the number of combinations of network configurations in
GA and the computational effort. The chromosome con-
tains 16 bits, of which the first 8 represent sites along the
centerline and the final 8 represent candidate sites in the
upper region. One of the last eight bits with a value repre-
sents two wells placed symmetrically about the centerline.
The chromosome can be easily encoded and decoded since
the well selection is binary.

Evaluating the Fitness of Each Chromosome
Most of the computational loading of the proposed

algorithm is concentrated in evaluating the fitness. The
model defined by Equations 5 to 9 is divided into the fol-
lowing two levels of problems to facilitate the application
of GCDDP.

Main problem:

min
I3V

J1ðIÞ ¼
X
i2I

�
a1y

i
�1J�2ðIÞ

�
ð10Þ

Sub problem:
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subject to Equations 6 to 9 ð12Þ
GA solves the main problem, and the objective

function contains the installation of wells and optimal
time-varying costs. The optimal operating costs for each
chromosome are the solution to the subproblem, deter-
mined by CDDP. In executing the algorithm the pumping
rate is treated as fixed in the GA step and the well location
is assumed to be fixed in the CDDP algorithm (Figure 2).
Therefore, this algorithm is a simple GA with embedded
CDDP to compute the optimal operating costs for a poten-
tial network alternative (represented by a chromosome).
The CDDP used herein modifies the SALQR algorithm
(Chang et al. 1992). The SALQR algorithm incorporates
the water quality and extraction constraints (Equations 7 to
9 into Equation 11) to solve the optimization problem as
an unconstrained one. This study employs a penalty func-
tion to consider the water quality constraints described by
Equation 7 and applies quadratic programming (Murray
and Yakowitz 1979) at each stage in the backward and
forward sweep of CDDP to handle the control constraints
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Figure 1. Finite-element mesh, boundary conditions, initial plume, and locations of numbered observations and potential
extraction wells for all runs of the ground water reclamation example.
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represented by Equations 8 and 9. The penalty function
can be found in Lin (1990) and is expressed as follows.

pkðfkÞ ¼ nk; nk � 1 ð13Þ

pkðfkÞ ¼ c1n
2
k1c2n

1=2
k 1c3 nk > 1 ð14Þ

with

nk ¼ ðw2
k f

2
k 1�2kÞ

1=2
1wk fk ð15Þ

where wk is the weighting coefficient of the kth con-
straint; ek, is a shape parameter of the hyperbolic function
nk, and c1, c2, and c3 are constant coefficients. Chang et
al. (1992) demonstrated that this penalty function is
numerically efficient; Culver and Shoemaker (1992,
1993, 1997) and Mansfield and Shoemaker (1999) sub-
sequently applied it. Since it is a derivative-based algo-
rithm, CDDP takes the first derivatives of the transition
equations (simulation models), the objective function, and
the constraints (Equation 7) with respect to the state and
control variables. Of these derivatives, those of the transi-
tion equations are the most complex. Fortunately, Mans-
field and Shoemaker (1999) derived the analytic
derivatives of transition functions (Equations 3 and 4), but
equations 16, 17, and 19 in their paper included some
typographical errors, which are corrected as follows.
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Mansfield and Shoemaker (1999, p. 1459) completely
defined the terms, [S]t+1, [R]t+1, and [W]t+1. GCDDP re-
quires recalculating the problem defined by Equations 11
and 12, greatly increasing the total computational effort.
Decreasing the computational effort of CDDP substan-
tially reduces the total central processing unit (CPU)
requirement. This investigation, therefore, applies the
sparse structure of the derivative equations of state transi-
tion, developed by Mansfield et al. (1998), to reduce the
computational effort of the CDDP. Moreover, each CDDP
calculation can be performed according to only an initial
nominal policy. Therefore, a systematic procedure must
be performed to yield an initial nominal policy associated
with each chromosome. All pumping wells are assumed
to have pumping rates 0.1 m3/s as an initial nominal pol-
icy for all chromosomes.

Termination Criterion
The GA is computed in consecutive generations for

which the termination criterion is heuristic. The algo-
rithm is ended when the fitness of the optimal chromo-
some remains constant over 10 generations or the number
of generations exceeds a given maximum. The fitness of
a chromosome is a function of its optimal total cost. A
higher total cost corresponds to a lower fitness.

Numerical Results
Two examples are provided to investigate the feasi-

bility of applying GCDDP to solve unconfined aquifer
remediation problems. These examples involve constant
unit fixed costs and unit fixed costs that vary with geo-
logical conditions. The design of an unconfined aquifer
using an unconfined model is compared with that using
an approximate confined model. Using an unconfined
simulator to review the design generated by the approxi-
mate confined model reveals that the design may not be
feasible.

The aquifer (Figure 1) is modified from the example
of Chang et al. (1992) and Culver and Shoemaker (1997).
The hydraulic head distribution before pumping is as-
sumed to be steady; the initial peak concentration within
the aquifer is 200 mg/L, and the water quality at the end
of 5 years must be <0.5 mg/L at all the observation wells.
The period between each stage in the management model
is 91.25 d. Table 1 describes the characteristics of the
aquifer. The coefficients a1, a2, and a3 are all constants
(Table 2). The performance of all examples depends on
the appropriate setting of the crossover probability
(pcross), the population size, and the mutation probability
(pmutant). Numerical experiments in which the unit fixed
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Figure 2. Flowchart for integrating GA and CDDP.
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cost (a1) is $240/m are performed to examine the sensitiv-
ity of GA’s parameters to pcross from 0.5 to 0.8, to the
population size from 60 to 90, and to pmutant ¼ 1/pop-
ulation (adapted from the suggestion of DeJong 1975).
The results (Table 3) indicate that within the specified
ranges, the parameters minimally affect the optimal val-
ues. Consequently, the solutions in the following exam-
ples are obtained when pcross is 0.8 and the population has
a size of 70 chromosomes.

Constant Fixed Costs
This section addresses a case that examines the effect

of fixed cost on the optimal total cost and the network
design for an unconfined aquifer. The solutions to the
unconfined aquifer remediation problem with constant
unit fixed costs (Table 4) show that the number of wells
decreases as the unit fixed cost increases from $0 to
$240/m. The operating costs increase with the unit fixed
cost. The optimal design involves seven wells when the
fixed cost is zero and two wells when the unit fixed cost
is $240/m. The results are reasonable because a design
with more wells more efficiently distributes the required
pumping rates across the wells, reducing the total draw-
down and the operating costs. The minimum total pump-
ing volume of the wells is 39.74 L/s simulation period in
the case of zero fixed cost and 583.17 L/s � simulation
period when the unit fixed cost is $240/m. This result
confirms that an optimal design tends to include wells
that pump at low rates if the fixed cost is neglected.
Table 4 shows the required CPU time and number of

generations to convergence. The examples are run on
a PC with an AMD Athlon� 1000 MHz CPU.

For comparison, the total cost of the design with zero
fixed cost is evaluated by adding the calculated operating
costs to the fixed costs that are estimated by multiplying
the well depth by the unit fixed cost. The total cost of the
design with no fixed cost is 47.24% higher than that of
the design with fixed costs, which is $240.0/m (Table 5).
Accordingly, a significant total cost saving can be real-
ized by applying the novel GCDDP algorithm and consid-
ering the fixed cost in the design process.

Using the optimal network design and pollutant con-
centration distribution at the end of the planning period
in cases in which the unit fixed cost is $60.0 and $240/m,
it is clear that as the plume moves from west to east,
the pumping wells in the western region are better able to
remove the contaminant (Figure 3). The hydraulic head
of the western region is higher than that of the eastern
region. Therefore, the pumping cost of the former well is
lower. Consequently, pumping wells with uniform unit
fixed costs (Figure 3) are more likely to be situated in
the west.

Comparison of Design Using an Unconfined
and a Confined Model

This section examines the discrepancy of the net-
work design generated using the embedded confined
transition equation for an unconfined aquifer. The non-
linearity of the unconfined transition equation complicates

Table 1
Aquifer Properties for the Example Application

Parameter
Unconfined
Aquifer

Confined
Aquifer

Hydraulic conductivity (m/s) 5.793 1024 5.793 1024

Longitudinal dispersivity (m) 21.3 21.3
Transverse dispersivity (m) 2.13 2.13
Diffusion coefficient (m2/s) 13 1027 1 3 1027

Storage coefficient 0.1 0.001
Porosity 0.2 0.2
Sorption partitioning
coefficient (cm3/g) 0.245 0.245

Media bulk density (g/cm3) 2.12 2.12
Aquifer thickness b (m) 50 50
Distance from ground surface
to lower datum L* (m) 120 120

Table 2
Cost Function Coefficients for the Example Problem

Coefficient Value

a1 $0 to $240/m
a2 $40,000 (m3/s simulation period)
a3 $1000 (m3/s simulation period)

Table 3
Sensitivity Analysis of the Parameters
for the Unconfined Aquifer Model with

Unit Fixed Cost of $240/m

Population

Size

OV

Pcross ¼ 0.5 Pcross ¼ 0.6 Pcross ¼ 0.7 Pcross ¼ 0.8

60 273 307 270 270

70 261 270 261 261

80 273 273 270 261

90 261 278 278 270

Pcross ¼ crossover probability; OV ¼ the computed optimal objective function
(divided by 1000).

Table 4
Optimal Solutions for the GCDDP with Uniform

Unit Fixed Costs

Fixed Unit Costs $0/m $60/m $240/m

No. of wells 7 3 2
Total operating cost 183,107 187,115 203,671
Minimum total pumping
volume (L/s simulation period) 39.74 312.21 583.17

Number of generation 14 15 16
CPU time required (s) 185,916 142,934 158,384
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the simulation and the associated calculation on which the
CDDP algorithm depends. Therefore, an approximate
confined transition equation is commonly embedded into
the management model to simulate the ground water flow
and contaminant transport of an unconfined aquifer in
order to simplify the computation. However, this approxi-
mation can generate a situation in which the optimal
design, including the pumping rates obtained using an
embedded confined transition equation, fails to meet con-
centration constraints according to an unconfined simula-
tion model. The comparison is made as follows.

1. An unconfined aquifer remediation problem is solved

using the embedded unconfined transition equation.

2. An unconfined aquifer remediation problem is solved

using the embedded confined transition equation, wherein

the initial hydraulic head of the unconfined aquifer is

applied as the thickness of the confined simulator.

3. An unconfined aquifer simulation is performed using the

optimal pumping policy, generated from the unconfined

aquifer remediation problem using the embedded con-

fined transition equation.

The optimal locations of the pumping well generated
by the embedded, confined, and unconfined transition
equation differ markedly (Table 6). The penalties are
small for the two optimal designs but large for the com-
parative simulation (Table 7). The large penalty implies

Table 5
Total Cost Comparison with/without Unit Fixed Costs in an Optimization Model

Coefficient a1 $60.0/m $240/m

Total cost for the network designed without fixed costs (J1) 233,507 (seven wells) 384,707 (seven wells)
Total cost for the networks designed with fixed costs (J2) 208,715 (three wells) 261,271 (two wells)
Ratio of difference ((J1 2 J2)/J2) (%) 11.88 47.24
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Figure 3. Optimal network design and pollutant concentration distribution at the end of the planning period, for cases with
unit fixed costs of $60 and $240/m.
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that the optimal design obtained by the management
model with the embedded confined transition equation
fails to meet the required concentration constraints when
the optimal design is reevaluated using an unconfined
model. A plot of the time-varying concentration at
node 66 in the three cases with a unit fixed cost of $60/m
(Figure 4) indicates that the concentration of con-
taminants at the end of the planning period determined by
the comparative simulation, simulated by the unconfined
model and the pumping policy obtained from the manage-
ment model with the embedded confined simulator, is
~1.0 ppm, which exceeds the required concentration of
0.5 ppm. Hence, the optimal design obtained using the
management model with the embedded confined transi-
tion equation is not a feasible solution for an unconfined
aquifer. Therefore, the management model of an uncon-
fined aquifer requires an unconfined simulator, especially
for small remediation sites, which exhibit largely varying
hydraulic heads.

Examples with Aquifer Heterogeneity
These examples illustrate the capacity of the pro-

posed algorithm to solve a remediation design problem
with aquifer heterogeneity and examine its effect on the
optimal design. In the preceding cases, the unit fixed cost
(a1) and the hydraulic conductivity were assumed to be
constant. However, this assumption is unlikely because
aquifers are generally heterogeneous. In such cases, the
unit fixed cost a1 and hydraulic conductivity are spatially
varied to simulate geological heterogeneity. A series of
numerical examples illustrate the geological effects. The
study area is separated into two subareas with different
unit fixed costs and hydraulic conductivities (Figures 5
and 6). For uniform geological conditions and a constant

fixed cost (Figure 3), the algorithm tends to select pump-
ing wells from subarea I in which the initial concentration
and hydraulic head are higher. Figure 5A demonstrates
that all pumping wells are located in subarea I in which
the hydraulic conductivity is lower than in subarea II.
However, optimal pumping wells are located in subarea II
(Figure 5B), after the spatial distribution of the hydraulic
conductivity has been swapped.

Most wells are located in zone I because a well
therein is cheaper than in zone II (Figure 6A). However,
the pumping wells are concentrated in zone II, where well
installation is cheaper (Figure 6B). The number and loca-
tions of wells also vary according to the magnitude and
distribution of fixed costs, which depend on the geo-
logical conditions. Figures 5 and 6 cannot easily be
derived for a conventional network design procedure that
neglects fixed cost. Therefore, the proposed GCDDP
algorithm provides a design that is nearer to the true opti-
mal solution than that provided by conventional algo-
rithms.

Other Computational Issues
Efforts to implement particular programming techni-

ques to increase computational efficiency are an expected
response to the complexity of the proposed remediation
problem. Four approaches, two of which have been im-
plemented here, can accelerate the computation. The first
increases the computational efficiency of the CDDP algo-
rithm. Accelerating the CDDP algorithm reduces the
computational time of the GCDDP algorithm since each
chromosome in the GCDDP algorithm requires a CDDP
computation. The computing time for CDDP is reduced
herein by exploring the sparse structure of the state de-
rivative matrices of the transition function (@T/@xt)

Table 6
Optimal Pumping Sites Obtained by the Planning Model with an Embedded, Confined,

or Unconfined Transition Equation

Unit Fixed Cost $0/m $60/m $240/m

Confined 17, 19, 24, 26, 31, 32, 33, 38, 40, 45, 47, 59, 61 24, 26, 32 18, 39
Unconfined 17, 19, 24, 26, 31, 32, 33, 38, 40 17, 19, 32 18, 32

The node number can be found in Figure 1.

Table 7
Cost Comparison for Confined and Unconfined Transition Equation Models

Unit Fixed Cost ¼ $0/m Unit Fixed Cost ¼ $60/m Unit Fixed Cost ¼ $240/m

OC Penalty OC Penalty OC Penalty

Confined 154.2 0.000169 154.9 0.000160 186.9 0.000265
Unconfined 183.1 0.000059 187.1 0.000155 203.7 0.000010
Simulation 153.1 2352.1 153.8 1739.9 185.6 901.9

OC ¼ operation cost. The value of operation cost and penalty is divided by 1000. Simulation denotes the unconfined aquifer model simulating the optimal policy, given
from the unconfined aquifer remediation problem using the embedded confined transition equation.
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(Mansfield et al. 1998). The CPU times for the algorithm
that considers sparseness are ~5% lower than that for
those that do not (Table 8).

The second method is bookkeeping. This method
reduces the number of chromosomes to be evaluated by
the CDDP algorithm. As mentioned previously, a network
design (a chromosome) is a subset of all candidate sites.
In the GA computation, a very fit chromosome is more
likely to survive than an unfit one. Moreover, the number
of the subsets (the chromosome) is countable and finite

because the number of candidate sites is limited. There-
fore, this investigation indicates that a very fit chromo-
some is likely to repeat itself from generation to
generation in the GA computation. Hence, a bookkeeping
procedure is performed to record all evaluations of chro-
mosomes by the CDDP algorithm. A new chromosome is
compared to a previously recorded one in each generation
of the GCDDP algorithm. A CDDP computation is not
required if the chromosome already exists, and the algo-
rithm proceeds to the next chromosome. The case with
unit fixed costs of $240/m illustrates the efficiency of the
method. Notably, convergence requires 16 generations.
The total number of required chromosomes is 1050; how-
ever, the CDDP algorithm calculates only 178 distinct
chromosomes. Therefore, the bookkeeping method elimi-
nates the calculation of ~83% of the chromosomes by the
CDDP algorithm. The number of calculated chromo-
somes falls rapidly and saves significant CPU resources
(Figure 7). The encoding of the chromosome is efficient
because each well requires only a single bit and the addi-
tional memory required to implement the bookkeeping is
minor.

Parallel computation is the third method for increas-
ing computational capability. The GA is known to exhibit
simple and highly efficient parallelism, confirming its
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superiority over other combinatory algorithms such as simu-
lation annealing and tabu search, in solving a ground water
remediation design problem. This study does not review par-
allel computing, but the proposed model can be constructed
in parallel. In the GCDDP algorithm, ~98% of CPU time is
spent on evaluating chromosomes (CDDP computing), which
would benefit from parallel computing, since each chromo-
some is determined independently. Therefore, parallel com-
puting can significantly increase the computational capacity
of the GCDDP algorithm and solve large-scale problems.

In addition to the three strategies mentioned for
improving computational efficiency of a heuristic search
method, the response function (or surrogate model) is
another important one. With this approach, a response
function between the objective function and decision
variables is established after a sufficient number of simu-
lation runs. The response function may then serve as a sur-
rogate model in lieu of the numerical simulation model,
significantly reducing the computation run times (Zheng
and Wang 2002).
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Table 8
CPU Time per Iteration with/without Employing the Sparsity in CDDPAlgorithm

for Unconfined Aquifer Remediation

Coefficient a1

CPU Time per Iteration (s)

$0/m (seven wells) $60.0/m (three wells) $240/m (two wells)

With employing the sparsity (T1) 3.00 2.90 2.86
Without employing the sparsity (T2) 3.14 3.06 3.00
Ratio of difference ((T2 2 T1)/T2) (%) 4.46 5.23 4.67

Runs are performed on a PC with an AMD Athlon� 1000-MHz CPU.
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Conclusion
An unconfined aquifer remediation model, GCDDP,

was presented to minimize the total cost of remediation
under pump and treat, considering both fixed costs
and time-varying operating costs. The model integrates
GA and CDDP. The total cost, including the fixed and
operating costs, is the objective function of a ground
water remediation problem. This total cost had not been
previously addressed because of the combinatory and
dynamic characteristics of the problem. This investiga-
tion calculated the fixed cost term using GA and eval-
uated the time-varying operating costs using the CDDP
algorithm.

When the optimization model neglects fixed costs,
the GCDDP algorithm consistently designs a remediation
plan with numerous wells pumping at low rates. How-
ever, incorporating the fixed costs can reduce the number
of wells and affect their locations in the network design.
Hence, the GCDDP design can provide significant sav-
ings by considering the fixed costs. Using the confined
model instead of the unconfined model can avoid the
need to solve the nonlinear flow equation and the deriva-
tive calculations of the unconfined aquifer. However, this
approximation can cause the solution obtained by the
confined model to fail to satisfy the required water qual-
ity standard, when the design is reviewed by an uncon-
fined model. The test cases demonstrate that when the
flow domain is heterogeneous, the number and locations
of pumping wells may vary with the fixed cost, deter-
mined by hydrogeological conditions. This phenomenon
cannot easily be determined using a conventional network
design procedure that neglects fixed cost. This investi-
gation improves the computational efficiency of the
proposed GCDDP algorithm at the expense of an increase
in the computational burden by considering the sparse
structure of the state derivative matrices of the transition
equation and applying a bookkeeping programming pro-
cedure. The GCDDP algorithm is thus a feasible ground
water remediation planning approach. In summary, the
novel GCDDP algorithm considers fixed cost, which is
important in ground water remediation planning, to pro-
vide a more realistic solution. Parallel computation can
further improve the computational capacity of GCDDP
to solve large-scale problems and is currently being
investigated.
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