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Abstract

This study discusses chaotic traffic flow. The discrete dynamic model proposed herein is

derived from both the flow–density–speed fundamental diagram and Greenshield’s model. The

model employs occupancy as its variable and the ratio of free flow and average speed as its

control parameter. The function form of the model is equal to logistic map that bifurcates

when the value of the control parameter increases. Chaotic traffic means that traffic becomes

unstable and unpredictable, which is dangerous for driving. Therefore, this study considers the

implementation of chaotic control in signal or ramp metering design so as to stabilize the

chaotic traffic phenomena. These results are illustrated by numerical examples.

r 2005 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Traffic on a network or on a single link of a network can be considered as a
dynamic system. A system can be described in terms of variables such as the position
and speed of each vehicle from a microscopic viewpoint. On the other hand, a system
may be described in terms of variables such as the total number of trips between two
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zones, the rate of traffic flow, density and speed from a macroscopic viewpoint.
Dynamic traffic flow models consider the temporal evolution of these variables.
Dynamic traffic flow, equilibrium and steady state operations are essential for
analyzing, managing and optimizing traffic. Equilibrium and steady state operations
are ideal but not assured as traffic is inherently unstable. However, many theoretical
traffic flow models are based on these conditions. As a result, this type of model is
actually not based on facts. The chaotic traffic flow model, however, considers more
complicated traffic. Glass [1] examines the chaos of day-to-day management, and
acknowledges the difficulty associated with this type of model. The inaccuracies are
due to the following invalid assumptions. First, the environment is almost an
elementary ‘closed system’. Generally, external stimuli do not affect a closed system.
Second, the operating environment is sufficiently stable to facilitate an under-
standing on how to develop and implement strategies. Third, the environment is a
series of apparent levels. Analysis of these levels facilitates response prediction of the
system. Furthermore, Glass suggested that three new realities exist. First, a system
should alternately be treated as a complex ‘open system’, which is constantly and
notably influenced by external stimuli. Intended actions are often diverted by
external events. Second, a system is rapidly changing, which prohibits the formation
of detailed strategies. Third, simple cause and effect linear models have failed, as
situations lead to unexpected results.
Thus, investigating these models and observing chaotic traffic flow are worthwhile

tasks. Research of chaotic dynamics can be separated into segments in which
different interests dominate. Stoop and Radons [2] reviewed the development and
extended chaotic systems. They mentioned that the first period of work concentrated
on bifurcation research. A bifurcation is a change in an external parameter, which
produces a crossroad of a given solution within a system. This parameter is referred
to as a control parameter, since it can change the qualitative behavior of a system.
Experimental observation reveals that increasing the control parameter induces
period doubling, which alters systems from simple to complex. Eventually, systems
will become chaotic. However, period doubling is not the only reason inducing
chaotic; intermittency and quasiperiodicity also induce chaos. The mathematical
description of the bifurcation sequences states that simple mechanisms are sufficient
to generate complex behavior. Chaos of large number of simulated ODE systems
and iterated discrete dynamic systems are observed in which the described
phenomena could be traced with much finer precision.
Jarrett and Zhang [3,4] examined the chaotic traffic by adopting car-following

model. Furthermore, the relationship between sensitivity and position is investi-
gated. Disbro and Frame [5] also supported this finding. According to their results,
the Lyapunov exponent is positive for certain values within the parameters, but they
do not have plots or other evidence of a strange attractor. Conversely, Kirby and
Smith [6] fail to detect chaos in car-following models.
The chaotic traffic flow model examined herein is a macroscopic model. The

proposed model is a discrete and dynamic one derived from both the flow–densi-
ty–speed fundamental diagram and the Greenshield’s model. The model uses
occupancy as its variable and uses the ratio of free flow and average speed as the
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control parameter. The rest of this paper is organized as follows. Section 2 presents
the derivation of the model. Section 3 investigates the bifurcation of the model by
substantial data. Section 4 introduces how to apply chaotic control to stabilize this
type of model. The control method developed by Pan and Yin [7] is introduced
herein. From the control method analysis, strategies are developed to stabilize traffic
flow, as examined in the conclusion.
2. Discrete dynamical traffic flow model

The model developed in this section is a macroscopic traffic flow model, which is
in the logistics map form. Before deriving the traffic flow model, logistic map should
be introduced in brief first. Logistic map is a noted population model with discrete
generations

xnþ1 ¼ lxn 1� xnð Þ, (1)

where xn, and xn+1 denote population density x at time span n, and n+1. l is the
control parameter of Eq. (1). According to computations with l varying from 1 to 4,
there is a fixed point in 1plo3. l ¼ 3 is a bifurcation point. When 3olp4 the
behavior becomes increasingly complicated.
The derivation begins with the flow–density–speed fundamental diagram

q ¼ ku, (2)

where q is flow, k is density and u is speed. It is assumed that speed depends solely on
density. Evidently in Eq. (2), flow is also a function of density, which is represented
as

qðkÞ ¼ kuðkÞ. (3)

If the road traffic flow satisfies the Greenshield’s model, the relation of speed and
density is shown as follows:

uðkÞ ¼ uf 1�
k

kj

� �
, (4)

where uf is free flow speed, and kj is jam density. From Eqs. (3) and (4), we have

qðkÞ ¼ ufk 1�
k

kj

� �
. (5)

It is assumed that the traffic flow in the next time span is decided by the current
traffic conditions. Based on this, Eq. (5) is as follows:

qnþ1 ¼ ufkn 1�
kn

kj

� �
. (6)

For computing convenience, Eq. (6) can be converted into a function, which only
depends on a single variable as a result of the scaling method. Occupancy is the
variable that converts Eq. (6) into a single variable function. The definition of
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occupancy r is as follows:

r ¼
qL̄

ū
¼ kL̄, (7)

where ū is average speed and L̄ is average vehicle length. Occupancy is the ratio of
actual occupied time and available time of a certain space, so the value of occupancy
is between [0,1]. By the definition of occupancy, Eqs. (8) and (9) are

q ¼
rū

L̄
, (8)

k ¼
r
L̄
. (9)

Superimpose Eqs. (8) and (9) into Eq. (6), and it becomes

rnþ1ū

L̄
¼ uf

rn

L̄
1�

rn

kjL̄

� �
. (10)

To simplify Eq. (10), let the modified occupancy be r̂ ¼
r

kjL̄
, which concludes

r̂nþ1 ¼
uf

ū
r̂n 1� r̂n

� �
. (11)

Eq. (11), the discrete dynamic traffic flow model developed herein, has a form similar
to Eq. (1). In Eq. (11), the ratio of free flow speed and average speed is equal to the
control parameter l represented in Eq. (1). The subsequent section demonstrates that
the control parameter uf=ū may raise chaotic behavior of the equation by using
historical data.
3. Numerical example

This section considers Cho [8] and Chung’s [9] empirical data and chaotic traffic flow
with an increasing control parameter. Cho [8] surveyed traffic flow on the four-lane Sun
Yat-sen National Freeway in Taiwan. During the study, the average density of every 30 s
varied from 16.18 to 358.94pcu/mi/two-lane and during the peak traffic the average
speed was 14.82mph. The traffic flow model supported by data is u ¼

54:88� ð1� k=346:65Þ. The free flow speed was calculated at 54.88mph and
346.65pcu/mi/2-lane represents the jam density. Chung [9] surveyed four-lane surface
road where a mean density of every 20 s varied from 14.68 to 323.68pcu/mi/two-lane and
an average speed of 12.23mph during the peak period. The traffic flow model supported
by data was u ¼ 44:27� ð1� k=351:61Þ. The free flow speed studied was 44.27mph
with a jam density of 351.61pcu/mi/two-lane. Cho and Chung examined two short time
intervals, therefore the fluctuation of the average density can be clearly detected.
Since r is occupancy, the range of its value is between 0 and 1. Thus r̂max ¼

rmax=kjL̄ ffi 1 implying that r̂ ¼
r

kjL̄
is also between 0 and 1. After a review of the

logistic map, with a control parameter ðuf=ūÞ of less than 1, the fixed point is 0. This
finding implies that the flow on the road is minimal and requires no control.
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However, with a control parameter greater than 4, the traffic behavior becomes more
complicated. Based on the empirical data during the peak period, Cho and Chung
found a control parameter of 3.7 and 3.62. (By the way, if the observed peak period
was reduced to 15min or 30min, the control parameter becomes larger.) Fig. 1
illustrates that traffic is unstable when the control parameter is increased from 1 to 4.
The bifurcation point is 3, which can also be observed in the figure.
In empirical data, when uf=ū ¼ 3 represents the average speed, which is one-third

of the free flow speed of approximately 18.64mph on freeway in Cho [8] or
14.91mph on surface highway in Chung [8]. Fig. 2 illustrates iteration movement
when uf=ū ¼ 2; 3; 3:5; 4. A situation in which uf=ū ¼ 2, the average speed, which is
half of the free flow speed, traffic can reach a stable situation. When uf=ū ¼ 3, the
model is composed of a second period orbit. If the two states are in a close proximity
to one another, near stable traffic flow ensues. However, for uf=ū ¼ 3:5 and 4, the
traffic flow is chaotic. The following section introduces chaotic control methods.
4. Chaotic control

In dense traffic, drivers follow one another very closely, small disturbances such as
the acceleration or deceleration of one vehicle might be passed over or amplified
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along the line of vehicles. These phenomena are sensitive to the initial conditions.
Chaotic flow raises, results in problems with traffic management, and can lead to
accidents. Since it is the duty of the traffic operator to provide stable conditions and
to improve the level of service of road system and safety, the chaos of traffic flow
must be controlled. The following paragraphs consider chaotic control method and
application, which influences the control model proposed herein.
Prevention or control of chaos was impossible prior to the development of a chaos

control method by Ott et al. [10]. This method is the Ott–Grebogi–Yorke (OGY)
control, which can be briefly described as follows:
(1)
 Determine some of the unstable low-period orbits that are embedded in the
chaotic set.
(2)
 Examine the location and stability of these orbits and choose one, which yields
the desired system performance.
(3)
 Apply limited control to stabilize the desired periodic orbit. This is possible
through the use of nonlinear time-series analysis for the observation, under-
standing and control of the system.
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This is of great importance as chaotic systems are complicated and a detailed
knowledge of the equations is often unknown.

Although OGY control does not apply to chaos of functions, the concept induces

the subsequent studies of chaotic control. There is a conventional assumption among
developed control methods: chaotic control always corresponds with the conversion
of the positive Lyapunov exponent to the negative one after application of the
control force. The future behavior is predictable and controllable only when the
system is insensitive to the initial conditions (i.e. it has a negative Lyapunov
exponent). Variable structure control (VSC) is another recognized nonlinear
feedback control method developed by DeCario et al. [11]. By using a discontinuous
feedback controller, it sustains the output in a designed sliding surface.
Pan and Yin [7] used a piecewise linear controller, which differs from VSC, and

kept the output in a designed chaotic attractor. Furthermore, they illustrated that the
negative Lyapunov exponent is not required to obtain a practicable control. They
regarded the error between the real output and the target as a stochastic process. The
system is controlled when the mean value of the error is zero and the absolute value
of the maximal error is less than a given threshold. For convenience, they redefine
control of chaos, which is as follows:
A chaotic system is controlled when the output sequence (a stochastic process)

GðnÞ, n ¼ 0,1,2,y, can satisfy the following two conditions:
(1)
 For a given �X0; 9N40, and a closed neighborhood Xt, S ¼ X X � X tk kp�jf g

such that n4N, PðSÞ ¼ 1, i.e. the controlled output is restricted in S.

(2)
 8X 2 G nð Þ, n ¼ N þ 1, N+2,y, the mean value EðX Þ ¼ X t
When both conditions are satisfied, an unbiased control is attained. However, if
only one condition is satisfied, it is biased. If � ¼ 0, it is equivalent to classical linear
control, which positively satisfies the two conditions cited above. Pan and Yin’s
concept of control can be described as follows:
(1)
 Linearize the local space near the fixed point.

(2)
 Apply the small feedback control force, which occurs only when the trajectory is
near the target. If the controlled domain is sufficiently small, the original system
can be approximated by a linear system so as to convert an unstable manifold to
the stable one in this local linear system.
However, constructing an available controller, which can convert an unstable
manifold to a stable one, is problematic. Pan and Yin [7] proposed linking an
unstable manifold to a stable manifold to form a homoclinic orbit rather than a
direct conversion. This finding implies that a small chaotic attractor can be
constructed in the controlled domain, subsequently forcing all trajectories to enter
the region of attraction of this new chaotic attractor. Trajectories are then captured
and cannot escape without noise.
The proposed chaotic behavior of dynamic traffic model is similar to the model

discussed by Pan and Yin [7]. Thus, the control force they suggested is applied to our
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model, so as to control chaotic behavior. Therefore, Eq. (11) becomes Eq. (12). It is
assumed that Eq. (12) has an unstable fixed point r̂�.

r̂nþ1 ¼
uf

ū
r̂n 1� r̂n

� �
þ c r̂n

� �
, (12)

where

c r̂ð Þ ¼ �a; r̂ 2 r̂� � �; r̂�½ Þ

¼ �a þ b 1� e� r̂�r̂�ð Þ
� �

; r̂ 2 r̂�; r̂� þ �½ 

(13)

is a controller, e.g. signal or ramp-metering strategies, a and b are the parameters to
be determined. With simplification of the form of Eq. (11) as r̂nþ1 ¼ f r̂n

� �
, let

L ¼ df r̂ð Þ=dr̂
��
r̂¼r̂� , Lj j41 is revealed. Careful selection of the parameters a and b is

required to control chaos. Let

a ¼ �; b ¼ �2L. (14)

For convenience, let the fixed point r̂� ¼ 0 and Lj j ¼ 2. The controlled system
r̂nþ1 ¼ f r̂n

� �
þ c r̂n

� �
can be approximated by the piece-wise linear model r̂nþ1 ¼

p r̂n

� �
in the controlled domain ��; �½ 
:

p r̂ð Þ ¼

¼

Lr̂� a;

Lr̂� a þ br̂;

r̂ 2 ��; 0½ Þ

r̂ 2 0; �½ 
:
(15)

Applying the control force only in S ¼ r̂ r̂� r̂�
�� ��p�
��� �

, the local piecewise linear
model of Eq. (15) is illustrated in Fig. 3. Fig. 3 shows that by applying the control
function, the original fixed point r̂� ¼ 0 is replaced by two new unstable fixed points
B ¼ ��=3; �=3

� �
and C ¼ �; �ð Þ. Obviously, O ! A ! C is a route from O to the

unstable fixed point C. Another route from C to O can also be found. Define the left
one as p�1

l yð Þ and the right as p�1
r yð Þ. For any point y 2 ��; �ð 
, p�1 yð Þ is comprised of

two symmetric points in ��; 0½ Þ and 0; �ð 
. Also, according to Fig. 3, it is true that
p�1
l Oð Þ ! p�2

r Oð Þ ! p�3
r Oð Þ ! . . . ! p�n

r Oð Þ . . . is a convergent sequence and
limn!1p�n

r Oð Þ ¼ C, where p�n
r yð Þ � p�1

r p� n�1ð Þ
r yð Þ

� �
. Thus, the sequence

C; . . . ; p�n
r Oð Þ; . . . ; p�3

r Oð Þ; p�2
r Oð Þ; p�1

r Oð Þ;O;A can form a homoclinic orbit based
at C. The controlled model is a tent map in ��; �½ 
. There are some properties that
can be observed:
(1)
 When L ¼ �2, the tent map is chaotic in this small interval ��; �½ 
 and its
Lyapunov exponent is ln Lj j. The chaotic attractor in ��; �½ 
 results in an output
of uniform distribution in ��; �½ 
. Thus, the mean value of the controlled output
is r̂� ¼ 0 so as to satisfy the second condition of the newly formed definition of
controlling chaos, i.e. it is an unbiased control.
(2)
 When L 2 �2;�1ð Þ, it can be found from Fig. 3 that the output is still restricted
in ��; �½ 
. However, the mean value of the output is not equal to r̂�, i.e. the
control is biased.
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If Lj ja2, Pan and Yin recommended the use of an additional linear feedback
controller in the controlled domain, as to satisfy the subsequent condition.

v r̂ð Þ ¼ b 1� e�r̂
� �

; r̂X0;

¼ 0; r̂o0;
(16)

where v r̂ð Þ is the occupancy. By using this controller, a feedback control function
becomes

w r̂ð Þ ¼ v r̂ð Þ � a. (17)

Nevertheless, the control force w r̂ð Þ is applied only when r̂ is close enough to r̂�, i.e.
r̂� r̂�
�� ��p�.
Within the traffic flow model, where uf=ū ¼ 4 is an example, the original fixed

point is r̂� ¼ 0:75. The original derivative is L ¼ df r̂ð Þ=dr̂
��
r̂¼r̂� ¼ �2. The first goal

of control is to restrict the output in the closed neighborhood of r̂�, let
S ¼ r̂ r̂� r̂�

�� ��p0:01��� �
; the second is to make E r̂ð Þ ¼ r̂� for any point of the

controlled output after the transient time.
Since � and L are known, from Eq. (15), a ¼ 0.01, b ¼ 4 are determined. If r̂� r̂�

�� ��
is greater than �, the control force is zero. In this way, the control force can be greatly
reduced to only a small perturbation. Most of all, when the controlled domain is very
small, the local piecewise linearization can be adopted. Since the controlled output
can be viewed as a random process of uniform distribution in r̂� � �; r̂� þ �½ 
, the
standard variance s can be calculated analytically by s2 ¼ 1

3
�2, when � ¼ 0:01,
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s ¼ 0:0058. The uncontrolled output is illustrated in Fig. 4(a) and the controlled
output is shown in Fig. 4(b).
From the experimental data, E r̂ð Þ is estimated at 0.7492. Only a small difference

exists between the experimental and theoretical values. Note that the system remains
chaotic even when controlled. The sole difference between the controlled and
uncontrolled system is that within the controlled system, a relatively small chaotic
attractoris used to replace a large one.
A practical problem must be considered, a valid controller is unavailable without a

precise model. For example, the controller designed on the model r̂nþ1 ¼

4r̂n 1� r̂n

� �
cannot control the slightly modified model r̂nþ1 ¼ 3:99r̂n 1� r̂n

� �
.

Furthermore, should noise exist, the control becomes invalid. This is explained by
the property of the tent map. When a point is forced out of the small chaotic
attractor, it will run away quickly until the chaotic trajectory reenters the small
controlled domain, which can be illustrated in Fig. 3.
Most of the time, operators focus mainly on maintaining the traffic flow at a given

value or within a desired range. Pan and Yin [7] regarded this condition as a solution
of the problem mentioned above. First, the controlled domain should be broadened.
Next, within the controlled domain, keeping the output of the controller c r̂� r̂�ð Þ to
be a constant if the input r̂� r̂� is greater than a new threshold. The modified
control function is

c r̂ð Þ ¼ �a ; r̂ 2 r̂� � d; r̂�½ Þ

¼ �a þ b 1� e� r̂n�r̂�ð Þ
� 	

; r̂ 2 r̂�; r̂� þ d1½ 


¼ �a þ b 1� e�d1
� �

; r̂ 2 r̂� þ d1; r̂
�
þ dð 
;

(18)
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where d is the enlarged threshold of the controlled domain, d1 is the new threshold.
This therefore satisfies the two conditions of the new definition

a ¼
�

2
; b ¼ �2L; d1 ¼ �; d ¼ 2� (19)

that are chosen. For convenience, assume that r̂� ¼ 0 and L ¼ �2 again. The
piecewise linearized controlled model r̂nþ1 ¼ p r̂n

� �
¼ f r̂n

� �
þ c r̂n

� �
is illustrated in

Fig. 5. Two symmetric chaotic attractors are generated by the two adjacent tent
maps. Each of the chaotic attractors can be easily destroyed by noise, but the
symmetric chaotic attractors can still remain in a low noisy background. A small
perturbation may result in the desired output out of the first attractor in ��=2; �=2


 �
,

but if the noise is relatively low, the escaping point will either directly fall into the
adjacent attractor, or fall into it in two steps. A similar situation occurs in the other
chaotic attractor in �=2; 3�=2


 �
. Hence, even with a low noise the output is captured

in the adjacent attractors. The chaotic trajectory switches between the two attractors.
By defining the two attractors as states S0 and S1, a trajectory can be regarded as a
Markov chain. Since the attractors are symmetric and the probability distribution of
the Gaussian white noise is symmetric, the one-step transient probability p01 is equal
to p10. According to the theory of Markov chain, the probability of S0 is equal to
that of S1. Due to the symmetry of the attractors, the conditional probability
distribution F r̂ S0jð Þ is equal to F r̂ S1jð Þ. Thus, the mean value of the output is
located at the symmetric center of the two attractors, i.e., ð�=2; �=2Þ. Defined as
r̂t ¼ r̂� þ �=2, the controlled output is restricted in r̂t � �; r̂t þ �


 �
and r̂t exists just
ρn+1

< <

= f (ρn)+c (ρn)

<

ρn+1 = ρn 

< <

 ρn 

<

2ε
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-ε -ε O

Fig. 5. Local piecewise linear model of the controlled chaotic system with modified controller (Pan and

Yin, 1997).
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only at the symmetric center. The target r̂t differs slightly from the original unstable
fixed point r̂�.
In the traffic flow model for example, the controlled model is Eq. (12). From the

previous discussion, L ¼ �2, r̂� ¼ 0:75. Gaussian white noise N (0,0.005) is added.
When � ¼ 0:02, a ¼ 0:01, b ¼ 4, d ¼ 0:04, d1 ¼ 0:02 are determined from Eq. (18).
The target is r̂t ¼ 0:76. The controlled output is illustrated in Fig. 6. From this
experiment, the mean value of the controlled output is estimated at 0.758, which is
close to the target of r̂t ¼ 0:76. In other experiments, using the same control
parameters a, b, d, d1, the traffic flow model r̂nþ1 ¼ ðuf=ūÞr̂n 1� r̂n

� �
permits control

for all uf=ū 2 3:84; 4:0½ Þ. As a result, a precise model is not required. Therefore, this
kind of controller can be also designed with an experimentally determined model just
as in the OGY method does. In this case, however, the control is biased.
5. Conclusion

This study presents a macroscopic chaotic traffic flow model, which is sensitive to
the control parameter. As long as the bifurcation point is observed, the chaotic
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behavior becomes extremely complicated. Therefore, forecasting the evolution of a
chaotic system is very difficult. If the road traffic flow is chaotic, the traffic flow is
unstable subsequently forcing drivers to accelerate or decelerate more often. These
phenomena not only make drivers uncomfortable and pressurized, but they also
decrease total traffic volume. Additionally, unstable traffic typically results in
accidents. Since traffic operators should provide stable traffic condition to improve
the level of service of road system and safety, the chaos of traffic flow should be
controlled.
The proposed control method of chaotic traffic flow follows Pan and Yin’s

suggestion. The controller traps the chaotic behavior in a designed attractor. In
practice, traffic operators and planners design a road or a freeway based on the
desired level of service. Therefore controlling chaotic traffic becomes more realizable.
A control model can be constructed with a noise background and without exact
model. This advantage makes the control strategy applicable to an actual highway.
The proposed control method controls traffic flow by designing signal or ramp
metering.
Since the control parameter of the developed model is determined by the ratio of

the free flow speed and the average speed, managing or planning traffic flow on a
highway speed limit control is also a workable strategy. As stated, note that the
solution bifurcates when the ratio is greater than 3. Therefore, if the average speed
on the highway can be maintained higher than one third of the free flow speed, traffic
flow will tend to equilibrium. This may be another operational strategy to control
chaotic traffic.
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