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On the Development of a Computer-Assisted Testing
System With Genetic Test Sheet-Generating Approach

Gwo-Jen Hwang, Bertrand M. T. Lin, Hsien-Hao Tseng, and
Tsung-Liang Lin

Abstract—Since the last decade, computer-assisted testing has proven to
be an efficient and effective way to evaluating students’ learning status such
that proper tutoring strategies can be adopted to improve their learning
performance. A good test will not only help the instructor evaluate the
learning status of the students, but also facilitate the diagnosis of the prob-
lems embedded in the students’ learning process. One of the most impor-
tant and challenging issues in conducting a good test is the construction
of test sheets that can meet various assessment requirements. A previous
study has indicated that selecting test items to best fit multiple assessment
requirements can be formulated as a mixed integer programming model.
The problem is known to be NP-hard in the literature and, hence, compu-
tational challenges hinder the development of efficient solution methods.
As a sequel, we instead seek quality approximate solutions in a reasonable
time. Two approximation methods based upon a genetic approach are de-
veloped. Statistics from a series of computational experiments indicate that
our approach is able to efficiently generate near-optimal combinations of
test items that satisfy the specified requirements or constraints.

Index Terms—Computer-assisted testing, genetic algorithm (GA), mixed
integer programming, test sheet generating.

I. BACKGROUND AND MOTIVATIONS

In recent years, educators have reported the importance of con-
ducting an interactive and personalized tutoring process, which is
helpful toward the training of creativity and the improvement of
learning performance in children. The need for interactive and per-
sonalized tutoring environments has encouraged the development of
computer-assisted-instruction (CAI) systems which are able to record
the learning status of each student and provide adaptive subject ma-
terials and practice drills. Therefore, it is very important to precisely
determine the learning status of each student so that proper tutoring
strategies can be applied accordingly [10], [17]. A high-quality test is
the major criterion for determining the learning status of students.
Computer-based tests have been proven to be more effective and ef-

ficient than traditional paper-and-pencil tests due to several reasons:
First, the test sheets can be composed dynamically based on the prac-
tical requirements; second, more plentiful test items can be presented
in multimedia styles; third, the student testing portfolio can be recorded
and analyzed to improve their learning performance [5], [15], [19].
The key to a high-quality test not only depends on the quality of test

items, but also the way the test sheet is constructed [10], [14]. As the
number of test items in an item bank is usually large and the number of
feasible combinations to form test sheets thus grows exponentially, it
is very difficult to find an optimal test sheet in a timely manner [3], [6],
[11], [12]. Such an issue is likely to grow in importance owning to the
rapid advent of Internet technologies and the fast growth of network-
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based educational systems and online learning population. Along with
the growth of distance learning through the Internet, computer-based
assessment systems are also becoming demanding.
Although many computer-assisted testing systems have been pro-

posed, few of them have addressed the problem of systematically com-
posing test sheets for multiple assessment requirements [2], [17]. Most
of the existing systems construct a test sheet by manually or randomly
selecting test items from their item banks. Such manual or random test
item selecting strategies are inefficient and usually are not able to si-
multaneously meet multiple assessment requirements. Some previous
investigations attempted to employ a dynamic programming algorithm
to find an optimal composition of the test items [11]. As the time com-
plexity of the dynamic programming algorithm is exponential in terms
of the size of input data, the required execution time will become un-
acceptably long if the number of candidate test items is large.
To cope with the increasingly hard situations encountered in devel-

oping optimal test sheets, we shall present two mixed integer program-
ming models to formulate the problems of finding a set of test items
that fit multiple assessment requirements. As the problems are strongly
NP-hard, we propose two genetic algorithms [4], [7], [13], [16]–[18] to
find quality approximate solutions in acceptable time. Computational
experiments will be also presented to study the performances of the
proposed algorithms.

II. MIXED INTEGER PROGRAMMING MODELS

In an item bank, a subset of n candidate test items Q1; Q2; . . . ; Qn

will be selected for composing a test sheet. In the following subsec-
tions, we shall present two models that formulate the test sheet-gen-
erating problem under different assessment considerations. The first
model was proposed by [12] that is aimed at optimizing the discrimi-
nation degree of the generated test sheets with a specified range of as-
sessment time and some other multiple constraints. The second model
proposed in this paper formulates the optimization of discrimination
degree of the generated test sheets with a fixed number of test items as
the major constraint.

A. Specified Length of Assessment Time (SLAT) Problem

In the SLAT problem, themajor consideration is to confine the length
required by the students to answer the selected items. Assume there are
n items in the item bank andm concepts are involved in the test. The
variables used in the formulated models are defined as follows:

• Decision variables xi; 1 � i � n : xi is 1 if test item i is
selected; 0, otherwise.

• Coefficient ti; 1 � i � n: Expected time needed for answering
item Qi.

• Coefficient di; 1 � i � n: Degree of discrimination of Qi.
• Coefficient rij ; 1 � i � n; 1 � j � m: Degree of association

between Qi and concept Cj .
• Right-hand side hj ; 1 � j � m: Lower bound on the expected

relevance of Cj .
• Right-hand side l: Lower bound on the expected time needed for

answering the selected items.
• Right-hand side u: Upper bound on the expected time needed

for answering the selected items.

Objective function

Maximize Z =

n

i=1

dixi

n

i=1

xi

Subject to
n

i=1

rijxi � hj ; j = 1; 2; . . . ;m (1)

n

i=1

tixi � l (2)

n

i=1

tixi � u; xi = 0 or 1; i = 1; 2; . . . ; n: (3)

In the above formula, binary variable xi reflects the decision about
whether test item i is included or not. Constraint set (1) indicates that
the selected items must have a total relevance no less than the expected
relevance to each concept to be addressed. Constraint sets (2) and (3),
respectively, specify the lower and upper limits on the time needed to
answer the selected items. In the objective function, n

i=1
dixi is the

total discrimination summing over the selected test items and n

i=1
xi

is the number of test items selected. Therefore, the objective of this
model aims to select a subset of test items such that average discrimi-
nation is maximized.

B. Fixed Number of Test Items (FNTI) Problem

In the FNTI problem, the number of test items is specified and fixed
as q num � n. The variables used in this model are given as follows.

• Decision variables: xi is an integer variable that reflects the de-
cision about which test item would be selected and designated
as question i; 1 � xi � n; i = 1; 2; . . . ; q num.

• Right-hand side hj , 1 � j � m: lower bound on the expected
relevance of concept Cj .

Objective function

Maximize Z =

q num

i=1

dx

Subject to
q num

i=1

rij � h; j = 1; 2; . . . ;m (4)

x1 � 1 (5)

xi+1 > xi; 1 � i � q num� 1: (6)

In the above formula, constraint set (4) indicates the selected test
items must have a total relevance that is no less than the expected rele-
vance to each concept to be covered. Constraint sets (5) and (6) indicate
that no test item can be selected twice or more. In the objective func-
tion, q num

i=1
dx is the total discrimination summing over the selected

test items. Therefore, the objective of this model seeks to select a fixed
number of test items such that the total discrimination is maximized.

III. GENETIC ALGORITHMS FOR TEST SHEET GENERATION

In this section, we shall propose two genetic algorithms (GAs), con-
cept lower-bound first genetic approach (CLFG) and feasible item first
genetic approach (FIFG) to find quality approximate solutions for the
SLAT and FNTI problems. In CLFG, we shall select a set of test items
tomeet the lower bound on the expected relevance of each concept first,
and then substitute some of the selected test items with the candidate
test items to meet the upper bound and lower bound of the expected
answering time. In FIFG, we confine the number of test items of the
test sheet first, and then substitute some of the selected items with the
candidate items to meet the lower bound on the expected relevance of
each concept.

A. Concept Lower-Bound First Genetic (CLFG) Approach

To cope with the SLAT problem, we propose the CLFG approach as
follows:
Input: test items Q1; Q2; . . . ; Qn and concepts C1; C2; . . . ; Cm.
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1) Step 1. Create Population (Encode): Let variable S denote the
set of initially generated chromosomes and variable K be the size of
the population in S. Chromosome Sk is represented as an n-bit binary
string [xk1; xk2; . . . ; xkn] consisting of n genes, where xki is either 1
or 0 indicating that the test item is currently selected or not. An initial
set of binary strings, such as X = [0; 0; 1; . . . ; 0], is randomly gener-
ated to represent the status of each test item.
2) Step 2. Fitness Ranking: To satisfy the constraints for the lower

bound on the expected relevance of each concept, we define a penalty
function to approximate the constraints as R = dc � ipt, where R
is a penalty score, dc = m

j=1
maxfhj �

n

i=1
rijx; 0g is the sum

of deviations between the relevance of each concept in the currently
selected test items and the corresponding lower bound, and ipt is the
penalty weight defined by the instructor.
Moreover, two constraints are needed to specify the penalty values

when the total testing time of the selected test items is less than the
lower bound or greater than the upper bound. For the selected test items
that have a total testing time of less than the lower bound, the penalty
function is � = w�dtl�ipt l, wherew = n

i=1
Xidi=average(u; l)

represents the average discrimination weight of a chromosome, dtl =
maxfl� n

i=1 tixi; 0g and ipt l are the user-defined penalty weight
penalizing the violation of lower bound constraint.
For the selected test items that have a total testing time greater

than the upper bound, the penalty function is � = w � dtu � ipt u,
where w = n

i=1
Xidi=average(u; l) represents the average dis-

crimination weight of chromosome dtu = maxf n

i=1
tixi � u; 0g,

and ipt u is a user-defined penalty weight for the case where
the upper bound constraint is violated. The evaluation function
is aggregated from the aforementioned weights and defined as
v(Sk) = ( n

i=1 dixi � � � � �R)= n

i=1 xi.
3) Step 3. Selection: The roulette wheel approach is adopted in the

fitness-proportional selection procedure, which selects a new popula-
tion with respect to the probability distribution based on fitness values.
The probability that chromosome Sk is selected and defined as pk =
v(Sk)=V , where

V =

pop size+o�spring size

k=1

v(sk):

4) Step 4. Crossover: The one-cut-point method is used to perform
the “crossover” operation by randomly selecting a cut point and ex-
changing the right parts of two parents to generate offsprings. In this
application, the value of the crossover rate is 0.2, which was derived
from the results of a series of preliminary experiments.
5) Step 5. Mutation: Mutation alters one or more genes with

the mutation rate P = n�1. A sequence of real random num-
bers y1; y2; . . . ; ynk is then generated with each yi to be a real
number in [0, 1]. If yi; 1 � i � nk is greater than P , then the
rth, r = i � (di=ne � 1)n, bit of the di=ne chromosome will be
complemented.
Steps 2 to 5 constitute a generation. In our procedure, the whole

process iterates generation by generation until either no better solution
was attained within the most recent ten generations or 1500 genera-
tions have been examined. When the procedure stops, the best solution
encountered is reported.

B. Feasible Item First Genetic (FIFG) Approach

To cope with the FNTI Problem, we propose a CLFG approach. The
GA differs from the previous one in representation, fitness function,
and mutation scheme. Therefore, we introduce these parts only.
1) Step 1. Create Population (Encode): Let variable K be the

number of the chromosomes in S, the initial population, and variable

TABLE I
BRIEF DESCRIPTION OF EACH ITEM BANK

Sk be the kth chromosome of S. Chromosome Sk is represented as
[xk1; xk2; . . . ; xk;q num], consisting of q num genes, each of which
denotes a selected item. A set of integers is randomly generated to
represent the test item numbers, for example,X = [25; 908; . . . ; 113].
Note that xi 6= xj for 1 � i 6= j � q num.
2) Step 2. Fitness Ranking: To satisfy the constraints of the

lower bound on the expected relevance of concept, we define a
penalty function R = dc � ipt, where R is a penalty score,
dc = m

j=1 maxfh� n

i=1 rx j ; 0g, which is the sum of distances
between the relevance of each concept for the currently selected test
items and the corresponding lower bound, and ipt is the user-defined
penalty weight. The evaluation function is defined as

v(Sk) =

n

i=1

dx �R:

3) Step 5. Mutation: “Mutation” operation alters one ormore genes
with the mutation rate P = n�1. A sequence of real random numbers
y1; y2; . . . ; yq num�k is then generated with yi being a real number in
[0, 1], for i = 1 to q num � k. A random number selected from 1 to
n is used to replace the value of ith gene if yi < P .

IV. EXPERIMENTS AND EVALUATION

To evaluate the performance of the proposed algorithms, two exper-
iments have been conducted to compare the execution time and the so-
lution quality of four solution-seeking strategies: CLFG, FIFG, random
selection, and exhaustive search. The random selection program gen-
erates the test sheet by selecting test items randomly to meet the con-
straints of time interval or number of test items, while the exhaustive
search program examines every feasible combination of the test items
to find the optimal solution. Eight item banks of K7 to K9 mathematics
courses have been employed in the experiments. Table I shows a brief
description of each item bank, where N indicates the total number
of test items. The platform of the experiments is a personal computer
with a Pentium III 1.0-GHz CPU and 256-MB random-access memory
(RAM). The programs are coded in Java Language.
The experiment is conducted by applying CLFG and FIFG twenty

times on each item bank with the average execution time and discrimi-
nation degree recorded. Tables II–IV show the experimental results for
the lower bounds of testing time being 30, 60, and 120 min, respec-
tively. It can be seen that for most cases, it is time-consuming to derive
optimal solutions. ForN = 30 and l = 60, it takes nearly 3 h (i.e., 187
min) to find an optimal solution. Such a lengthy process is obviously
unacceptable. When the values of N and l increase, it becomes very
unlikely to find optimal solutions in reasonable time. This indicates the
need for heuristic algorithms to derive approximate solutions at a cer-
tain quality level.
It can be seen that test sheets with near-optimal discrimination de-

grees can be obtained in a much shorter time by employing CLFG than
by the random selection approach. The line charts also show that the
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TABLE II
EXPERIMENTAL RESULTS FOR l = 30

TABLE III
EXPERIMENTAL RESULTS FOR l = 60

TABLE IV
EXPERIMENTAL RESULTS FOR l = 120

results of CLFG are very close to the known optimal solutions. For
each case with more than 250 candidate test items, the execution time
for finding optimal solutions is more than 1 000 000 min, which is not
acceptable, while CLFG can still generate test sheets with a degree of
discrimination of greater than 0.9 min.
Figs. 1 and 2 depict the chart concerning the execution time of CLFG

and that of finding optimum solutions. When the number of candidate
test items exceeds 40, it is almost impossible to find an optimal solution,
while CLFG can find near-optimal solutions in a very short time (less
than 1 min).
Moreover, the statistics show that CLFG can efficiently select proper

test items from an item bank containing two 500-candidate test items.
Even when the number of test items in the item bank increases to 4000,
the execution time of CLFG is still acceptable (about 25 to 35 s).
It is also interesting to compare the performances of CLFG and

FIFG although they are used to solve different problems with dif-
ferent GA representations. In Tables V–VII, the experiment results
of FIFG and CLFG are given to compare the execution time and
discrimination degree of each generated test sheet. In each table,
dc =

m

j=1
maxfhj �

n

i=1
rijx; 0g is the sum of distance between

the relevance of each concept for the currently selected test items and
the corresponding lower bound, and q num is the number of test items
selected in the generated test sheet.

Fig. 1. Runtimes of CLFG and Optimum for l = 30.

Fig. 2. Runtimes of CLFG and Optimum for l = 60.

TABLE V
EXPERIMENTAL RESULTS FOR q num = 18

From Tables V–VII, it can be seen that the discrimination degrees
reported by FIFG and CLFG are pretty close to each other. Sometimes
the discrimination degree of FIFG even transcends CLFGwith less time
elapsed. The impacts that the number of candidate test items can im-
pose on the runtime of FIFG are not significant. That is, as the number
of candidate test items increases, FIFG still can demonstrate an impres-
sive performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed two genetic algorithms: CLFG and
FIFG to cope with the test sheet-generating problems. Experimental
results show that test sheets with near-optimal discrimination degrees
can be obtained in a much shorter time by employing our approaches.
The two algorithms have been embedded in a CAI system, Intelli-

gent Tutoring, Evaluation, and Diagnosis (ITED-II), to provide a more
informative, flexible, and capable tool for the instructors and learners
[9]. The testing subsystem of ITED-II accepts assessment requirements
and reads the test items from the item bank to generate test sheets. After
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TABLE VI
EXPERIMENTAL RESULTS FOR q num = 36

TABLE VII
EXPERIMENTAL RESULTS FOR q num = 72

conducting a test, the test results are transmitted to the tutoring sub-
system for arranging adaptive subject materials. The commercial ver-
sion of ITED II is funded by an e-learning company and is scheduled
for release in November 2005. This version will incorporate the fol-
lowing development strategies.

1) The subject materials and item banks are designed to completely
match the contents of textbooks for primary schools and junior
high schools.

2) Several functions suggested by the primary school and junior
high school teachers, including adaptive learning, adaptive
testing, personalized learning diagnosis, and guiding, are
provided.

3) A client program is delivered to the teachers and students as
a low-price compact-disc read-only memory (CD-ROM) bun-
dled to the textbooks. The trial CD-ROM contains limited func-
tions to demonstrate part of the subject materials, test items, and
learning diagnosis functions.

4) The users need to register to the server for accessing advanced
functions and complete subject materials, which are charged by
month, semester, or year.

Several other AI- or optimization-based technologies, such as Tabu
search, Ant systems, and heuristic algorithms, could be maneuvered
to develop more efficient test sheet generating approaches for very
large item banks. To facilitate possible comparisons between different
problem-solving approaches, the test sheet-generating programs and
the database schema of the item bank are available from the corre-
sponding author upon request.
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